
CSCI341
Lecture 38, Introduction to Multicore Architectures

GOAL: PERFORMANCE

Recall:

Power as the overriding issue.

Performance, heat, power efficiency.

PIPELINING

“Exploits potential parallelism among instructions.”

“Instruction-level parallelism”

PROCESS-LEVEL PARALLELISM

Utilizing multiple processors by running
 independent programs simultaneously.

PARALLEL PROCESSING
PROGRAM

Executing one program upon
multiple processors simultaneously.

MULTI-PROCESSOR
ARCHITECTURES

A system with at least two processors.

MULTI-CORE ARCHITECTURES

A system with multiple processors (“cores”)
 within a single integrated circuit.

SEQUENTIAL VS. CONCURRENT

THE PROBLEM

(not about the hardware)

It is difficult to write software that uses multiple processors
that complete tasks faster.

Why?

MUST YIELD THE BENEFIT

The parallel implementation must be faster,
especially as the number of processors increase.

Otherwise, what’s the point?

Single-processor instruction-level parallelism has evolved.
(see superscalar & out-of-order execution)

COMPLICATIONS

• scheduling

• load balancing

• time for synchronization

• communication overhead

• Amdahl’s law

Example: multiple journalists writing a story.

SMP
Shared Memory Multiprocessor

Multiple processors, single memory address space.

All cores have access to all data.

(Multi-core architectures generally use this approach)

SMP

SYNCHRONIZATION

Coordinating operations on shared data
between multiple processors.

Common solution: locks.

MESSAGE PASSING

What if each processor has its own address space?

MESSAGE PASSING

Pragmatically, manifests as clusters of individual machines.

But, there’s a cost to administering these
individual physical machines.

VIRTUAL MACHINES

An additional layer of abstraction on top of hardware.

Multiple cluster nodes on top of hardware, each capable
of sending/receiving messages.

SO MUCH MORE...

• Multithreading

• MIMD (Multiple Instruction / Multiple Data Streams)

• Vector architectures (see Cray)

• GPUs

AND MORE...

Storage & I/O (Chapter 6)

One simple approach: memory-mapped I/O

AND MORE...

Many instructions are loads/stores...
how can we exploit the memory hierarchy?

PRINCIPAL OF LOCALITY

• Temporal

• Spatial

PRINCIPAL OF LOCALITY

Memory closest to the processor fastest (most expensive).

HIERARCHY

< 3 ns

< 70 ns

< 20m ns

$2000/GB

$20/GB

$0.25/GB

HIERARCHY

HOMEWORK

• Reading 32

• Final exam program

No more homework!

