
68 ChOto EW

A telegraph relay can be a binary digit.lf the relay is closed, the binary
digit is 1. If the relay is at rest, the binary digit is 0.

Binary numbers have a whole lot to do with computers.
Sometime around 1948, the American mathematicianJohn ITilder Tukey

(born 1915) realized that the words binary digit were likely to assume a
much greater importance in the years ahead as computers became more
prevalent. He decided to coin a new, shorter word to replace the unwieldy
five syllables of binary digit.He considered bigit and binitbut settled instead
on the short, simple, elegant, and perfectly lovely word &if.

!il|ilffi

r.t|ttrFlftftpr

Chapter Nine

Bit by Bit by Bit
Cr8,ltl9r$

hen Tony Orlando requested in a 1973 song that his beloved 'Tie
a Yellow Ribbon Round the Ole Oak Tree," he wasn't asking for
elaborate explanations or extended discussion. He didn't want

any ifs, ands, or buts. Despite the complex feelings and emotional histories
that would have been at play in the real-life situation the song was based
on, all the man really wanted was a simple yes or no. He wanted a yellow
ribbon tied around the tree to mean 'Yes, even though you messed up big
time and you've been in prison for three years, I still want you back with
me under my roof." And he wanted the absence of a yellow ribbon to mean
'Don't even think about stopping here.'

These are two clear-cut, mutually exclusive alternatives. Tony Orlando
did not sing, 'Tie half of a yellow ribbon if you want to think about it for
a while" or "Tie a blue ribbon if you don't love me anymore but you'd still
like to be friends." Instead, he made it very very simple.

Equally effective as the absence or presence of a yellow ribbon (but per-
haps more awkward to put into verse) would be a choice of traffic signs in
the front yard: Perhaps *Mergeo or 'Wrong Way.'

Or a sign hung on the door: 'Closed" or *Open.o

Or a flashlight in the window, turned on or off.
You can choose from lots of ways to say yes or no if that's all you need

to say. You don't need a sentence to say yes or no; you don't need a word,
and you don't even need a letter. All you need is a bit, and by that I mean
all you need is a 0 or.a 1.

As we discovered in the previous chapters, there's nothing really all that
special about the decimal number system that we normally use for count-
ing. It's pretty clear that we base our number system on ten because that's

70 (, lupt t r Ntnt

the number of f ingers we have. We could just as rcasonably basc our nunr-
ber system on eight (if we were cartoon characters) or four (if we were l<lb-
sters) or even two (if we were dolphins).

But there rs something special about the binary number system. What's
special about binary is that it's the simplest number system possible. There
are only two binary digits-0 and 1. If we want something simpler than
binary, we'll have to get rid of the 1, and then we'll be left with just a 0. \7e
can't do much of anything with just a 0.

The word bit, coined to mean binary digh, is surely one of the loveliest
words invented in connection with computers. Of course, the word has the
normal meaning, "a small portion, degree, or amount," and that normal
meaning is perfect because a bit-one binary digit-is a very small quantity
indeed.

Sometimes when a new word is invented, it also assumes a new meaning.
That's certainly true in this case. A bithas a meaning beyond the binary digits
used by dolphins for counting. In the computer age, the bit has come to be
regarded as the basic building block of information.

Now that's a bold statement, and of course, bits aren't the only things that
convey information. Letters and words and Morse code and Brail le and
decimal digits convey information as well. The thing about the bit is that it
conveys very little information. A bit of information is the tiniest amount
of information possible. Anything less than a bit is no information at all. But
because a bit represents the smallest amount of information possible, more
complex information can be conveyed with multiple bits. (By saying that a
bit conveys a "small" amount of information, I surely don't mean that the
information borders on the unimportant. Indeed, the yellow ribbon is a uery
important bit to the two people concerned with it.)

"Listen, my children, and you shall hear / Of the midnight ride of Paul
Revere," wrote Henry Wadsworth Longfellow, and while he might not have
been historically accurate when describing how Paul Revere alerted the
American colonies that the British had invaded, he did provide a thought-
provoking example of the use of bits to communicate important information:

He said to his friend "lf the British march
By land or sea from the toun to-night,
Hang a lantern aloft in the belfry arch

Of the North Church tower as a special light,-
One, if by land, and tuo, if by sea..."

To summarize, Paul Revere's friend has two lanterns. If the British are in-
vading by land, he will put iust one lantern in the church tower. If the Brit-
ish are coming by sea, he will put both lanterns in the church tower.

However, Longfellow isn't explicitly mentioning all the possibilities. He
left unspoken a tbird possibility, which is that the British aren't invading just
yet. Longfellow implies that this possibility will be conveyed by the absence
of lanterns in the church tower.

l l t t l ry l ln l t t ' l l t t

l .c l 's : rssrrrnc t lut thc two l l rntcrns rrrc l tctrr r t l ly pcnnxncnt l txt t t rcr t t t t l tc

church tower. Normal ly thcy arcn' t l i t :

This means that the Brit ish aren't yet invadins. If one of the lanterns is l i t,

the British are coming by land. If both lanterns are lit,

the Brit ish are coming by sea.
Each lantern is a bit. A l it lantern is a 1 bit and an unlit lantern is a 0 bit.

Tony Orlando dcmonstrated to us that only one bit is necessary to convey
one of two possibil i t ies. If Paul Revere needed only to be alerted that thc

72 Olnptar Ntnt

Brit ish were invading (and not where they were conring fronr), ortc l:rrttcrrt
would have been sufficient. The lantern would have been lit f<lr an invasion
and unlit for another evening of peace.

Conveying one of three possibilities requires another lantern. Once that
second lantern is present, however, the two bits allows communicating one
of four possibilities:

00 = The Brit ish aren't invading tonight.
01 = They're coming by land.
10 = They're coming by land.
11 = They're coming by sea.

\fhat Paul Revere did by sticking to just three possibilities was actually
quite sophisticated. In the lingo of communication theory, he used redun-
dancy to counteract the effect of noise. The word noise is used in commu-
nication theory to refer to anything that interferes with communication.
Static on a telephone line is an obvious example of noise that interferes with
a telephone communication. Communication over the telephone is usually
successful, nevertheless, even in the presence of noise because spoken lan-
guage is heavily redundant. 'We don't need to hear every syllable of every
word in order to understand what's being said.

In the case of the lanterns in the church tower, noise can refer to the
darkness of the night and the distance of Paul Revere from the tower, both
of which might prevent him from distinguishing one lantern from the other.
Here's the crucial passage in Longfellow's poem:

And lo! As he looks, on the belfry's beight
A glimmer, and tben a gleam of light!

He springs to the saddle, the bridle he turns,
But lingers and gazes, till full on his sight

A second lamp in the belfry burns!

It certainly doesn't sound as if Paul Revere was in a position to figure out
exactly which one of the two lanterns was first lit.

The essential concept here is that information represents a choice alnong
two or more possibilities. For example, when we talk to another person,
every word we speak is a choice among all the words in the dictionary. If
we numbered all the words in the dictionary from 1 through 351,482, we
could just as accurately carry on conversations using the numbers rather than
words. (Of course, both participants would need dictionaries where the
words are numbered identically, as well as plenty of patience.)

The flip side of this is that any information that can be reduced to a choice
among tuo or more possibilities can be expressed using bits. Needless to say,
there are plenty of forms of human communication that do not represent
choices among discrete possibilities and that are also vital to our existence.
This is why people don't form romantic relationships with computers. (Let's
hope they don't, anyway.) If you can't express something in words, pictures,
or sounds, you're not going to be able to encode the information in bits. Nor
would you want to.

lht lry Ilil 14' ll11

A thurnl l up ()r i l thunrb c lown is onc bi t of i r r forrr t i t t ior t . Artd two thutt tbs
up or down-such as the thumbs of f i lrrr crit ics R<lgcr F.l lcrt ancl thc l irrc (icnc
Siskel when they rendered their f inal verdicts <ln thc latest movies-c()nvcy
two bits of information. (Ve'l l ignore what thcy actually had to say about
the movies; all we care about here are their thumbs.) Here we have four
possibil i t ies that can be represented with a pair of bits:

00 = They both hated it.
0' l = Siskel hated it; Ebert loved it.
10 = Siskel loved it; Ebert hated it.
11 = They both loved it.

The first bit is the Siskel bit, which is 0 if Siskel hated the movie and 1 if he
liked it. Similarly, the second bit is the Ebert bit.

So if your friend asked you, "'What was the verdict from Siskel and Ebert
about that movie Impolite Encounter?" instead of answering, "Siskel gave
it a thumbs up and Ebert gave it a thumbs down" or even "Siskel liked it;
Ebert didn't," you could have simply said, "One zero." As long as your friend
knew which was the Siskel bit and which was the Ebert bit, and that a 1 bit
meant thumbs up and a 0 bit meant thumbs down, your answer would be
perfectly understandable. But you and your friend have to know the code.

I(ie could have declared initially that a 1 bit meant a thumbs down and
a 0 bit meant a thumbs up. That might seem counterintuitive. NaturallS we
like to think of a 1 bit as representing something affirmative and a 0 bit as
the opposite, but it's really just an arbitrary assignment. The only requirement
is that everyone who uses the code must know what the 0 and 1 bits mean.

The meaning of a particular bit or collection of bits is always understood
contextually. The meaning of a yellow ribbon around a particular oak tree
is probably known only to the person who put it there and the person who's
supposed to see it. Change the color, the tree, or the date, and it 's just a
meaningless scrap of cloth. Similarly, to get some useful information out of
Siskel and Ebert's hand gestures, at the very least we need to know what
movie is under discussion.

If you maintained a list of the movies that Siskel and Ebert reviewed and
how they voted with their thumbs, you could add another bit to the mix to
include your own opinion. Adding this third bit increases the number of
different possibilities to eight:

000 = Siskel hated it; Ebert hated it; I hated it.
O01 = Siskel hated it; Ebert hated it; I loved it.
O10 = Siskel hated it; Ebert loved it; I hated it.
011 = Siskel hated it; Ebert loved it; I loved it.
100 = Siskelloved it; Ebert hated it; I hated it.
101 = Siskelloved it; Ebert hated it; I loved it.
11O = Siskelloved it; Ebert loved it; I hated it.
111 = Siskel loved it; Ebert loved it; I loved it.

cnapbr Nlno

One bonus of using bits to represent this information is that we know that
we've accounted for all the possibilities. \Jfe know there can be eight and only
eight possibilities and no more or fewer. With 3 bits, we can count only from
zero to seven. There are no more 3-digit binary numbers.

Now, during this description of the Siskel and Ebert bits, you might have
been considering a very serious and disturbing question, and that question
is this: What do we do about Leonard Mabin's Mouie & Video Guide? After
all, Leonard Maltin doesn't do the thumbs up and thumbs down thing.
Leonard Maltin rates rhe movies using the more traditional star system.

To determine how many Maltin bits we need, we must first know a few
things about his system. Maltin gives a movie anything from 1 star to 4 stars,
with half stars in between. (Just to make this interesting, he doesn't actu-
ally award a single star; insread, the movie is rated as a BOMB.) There are
seven possibilities, which means that we can represent a particular rating us-
ing just 3 bits:

0@ = BOMB
OO1 = *Vz

010 = **

O11 = **y2

10o = ***

1O1 = ***y2

110 - ****

"'!(ihat about 111.?" you may ask. Well, that code doesn't mean anything.
It's not defined. If the binary code 111 were used to represent a Maltin rat-
ing, you'd know that a mistake was made. (Probably a computer made the
mistake because people never do.)

You'll recall that when we had two bits to represent the Siskel and Ebert
ratings, the leftmost bit was the Siskel bit and the rightmost bit was the Ebert
bit. Do the individual bits mean anything here? Vell, sort of. If you take the
numeric value of the bit code, add 2, and then divide by 2, that will give you
the number of stars. But that's only because we defined the codes in a rea-
sonable and consistent manner. we could iust as well have defined the codes
this way:

000 = ***

N1 = */z

O1O = **y2

01 1= ****

1O1 = *** y2

110 = **

111 = BOMB

This code is just as legitimate as the preceding code so long as everybody
knows what it means.

Bit by Eit tty Ett

I fMalt ineverencounteredamovieundeservingofevena.singleful lstar '
h.;;"ie;;ard a half star. He would certainly have enough codes for the

t,"ti-t,.t option. The codes could be redefined like so:

OOO = MAJOR BOMB
OO1 = BOMB
O1O = *Tz
01 1 = **
10A = **Y2
101 = ***
11O = ***1h
111= ****

But if he then encountered a movie not even worthy of a half.star and de-

cidedtoawardnostars(AIOMICBOMB?)'he'dneedanotherbi t 'Nomore
3-bit codes are available'

The magazin , n tiioir*ent Veekly cin:t- gt{.:t' not onlr,fll.movies

but for television rno*iCOt, books, Cb-ROMt' I(eb sites' and much else'

il.-;;J;; ,"ng. fro- R+ stiaight down to F (although it seems that only

rauti Shor. mJuies are worthyif that honor)' If you count them' you see

i: pirssibr. grades. we would'need 4 bits to represent these grades:

0000 = F
0001 = D-
0O10 = D
0O11 = D+
010O = C-
0101 = C
0110=C+
0111 = B-
1000 = B
10Ol = B+
1010 = A-
1011 =A
110O=A+

I0e have three unused codes: 1101, 1110, and 1111, for a grand total of 16'
.lfhenever *. r"tt

"io"iiitr,
*. ofr.nialk about a certain number of bits.

The more bits we rrane, th. gri^t , the number of different possibilities we

can convey.
It's the same situation with decimal numbers, of course. For example,-how

manytelephon.", ." .odesarethere?Theareacodeisthreedecimaldigi ts
i""g,

""i
rf all of ttrem

""
o"d (which they arent' but.we'll ig:rore that)'

,n.L
"."

103, or 1000, codes, ranging from 000 through 999' How many

Ohaptcr Nlne

7-digitphone numbers are possible within the 212area code? That,s 107, or10,000,000. How many phone
'u-b.rr-*|ou h"u. with a 212 area codeand a 2,60 prefix? Tha;'s- 104, o, tO,OOO.---' '

similarly' in binarv the number of possible codes is always equal to 2 tothe power of the number of bits:

Number of Bits
I
2
J

4
5
6
7
8
9

10

Number of Codes
') t -)

22 =4

23 =8

2a ='1.6

2s=32
26=64

27 = 128

28 = 256

2' = 572
2to = 7024

Every additional bit doubles the number of codes.
If you know how many codes.you;;;,;o* can you calculate how many

,HJi,
need? In other words, ti"- ao /o,.r go backward in the preceding

The method vou use is something called. the base two rogarithm. Thelogarithm is the-opposite. of the porier. 'urt mo* that 2 to the 7th powerequals 128. The base rwo logarithm of tza equals 7. To use more mathemati_cal notation, this statement

27 = 128

is equivalent to this statement:

logr128 = 7

so if the base two losarithm of r2g is 7, and the base two logarith m of 2s6is 8, then what's the 6ase two logarith* oi iool It,s actualry about 7.54, butwe really don't have ro know tf,at. If *.
"..a.a

,";.;;;;d; iiff.r.n,things with bits, we'd need g bits.
Bits are often hidden from casuar observation deep within our electronicappliances. we can't see the uitt."..a.Ji 'ou, compact discs or in our

f,tf*:t
warches or inside our.o*pui.;* B;;"r".times the bits areln clear

Here's one example.'
.If you own a camera that uses 3s-millimeter film,take a look at a roliof fif*. H.fa it til;;;,

Bit hv Bil hv llit

You'l l see a checkerboard-like grid of silver and black squares that I 've
numbered 1 through 12 in the diagram. This is called DX-encoding.These
12 squares are actually 12 bits. A silver square means a 1 bit and a black
square means a 0 bit. Square l and square 7 arealways silver (1).

\7hat do the bits mean? You might be aware that some films are more
sensitive to light than others. This sensitivity to light is often called the film
speed. A film that's very sensitive to light is said tobe fast because it can be
exposed very quickly. The speed of the film is indicated by the film's ASA
(American Standards Association) rating, the most popular being 100, 200,
and 400. This ASA rating isn't only printed on the box and the film's cas-
sette but is also encoded in bits.

There are 24 standard ASA ratings for photographic film. Here they are:

25
50
100
200
400
800
1500
3200

32 40
64 80
125 150
250 320
500 640
1000 1250
2000 2500
4000 5000

How many bits are required to encode the ASA rating? The answer is 5. I0e
know that 2a equals 16, so that's too few. But 25 equals 32, which is more
than sufficient.

78 Chaptu Nine

The bits that correspond to the film speed are shown in the following table:

Bit by Bit by ltit

The electronic circuitry of the camera runs a current into squarc l, which
is always silver. This current will be picked up (or not picked up) by the five
contacts on squares 2 through 5, depending on whether the squares are bare
silver or are painted over. Thus, if the camera senses a current on contacts
4 and 5 but not on contacts 2, 3, and 5, the fi lm speed is 400 ASA. The
camera can then adjust film exposure accordingly.

Inexpensive cameras need read only squares 2 and 3 and assume that the
fi lm speed is 50, 100, 200, or 400 ASA.

Most cameras don't read or use squares 8 through 12. Squares 8, 9, and
10 encode the number of exposures on the roll of film, and squares 11 and
12 refer to the exposure latitude, which depends on whether the film is for
black-and-white prints, for color prints, or for color slides.

Perhaps the most common visual display of binary digits is the ubiqui-
tous Universal Product Code (UPC), that little bar code symbol that appears
on virtually every packaged item that we purchase these days. The UPC has
come to symbolize one of the ways computers have crept into our lives.

Although the UPC often inspires fits of paranoia, it's really an innocent
little thing, invented for the purpose of automating retail checkout and in-
ventory, which it does fairly successfully. lfhen it's used with a well-designed
checkout system, the consumer can have an itemized sales receipt, which isn't
possible with conventional cash registers.

Of interest to us here is that the UPC is a binary code, although it might
not seem like one at first. So it will be instructive to decode the UPC and
examine how it works.

In its most common form, the UPC is a collection of 30 vertical black bars
of various widths, divided by gaps of various widths, along with some dig-
its. For example, this is the UPC that appears on the 10 %-ounce can of
Campbell 's Chicken Noodle Soup:

ililtl
012

We're tempted to try to visually interpret the UPC in terms of thin bars
and black bars, narrow gaps and wide gaps, and indeed, that's one way to
look at it. The black bars in the UPC can have four different widths, with
the thicker bars being two, three, and four times the width of the thinnest
bar. Similarly, the wider gaps between the bars are Nvo, three, and four times
the width of the thinnest gap.

Square 2 Square 3
00

00

00

Square 4

0
0

0

0
0

0
0

0
0

0
0
0

1
1

I
I

I

I

1

t

I

Square 5
1

0

1

Square 6

0
1

t
0
I

I

0
I

I

0

1

1

0

1

1

0

1

1

0

I

I

1

I

1

0

0

0

1

1

1

0

0

0

1

L

1,

0

0

0

0
0

0
1
1

1
1

1
1

0

0
0

0
0

0
I
1

I
11tr03200

111014000

11rr15000

Most modern 3S-millimeter cameras use these codes. (Exceptions are
cameras on which you must set the exposure manually and cameras that have
built-in light meters but require you to set the film speed manually.) If you
take a look inside the camera where you put the film, you should see six metal
contacts that correspond to squares 1 through 5 on the film canister. The
silver squares are actually the metal of the film cassette, which is a conduc-
tor. The black squares are paint, which is an insulator.

1

0

1,

I

0

I

I

0

1

1

0

1

1,

0

I

1

0

1

Film
Speed

25

32
40

50

54
80

100

t25
t50

200
250

320
400

500

640
800

1000

1250
7600

2000
2s00

00

ll0 Ohaptcr Ninc

But another way to look at thc UPC is as a scr ics of l l i ts . Kccp in nr ind
that the whole bar code symbol isn't exactly what thc scanning wand "sccs"
at the checkout counter. The wand doesn't try to interpret the numbers at
the bottom, for example, because that would require a more sophisticated
computing technique known as optical character recognition, or OCR. In-
stead, the scanner sees just a thin slice of this whole block. The UPC is as
large as it is to give the checkout person something to aim the scanner at.
The slice that the scanner sees can be represented like this:

I I I IT I I I IT IT TTITI IT I IT I I I I I I IT

This looks almost like Morse code, doesn't it?
As the computer scans this information from left to right, it assigns a L

bit to the first black bar it encounters, a 0 bit to the next white gap. The
subsequent gaps and bars are read as series of bits 1, 2, 3, or 4 bits in a row,
depending on the width of the gap or the bar. The correspondence of the
scanned bar code to bits is simply:

f,:,,,;,,1;,,,,1,;,,1,,:,:,uu,,ruluuu.,r,lu,1:,;,,i,:#,:;,,:,,;;;,r*J,,:;
So the entire UPC is simply a series of 95 bits. In this particular example,

the bits can be grouped as follows:

Meaning

Left-hand guard pattern

Left-side digits

Center guard pattern

Right-side digits

Right-hand guard pattern

The first 3 bits are always 101. This is known as the left-hand guard pattern,
and it allows the computer-scanning device to get oriented. From the guard
pattern, the scanner can determine the width of the bars and gaps that cor-
respond to single bits. Otherwise, the UPC would have to be a specific size
on all packages.

Bits

101

0001 101
I

0110001
|

0011001
|

0001101 I
0001101

|
0001 1 01 J

01010

11100101

1100110
|

1101100 |
1001110 |

I
1100110

|
1000100J

101

lltt hy ilit hy Bit

l l rc lct t -harrd gutrd p: l t tcnt is fo l lowcd by s ix groups t l f 7 bi ts cach.
l ' ,.rrlr ol t ltcsc is rt codc for a numeric digit 0 through 9, as I ' l l demonstrate
rlrortly. A .f-bit ccntcr guard pattern f<ll lows. The presence of this fixed
p.rttcnr (:rlways 01010) is a form of built- in error checking. If the computer
rti lnncr docsn't f ind the center guard pattern where it 's supposed to be, it
worr't rcknowledge that it has interpreted the UPC. This center guard pat-
tcrrr rs <lnc <lf several precautions against a code that has been tampered with
or lrrtdly printed.

'l'hc ccnter guard pattern is followed by another six groups of 7 bits each,
which are then followed by a right-hand guard pattern, which is always 101.
Ar l'll cxplain later, the presence of a guard pattern at the end allows the UPC
erxlc t<l be scanned backward (that is, right to left) as well as forward.

So the entire UPC encodes L2 numeric digits. The left side of the UPC
crreodcs 5 digits, each requiring 7 bits. You can use the following table to
rlceotle these bits:

Left-Side Codes
0001101=0 0110001=5
0011001=1 0101111=6
0010011=2 0l1l0l l=7
0111101=3 0110111=8
0100011=4 0001011=9

Notice that each 7-bit code begins with a 0 and ends with a 1. If the scan-
ncr cncounters a 7-bit code on the left side that begins with a L or ends with
ir (), it knows either that it hasn't correctly read the UPC code or that the
eotle has been tampered with. Notice also that each code has only two groups
of consecutive 1 bits. This implies that each digit corresponds to two verti-
errl bars in the UPC code.

You'll see that each code in this table has an odd number of 1 bits. This
is another form oferror and consistency checking known asparity. A group
<rf bits has euen parity if it has an even number of I bits and odd parity if
it has an odd number of 1 bits. Thus, all of these codes have odd parity.

To interpret the six 7-bit codes on the right side of the UPC, use the fol-
krwing table:

Right-Side Codes
1110010=0 1001110=5
1100110=1 1010000=5
l l } l l }Q=2 1000100=7
1000010=3 1001000=8
1011100=4 1110100=9

8t

8L Olupter Nrut

These codes arc thc comple nre nts of thc carlier codcs: \r)f lhcre ve r a 0 appcarecl
is now a 1, and vice versa. These codes always begin with a I and end with
a 0. In addition, they have an even number of 1 bits, which is even parity.

-
So now we're equipped to decipher the UPC. Using the two preceding

tables, we can determine that the 12 digits encoded in the 10 %-o.r.r.. .".r of
Campbell's Chicken Noodle Soup are

0 51000 01251 7

This is uery d,isappointing. As you can see, these are precisely the same
numbers that are conveniently printed at the bottom of the UpC. (This makes
a lot of sense because if the scanner can't read the code for some reason, the
person at the register can manually enter the numbers. Indeed, you've un-
doubtedly seen this happen.) we didn't have to go through all that work to
decode them, and moreover, we haven't come close to decoding any secret
information. Yet there isn't anything left in the Upc to decodi. Those 30
vertical lines resolve to just 12 digits.

The first digit (a 0 in this case) is known as the number system cbarac-
ter. A 0 means that this is a regular UPC code. If the Upc appeared on vari-
able-weight grocery items such as meat or produce, the code would be a 2.
Coupons are coded with a 5.

The next five digits make up the manufacturer code. In this case. 51000
is the code for the campbell Soup company. All campbell products have
this code. The five digits that follow (012s1) are the code for a particular
product of that company, in this case, the code for a 10%-ounie can of
chicken noodle soup. This product code has meaning only when combined
with the manufacturer's code. Another company's chicken noodle soup might
have a different product code, and a product code of 01251, might mean
something totally different from another manufacturer.

contrary to popular belief, the UPC doesn't include the price of the item.
That information has to be retrieved from the computer that the store uses
in conjunction with the checkout scanners.

The final digit (a 7 in this case) is called the modulo check cbaracter.This
character enables yet another form of error checking. To examine how this
works, let's assign each of the first 11 digits (0 51000 }rzsl in our example)
a letter:

A BCDEF CHIJK

Now calculate the following:

3 x (A+C+ E+C + | + K) + (B+ D+ F+ H +J)

and subtract that from the next highest multiple of 10. That's called the
modulo cbeck character.ln the case of campbell's chicken Noodle Soup,
we have

3 x (0+ 1 +0+ O+2+1) +(5 +O+O+ 1+ 5) =3 x4+ j1 =23

l l t l ry l l t ln ' l l t t

' l 'hc ncxt h ighcst r r r t r l t ip lc of l () is .10, str

30-23=7

and that's the modulo check character printed and encoded in the UPC. This

is a form of redundancy. If the computer controll ing the scanner doesn't

calculate the same modulo check character as the one encoded in the UPC,

the computer won't accept the UPC as valid.
Normally, only 4 bits would be required to specify a decimal digit from

0 through 9. The UPC uses 7 bits per digit. overall, the UPC uses 95 bits to

encode

-nly

11 useful decimal digits. Actually, the UPC includes blank space

(equivalent to nine 0 bits) at both the left and the right side of the guard

p"it.rrr. That means the entire UPC requires 113 bits to encode 11 decimal

digits, or over 10 bits per decimal digit!
Part ofthis overkill is necessary for error checking, as we've seen. A prod-

uct code such as this wouldn't be very useful if it could be easily altered by

a customer wielding a felt-tip pen.
The Upc also benefits by being readable in both directions. If the first

digits that the scanning device decodes have even parity (that is' an even

number of 1 bits in each 7-bit code), the scanner knows that it's interpret-

ing the UPC code from right to left. The computer system then uses this table

to decode the right-side digits:

Right-Side Codes in Reverse

0100111=0 0111001=5

0110011=1 0000101=5

0011011=2 0010001=7

0100001=3 0001001=8

0011101=4 0010111=9

and this table for the left-side digits:

Left-Side Codes in Reverse

1011000=0 1000110=5

1001100=1 1111010=5

1100100=2 l l0 l7 l0=7

1011110=3 1110110=8

1100010=4 1101000=9

These 7-bit codes are all different from the codes read when the UPC is

scanned from left to right. There's no ambiguiry.
We began looking ai codes in this book with Morse code, composed of

dots, dashes, and pauses between the dots and dashes. Morse code doesn't

immediately seem like it's equivalent to zeros and ones, yet it is.

Recall the rules of Morse code: A dash is three times as long as a dot. The

dots and dashes of a single letter are separated by a pause the length of a

B. l

u/t Ohapter Nina

dot. Letters within a word are separated by pauses equal in length ro a dash.
Words are separated by pauses equal in length to rwo dashes.

Just to simplify this analysis a bit, lett assume that a dash is twice the
length of a dot rather than three times. That means that a dot can be a I bit
and a dash can be two 1 bits. Pauses are 0 bits.

Here's the basic table of Morse code from Chapter 2:

A I S

B K T

C L U
D M V

E N w
F o x
G P Y

H a z
R

Here's the table converted to bits:

A LgtL00 J LOLLOLLOLTOOs 1010100
B lLOLOLOIOO K rL0I0tr00 T LLOO

c 110101t0700 L 10rr0t0700 U L0t0L1g0
D Lt01aI00 M ILOLLOO V 1010t01100
E 100 N TLOLOO r07 r0LL07t00
F 10101101,00 o LLOIIOLIOO X LLOLOLOLIOO

G 1101 1010 0 P LOLIOTLOLOO Y lLOLOTLOLIOO

H L0t0L0L00 a LLOLLOTOILOO z LLOLIOLOLOO

I 10100 R t0tL0L00

aaaa aa
-

aaaa a aro a

but Morse code using bits can look like the cross section of the Upc code:

ITIT TT I TITI T TIT T
r0 t0L0L00t0L000g L 100 L0 10]0 100 roo101 | TLOOLOO\\

Notice that all the codes begin with a 1 bit and end with a pair of 0 bits. The
pair of 0 bits represents the pause between letters in the same word. The code
for the space between words is another pair of 0 bits. So the Morse code for
"hi there' is normally given as

Bit hy llit lry Bit

In tcrnts of bits, l lrail lc is nruch sirnplcr thatt Morsc cti lc. l lrail lc is a 6'
bit c<rde. E,ach charactcr is rcprcscntcd by an array of six dtlts, and cach <lf

the six dots can be either raised or not raised. As I cxplained in Chapter .1,

the d<lts are commonly numbered 1 through 5:

oo
oo
oo

The word "code" (for example) is represented by the Braille symbols:

4

)

6

I

2

J

ao a.
.a

. . a.

aa a.
.a .o

If a raised dot is 1 and a flat dot is 0, each of the characters in Braille can
be represented by a 6-bit binary number. The four Braille symbols for the
letters in the word "code" are then simply:

100100 101010 1001 10 100010

where the leftmost bit corresponds to the 1 position in the grid, and the
rightmost bit corresponds to the 5 position.

As we shall see later in this book, bits can represent words, pictures,

sounds, music, and movies as well as product codes, film speeds, movie
ratings, an invasion of the British armS and the intentions of one's beloved.
But most fundamentallS bits are numbers. All that needs to be done when
bits represent other information is to count the number of possibilities. This

determines the number of bits that are needed so that each possibility can
be assigned a number.

Bits also play a part ii logic, that strange blend of philosophy and math-

ematics for which a primary goal is to determine whether certain statements
are true or false. True and false can also be 1 and 0.

