\apser \ne

When finally you and your best friend memorize Morse code (for that’s
the only way you can become proficient at sending and receiving it), you can
also use it vocally as a substitute for normal speech. For maximum speed,
you pronounce a dot as dih (or dit for the last dot of a letter) and a dash as
dah. In the same way that Morse code reduces written language to dots and

dashes, the spoken version of the code reduces speech to just two vowel
sounds.

The key word here is two. Tw
different anything, really,
of information.

o types of blinks, two vowel sounds, two
can with suitable combinations convey all types

LR < 2

Chapter Two

Codes apd
Combinations

orse code was invented by Samuel Finley Breese Morse (1791-1 872),
whom we shall meet more properly later in this book. Thc inven-
tion of Morse code goes hand in hand with the invention of the
telegraph, which we’ll also examine in more detail. Just as Mor}?e cod?dpro-
vides a good introduction to the nature of codes, the telegraph provides a
good introduction to the hardware of the computer. : 4
Most people find Morse code easier to send.than to receive. Even if you
don’t have Morse code memorized, you can simply use this table, conve-
niently arranged in alphabetical order:

— —

Tjlo|j=n|m|olo]|l=]|>
]

=lo|=|o|Z|Z||R]|—
| 3
N|<IX|E|<|c|H]|»
i
1

—
.
.

Chapter [wo

Receiving Morse code and translating it back into words is considerably
harder and more time consuming than sending because you must work
backward to figure out the letter that corresponds to a particular coded se-
quence of dots and dashes. For example, if you receive a dash-dot-dash-dash,
you have to scan through the table letter by letter before you finally discover
that the code is the letter Y.

The problem is that we have a table that provides this translation:
Alphabetical letter - Morse code dots and dashes
But we don’t have a table that lets us go backward:
Morse code dots and dashes > Alphabetical letter

In the early stages of learning Morse code, such a table would certainly be
convenient. But it’s not at all obvious how we could construct it. There’s
nothing in those dots and dashes that we can put into alphabetical order.
So let’s forget about alphabetical order. Perhaps a better approach to
organizing the codes might be to group them depending on how many dots
and dashes they have. For example, a Morse code sequence that contains
either one dot or one dash can represent only two letters, which are E and T:

A combination of exactly two dots or dashes gives us four more letters—
I, A, N, and M:

. I - N
o— A — M

A pattern of three dots or dashes gives us eight more letters:

i

g|l=|c|w
!

ClIR1D

And finally (if we want to stop this exercise before dealing with numbers and

punctuation marks), sequences of four dots and dashes give us 16 more
characters:

Codes and Combinations

H
\
F
g i U -
I
A
P
J

|
1
W |CIOINIX|O X]|

Taken together, these four tables contain 2 plus 4 plus 8 plus 16 io;iles Ifotr' 2
total of 30 letters, 4 more than are needed for the 26 lettt':rs o i e abxl
alphabet. For this reason, you’ll notice that 4 of the codes in the last table
nted letters.

areTf}?ers:Cfc(:)eur tables might help you translatg with greater ease v'vhcin slome-
one is sending you Morse code. After you receive a code for a particular ett;:lr,
you know how many dots and dashes it ha§, and you can at leas;1 gol;odt te
right table to look it up. Each table is orgamzed' so that you f1‘11c}11 the all-dots
code in the upper left and the all-dashes code in the lowc?r right. ksl

Can you see a pattern in the size of the four ta'bles? NOthC that eac. 1tza h
has twice as many codes as the table before it. This makes senscf. llafl
table has all the codes in the previous table followed by a dot, and all the
codes in the previous table followed by a das}}.

We can summarize this interesting trend this way:

Dol:i:t::e];:sfhes Number of Codes
1 2
2 4
3 8
4 16

i he table before it, so if
Each of the four tables has twice as many codes as t .
the first table has 2 codes, the second table has 2 x 2 codes, and the third
table has 2 x 2 x 2 codes. Here’s another way to show that:

Do:l:\::el;:sfhes Number of Codes
1 2
2 2:%2
3 222
4 2 %2 x2x2

Chapter Two

2 Cziczurse, once we have a number multiplied by itself, we can start us-
33824 pz nents to show powers. For example, 2 x 2 x 2 x 2 can be writtén
(2 to the 4th power). The numbers 2,4, 8, and 16 are all powers of

2’ because) ou can caICUIate thEHl b) Inulnpl) lng 2‘ b) ltSElf' E O our summg [)

Number of
Dots and Dashes Number of Codes
1 2
2 22
3 23
4 24

This table has become very simple. The number of codes is simply 2 to the

power of the number of dots and ; .
Skt s o n and dashes. We might summarize the table data

number Of COdES = 2number of dots and dashes

POWC[‘S Of 2 tend to W 1 €es alld we
ShO up a lot n COd

x)

m the next Chapter.

To m i
o ake thehproc?ss of dec.odmg Morse code even easier, we might want
w something like the big treelike table shown here.

‘Il see another example

»/Z\
o
o e .
©w OO0 N = ~
O X ®W — W > - ¢ m o<

Codes and Combmations

I'his table shows the letters that result from each particular consecutive
sequence of dots and dashes. To decode a particular sequence, follow the
arrows from left to right. For example, suppose you want to know which
letter corresponds to the code dot-dash-dot. Begin at the left and choose the
dot; then continue moving right along the arrows and choose the dash and
then another dot. The letter is R, shown next to the last dot.

If you think about it, constructing such a table was probably necessary
for defining Morse code in the first place. First, it ensures that you don’t make
the dumb mistake of using the same code for two different letters! Second,
you’re assured of using all the possible codes without making the sequences
of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page,
we could continue it for codes of five dots and dashes and more. A sequence
of exactly five dots and dashes gives us 32 (2x2x2x2x2, or 2°) additional
codes. Normally that would be enough for the 10 numbers and the 16 punc-
tuation symbols defined in Morse code, and indeed the numbers are encoded
with five dots and dashes. But many of the other codes that use a sequence
of five dots and dashes represent accented letters rather than punctuation
marks.

To include all the punctuation marks, the system must be expanded to six
dots and dashes, which gives us 64 (2x2x2x2x2x2, or 26) additional codes
for a grand total of 2+4+8+16+32+64, or 126, characters. That’s overkill for
Morse code, which leaves many of these longer codes “undefined.” The word
undefined used in this context refers to a code that doesn’t stand for any-
thing. If you were receiving Morse code and you got an undefined code,
you could be pretty sure that somebody made a mistake.

Because we were clever enough to develop this little formula,

number Of COdes - 2number of dots and dashes

we could continue figuring out how many codes we get from using longer
sequences of dots and dashes:

Number of
Dots and Dashes Number of Codes

1 =2

2 2’ =4

3 22=8

- 2'=16

S 2°=32

6 26 = 64

7 27=128

8 28=256 b
9 2% =512
10 210 = 1024

Whaapiter Two

Fortunately, we don’t have to actually write out all

determine how many there would be. All we have tod
over and over again.

Mors is sai ; i
o e ihceocdoe ni; (s)ald to l}e ﬁ bm(airy (literally meaning two by two) code
nents ot the code consist of onl i
a dash. That’s similar ¢ i i A e e,
' 0 a coin, which can land onl i
Wi e s Wl only on the head side or the
: Jects (such as coins) and binar
. c
are v;i:avays described by powers of two Fg o W'
at) . . . E
P fwne, ar:hceir(:::f b)lf(analyzing binary codes is a simple exercise in the
ICs known as combinatori ; ?

o : _ : orics or combinatorial analys;

¥, combinatorial analysis is used i i ok
Bt i e an sed most often in the fields of prob-

. cause it involves determining th
e | Ing the number of ways that
ce, can be combined. But it a]
X s0 helps u

how codes can be put together and taken apart. A

thc possible codes to
0 is multiply 2 by jtself

R i et

Chapter Three

Braille and
Binary Codes

amuel Morse wasn’t the first person to successfully translate the let-

ters of written language to an interpretable code. Nor was he the first
person to be remembered more as the name of his code than as him-

self. That honor must go to a blind French teenager born some 18 years after
Samuel Morse but who made his mark much more precociously. Little is
known of his life, but what is known makes a compelling story.
Louis Braille was born in 1809 in Coupvray, :
France, just 25 miles east of Paris. His father
was a harness maker. At the age of three—an age
when young boys shouldn’t be playing in their
fathers’ workshops—he accidentally stuck a
pointed tool in his eye. The wound became in-
fected, and the infection spread to his other eye,
leaving him totally blind. Normally he would
have been doomed to a life of ignorance and
poverty (as most blind people were in those days),
but young Louis’s intelligence and desire to learn
were soon recognized. Through the intervention
of the village priest and a schoolteacher, he first
attended school in the village with the other
children and at the age of 10 was sent to the Royal Institution for Blind Youth

in Paris.

15

