Boolean Algebra

A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND (\bullet), a unary operation NOT ('), an equality sign ($=$) to indicate equivalence of expressions, and parenthesis to indicate the ordering of the operations, which preserves the following postulates:

P1. The OR operation is closed
for all $x, y \in B$
$x+y \in B$
P2. The OR operation has an identity (denoted by 0)
for all $x \in B$
$\mathrm{x}+0=0+\mathrm{x}=\mathrm{x}$
P3. The OR operation is commutative
for all $x, y \in B$
$x+y=y+x$
P4. The OR operation distributes over the AND operation
for all $x, y, z \in B$
$x+(y \bullet z)=(x+y) \bullet(x+z)$

P5. The AND operation is closed
for all $x, y \in B$
$x \bullet y \in B$
P6. The AND operation has an identity (denoted by 1)
for all $x \in B$
$\mathrm{x} \bullet 1=1 \bullet \mathrm{x}=\mathrm{x}$

P7. The AND operation is commutative
for all $x, y \in B$
$x \bullet y=y \bullet x$
P8. The AND operation distributes over the OR operation
for all $x, y, z \in B$
$\mathrm{x} \bullet(\mathrm{y}+\mathrm{z})=(\mathrm{x} \bullet \mathrm{y})+(\mathrm{x} \bullet \mathrm{z})$

P9. Complement
for all $\mathrm{x} \in \mathrm{B}$ there exists an element $\mathrm{x}^{\prime} \in \mathrm{B}$, called the complement of x , such that
(a) $x+x^{\prime}=1$
(b) $\mathrm{x} \bullet \mathrm{x}^{\prime}=0$

P10. There exist at least two elements $\mathrm{x}, \mathrm{y} \in \mathrm{B}$ such that $\mathrm{x} \neq \mathrm{y}$

Theorem 1

The complement of x is unique

Proof :
Assume $\mathrm{x}_{1}{ }^{\prime}$ and $\mathrm{x}_{2}{ }^{\prime}$ are both complements of x .
Then by P9

$$
\begin{aligned}
& \mathrm{x}+\mathrm{x}_{1}{ }^{\prime}=1, \quad \mathrm{x} \bullet \mathrm{x}_{1}{ }^{\prime}=0, \mathrm{x}+\mathrm{x}_{2}{ }^{\prime}=1, \quad \mathrm{x} \bullet \mathrm{x}_{2}{ }^{\prime}=0 \\
& \mathrm{x}_{1}{ }^{\prime}=\mathrm{x}_{1}{ }^{\prime} \bullet 1 \quad 1 \text { is the identity for AND (P6) } \\
& =x_{1}{ }^{\prime} \bullet\left(\mathrm{x}+\mathrm{x}_{2}{ }^{\prime}\right) \quad \text { substitution, } \mathrm{x}+\mathrm{x}_{2}{ }^{\prime}=1 \\
& =\left(\mathrm{x}_{1}{ }^{\prime} \bullet \mathrm{x}\right)+\left(\mathrm{x}_{1}{ }^{\prime} \bullet \mathrm{x}_{2}{ }^{\prime}\right) \quad \text { AND distributes over OR (P8) } \\
& =\left(x \bullet x_{1}{ }^{\prime}\right)+\left(x_{1}{ }^{\prime} \bullet x_{2}{ }^{\prime}\right) \quad \text { AND is commutative (P7) } \\
& =0+\left(\mathrm{x}_{1}{ }^{\prime} \bullet \mathrm{x}_{2}{ }^{\prime}\right) \quad \text { substitution, } \mathrm{x} \bullet \mathrm{x}_{1}{ }^{\prime}=0 \\
& =\left(\mathrm{x} \bullet \mathrm{x}_{2}{ }^{\prime}\right)+\left(\mathrm{x}_{1}{ }^{\prime} \bullet \mathrm{x}_{2}{ }^{\prime}\right) \quad \text { substitution, } \mathrm{x} \bullet \mathrm{x}_{2}{ }^{\prime}=0 \\
& =\left(\mathrm{x}_{2}{ }^{\prime} \bullet \mathrm{x}\right)+\left(\mathrm{x}_{2}{ }^{\prime} \bullet \mathrm{x}_{1}{ }^{\prime}\right) \quad \text { AND is commutative (P7), twice } \\
& =x_{2}{ }^{\prime} \bullet\left(x+x_{1}{ }^{\prime}\right) \quad \text { AND distributes over OR (P8) } \\
& =x_{2}{ }^{\prime} \bullet 1 \quad \text { substitution, } x+x_{1}{ }^{\prime}=1 \\
& =\mathrm{x}_{2}{ }^{\prime} \quad 1 \text { is the identity for AND (P6) }
\end{aligned}
$$

Thus, any two elements that are the complement of x are equal.
This implies that x^{\prime} is unique

Theorem 2-1

$x+1=1$
Proof:

$$
\begin{aligned}
\mathrm{x}+1 & =1 \bullet(\mathrm{x}+1) & & 1 \text { is the identity for AND (P6) } \\
& =\left(\mathrm{x}+\mathrm{x}^{\prime}\right) \bullet(\mathrm{x}+1) & & \text { Complement, } \mathrm{x}+\mathrm{x}^{\prime}=1(\mathrm{P} 9 \mathrm{a}) \\
& =\mathrm{x}+\left(\mathrm{x}^{\prime} \bullet 1\right) & & \text { OR distributes over AND (P4) } \\
& =\mathrm{x}+\mathrm{x}^{\prime} & & 1 \text { is the identity for AND (P6) } \\
& =1 & & \text { Complement, } \mathrm{x}+\mathrm{x}^{\prime}=1 \text { (P9a) }
\end{aligned}
$$

Theorem 2-2
 $\mathrm{x} \cdot 0=0$

Theorem 3-1
 AND's identity is the complement of OR's identity
 $0^{\prime}=1$

Proof:

$$
\begin{aligned}
0^{\prime} & =0+0^{\prime} & & 0 \text { is the identity for OR (P2) } \\
& =1 & & \text { Complement, } \mathrm{x}+\mathrm{x}^{\prime}=1(\mathrm{P} 9 \mathrm{a})
\end{aligned}
$$

Theorem 3-2
 OR's identity is the complement of AND's identity 1 = 0

Theorem 4-1

Idempotent
$\mathbf{x + x}=\mathbf{x}$
Proof:

$$
\begin{aligned}
\mathrm{x}+\mathrm{x} & =(\mathrm{x}+\mathrm{x}) \bullet 1 & & 1 \text { is the identity for AND (P6) } \\
& =(\mathrm{x}+\mathrm{x}) \bullet\left(\mathrm{x}+\mathrm{x}^{\prime}\right) & & \text { Complement, } \mathrm{x}+\mathrm{x}^{\prime}=1(\mathrm{P9}) \\
& =\mathrm{x}+\left(\mathrm{x} \bullet \mathrm{x}^{\prime}\right) & & \text { OR distributes over AND (P4) } \\
& =\mathrm{x}+0 & & \text { Complement, } \mathrm{x} \bullet \mathrm{x}^{\prime}=0(\mathrm{P} 9 \mathrm{~b}) \\
& =\mathrm{x} & & 0 \text { is the identity for OR (P2) }
\end{aligned}
$$

Theorem 4-2
 Idempotent
 $\mathbf{x} \cdot \mathbf{x}=\mathbf{x}$

Theorem 5

Involution

($\left.\mathbf{x}^{\prime}\right)^{\prime}=\mathbf{x}$
Proof:
Let x^{\prime} be the complement of x and ($\left.x^{\prime}\right)^{\prime}$ be the complement of x^{\prime}.
Then by P9, $x+\mathrm{x}^{\prime}=1, \quad \mathrm{xx}=0, \mathrm{x}^{\prime}+\left(\mathrm{x}^{\prime}\right)^{\prime}=1$, and $\mathrm{x}^{\prime}\left(\mathrm{x}^{\prime}\right)^{\prime}=0$

$$
\begin{aligned}
\left(\mathrm{x}^{\prime}\right)^{\prime} & =\left(\mathrm{x}^{\prime}\right)^{\prime}+0 \\
& =\left(\mathrm{x}^{\prime}\right)^{\prime}+\mathrm{xx} \\
& \left.=\left[\left(\mathrm{x}^{\prime}\right)^{\prime}+\mathrm{x}\right]\left[\left(\mathrm{x}^{\prime}\right)^{\prime}+\mathrm{x}^{\prime}\right]\right] \\
& =\left[\mathrm{x}+\left(\mathrm{x}^{\prime}\right)^{\prime}\right]\left[\mathrm{x}^{\prime}+\left(\mathrm{x}^{\prime}\right)^{\prime}\right] \\
& =\left[\mathrm{x}+\left(\mathrm{x}^{\prime}\right)^{\prime}\right] \bullet 1 \\
& =\left[\mathrm{x}+\left(\mathrm{x}^{\prime}\right)^{\prime}\right]\left[\mathrm{x}+\mathrm{x}^{\prime}\right] \\
& =\mathrm{x}+\left[\left(\mathrm{x}^{\prime}\right)^{\prime} \bullet \mathrm{x}^{\prime}\right] \\
& =\mathrm{x}+\left[\mathrm{x}^{\prime} \bullet\left(\mathrm{x}^{\prime}\right)^{\prime}\right] \\
& =\mathrm{x}+0 \\
& =\mathrm{x}
\end{aligned}
$$

0 is the identity for OR (P2)
Substitution, $\mathrm{xx}^{\prime}=0$
OR distributes over AND (P4)
OR is commutative (P3), twice
Substitution, $\mathrm{x}^{\prime}+\left(\mathrm{x}^{\prime}\right)^{\prime}=1$
Substitution, $\mathrm{x}+\mathrm{x}^{\prime}=1$
OR distributes over AND (P4)
AND is commutative (P7)
Substitution, $\mathrm{x}^{\prime}\left(\mathrm{x}^{\prime}\right)^{\prime}=0$
0 is the identity for OR (P2)

Theorem 6-1
 Absorption
 $\mathbf{x + x y = x}$

Proof:

$$
\begin{aligned}
x+x y & =(x \bullet 1)+x y & & 1 \text { is the identity for AND (P6) } \\
& =x(1+y) & & \text { AND distributes over OR (P8) } \\
& =x(y+1) & & \text { OR is commutative (P3) } \\
& =x \bullet 1 & & x+1=1(\text { Thm 2-1) } \\
& =x & & 1 \text { is the identity for AND (P6) }
\end{aligned}
$$

Theorem 6-2
 Absorption
 $\mathbf{x}(\mathrm{x}+\mathrm{y})=\mathbf{x}$

Theorem 7-1

$x+x ' y=x+y$
Proof:

$$
\begin{aligned}
x+x^{\prime} y & =\left(x+x^{\prime}\right)(x+y) & & \text { OR distributes over AND (P4) } \\
& =1 \bullet(x+y) & & \text { Complement } x+x^{\prime}=1(P 9 a) \\
& =x+y & & 1 \text { is the identity for AND (P6) }
\end{aligned}
$$

Theorem 7-2
$x\left(x^{\prime}+y\right)=x y$

Theorem 8-1
 $O R$ is associative
 $x+(y+z)=(x+y)+z$

Proof: Let $\mathrm{A}=\mathrm{x}+(\mathrm{y}+\mathrm{z})$ and $\mathrm{B}=(\mathrm{x}+\mathrm{y})+\mathrm{z}$
To Show: $\mathrm{A}=\mathrm{B}$
First,

$$
\begin{aligned}
x A & =x[x+(y+z)] & & \text { Substitution of A } \\
& =x & & \text { Absorption } x(x+y)=x(\text { Thm 6-2 })
\end{aligned}
$$

and,

$$
\begin{aligned}
x B & =x[(x+y)+z] \\
& =x(x+y)+x z \\
& =x+x z \\
& =x
\end{aligned}
$$

Substitution of B
AND distributes over OR (P8)
Absorption $x(x+y)=x($ Thm 6-2 $)$
Absorption $\mathrm{x}+\mathrm{xy}=\mathrm{x}($ Thm 6-1)
Therefore $\mathrm{xA}=\mathrm{xB}=\mathrm{x}$
Second,

$$
\begin{aligned}
x^{\prime} A & =x^{\prime}[x+(y+z)] \\
& =x^{\prime} x+x^{\prime}(y+z) \\
& =x x^{\prime}+x^{\prime}(y+z) \\
& =0+x^{\prime}(y+z) \\
& =x^{\prime}(y+z)
\end{aligned}
$$

and.

$$
\begin{aligned}
x^{\prime} B & =x^{\prime}[(x+y)+z] \\
& =x^{\prime}(x+y)+x^{\prime} z \\
& =\left(x^{\prime} x+x^{\prime} y\right)+x^{\prime} z \\
& =\left(x x^{\prime}+x^{\prime} y\right)+x^{\prime} z \\
& =\left(0+x^{\prime} y\right)+x^{\prime} z \\
& =x^{\prime} y+x^{\prime} z \\
& =x^{\prime}(y+z)
\end{aligned}
$$

Substitution of A AND distributes over OR (P8)
AND is commutative (P7)
Complement, $\mathrm{x} \bullet \mathrm{x}^{\prime}=0(\mathrm{P} 9 \mathrm{~b})$ 0 is the identity for OR (P2)

Substitution of B
AND distributes over OR (P8)
AND distributes over OR (P8)
AND is commutative (P7)
Complement, , $\mathrm{x} \bullet \mathrm{x}^{\prime}=0$ (P9b)
0 is the identity for OR (P2)
AND distributes over OR (P8)
Therefore $x^{\prime} \mathrm{A}=\mathrm{x}^{\prime} \mathrm{B}=\mathrm{x}^{\prime}(\mathrm{y}+\mathrm{z})$
Finally,

$$
\begin{aligned}
\mathrm{A} & =\mathrm{A} \bullet 1 \\
& =\mathrm{A}\left(\mathrm{x}+\mathrm{x}^{\prime}\right) \\
& =\mathrm{Ax}+\mathrm{Ax}^{\prime} \\
& =\mathrm{xA}+\mathrm{x}^{\prime} \mathrm{A} \\
& =\mathrm{xB}+\mathrm{x}^{\prime} \mathrm{A} \\
& =\mathrm{xB}+\mathrm{x}^{\prime} \mathrm{B} \\
& =\mathrm{Bx}+\mathrm{Bx}^{\prime} \\
& =\mathrm{B}\left(\mathrm{x}+\mathrm{x}^{\prime}\right) \\
& =\mathrm{B} \bullet 1 \\
& =\mathrm{B}
\end{aligned}
$$

1 is the identity for AND (P6)
Complement, $\mathrm{x}+\mathrm{x}^{\prime}=1$ (P9a)
AND distributes over OR (P8)
AND is commutative (P7), twice
Substitution $x A=x B$
Substitution $x^{\prime} \mathrm{A}=\mathrm{x}^{\prime} \mathrm{B}$
AND is commutative (P7), twice
AND distributes over OR (P8)
Complement, $\mathrm{x}+\mathrm{x}^{\prime}=1$ (P9a)
1 is the identity for AND (P6)
Since $A=x+(y+z)$ and $B=(x+y)+z$, we have shown that $x+(y+z)=(x+y)+z$

Theorem 8-2
 AND is associative
 $x(y z)=(x y) z$

Theorem 9-1
 DeMorgan's Law 1
 ($\mathbf{x}+\mathrm{y}$) = $\mathbf{x}^{\prime} \mathrm{y}^{\prime}$

Proof:
By Theorem 1 (complements are unique) and Postulate P9 (complement), for every x in a Boolean algebra there is a unique x^{\prime} such that

$$
x+x^{\prime}=1 \text { and } x \bullet x^{\prime}=0
$$

So it is sufficient to show that $x^{\prime} y^{\prime}$ is the complement of $x+y$. We'll do this by showing that $(x+y)+$ $\left(x^{\prime} y^{\prime}\right)=1$ and $(x+y) \bullet\left(x^{\prime} y^{\prime}\right)=0$

$$
\begin{array}{rlrl}
(x+y)+\left(x^{\prime} y^{\prime}\right) & =\left[(x+y)+x^{\prime}\right]\left[(x+y)+y^{\prime}\right] \text { OR distributes over AND }(P 4) \\
& =\left[(y+x)+x^{\prime}\right]\left[(x+y)+y^{\prime}\right] \text { OR is commutative }(P 3) \\
& =\left[y+\left(x+x^{\prime}\right)\right]\left[x+\left(y+y^{\prime}\right)\right] \text { OR is associative }(\text { Thm 8-1), twice } \\
& =(y+1)(x+1) & & \text { Complement, } x+x^{\prime}=1(P 9 a), \text { twice } \\
& =1 \bullet 1 & & x+1=1(\text { Thm } 2-1), \text { twice } \\
& =1 & & \text { Idempotent, } x \bullet x=x(\text { Thm 4-2) }
\end{array}
$$

Also,

$$
\begin{aligned}
(x+y)\left(x^{\prime} y^{\prime}\right) & =\left(x^{\prime} y^{\prime}\right)(x+y) & & \text { AND is commutative (P7) } \\
& =\left[\left(x^{\prime} y^{\prime}\right) x\right]+\left[\left(x^{\prime} y^{\prime}\right) y\right] & & \text { AND distributes over OR (P8) } \\
& =\left[\left(y^{\prime} x^{\prime}\right) x\right]+\left[\left(x^{\prime} y^{\prime}\right) y\right] & & \text { AND is commutative (P7) } \\
& =\left[y^{\prime}\left(x^{\prime} x\right)\right]+\left[x^{\prime}\left(y^{\prime} y\right)\right] & & \text { AND is associative (Thm 8-2), twice } \\
& =\left[y^{\prime}\left(x x^{\prime}\right)\right]+\left[x^{\prime}\left(y y^{\prime}\right)\right] & & \text { AND is commutative (P7), twice } \\
& =\left[y^{\prime} \bullet 0\right]+\left[x^{\prime} \bullet 0\right] & & \text { Complement, } x \bullet x^{\prime}=0(P 9 b), \text { twice } \\
& =0+0 & & x \bullet 0=0(\text { Thm 2-2), twice } \\
& =0 & & \text { Idempotent, } x+x=x(\text { Thm 4-1 })
\end{aligned}
$$

Theorem 9-2
 DeMorgan's Law 2
 $(x y)^{\prime}=x^{\prime}+y^{\prime}$

Summary

OR is closed	for all $\mathrm{x}, \mathrm{y} \in \mathrm{B}, \mathrm{x}+\mathrm{y} \in \mathrm{B}$	P1
0 is the identity for OR	$\mathrm{x}+0=0+\mathrm{x}=\mathrm{x}$	P2
OR is commutative	$\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$	P3
OR distributes over AND	$\mathrm{x}+(\mathrm{y} \bullet \mathrm{z})=(\mathrm{x}+\mathrm{y}) \bullet(\mathrm{x}+\mathrm{z})$	P4
AND is closed	for all $\mathrm{x}, \mathrm{y} \in \mathrm{B}, \mathrm{x} \bullet \mathrm{y} \in \mathrm{B}$	P5
1 is the identity for AND	$\mathrm{x} \bullet 1=1 \bullet \mathrm{x}=\mathrm{x}$	P6
AND is commutative	$\mathrm{x} \bullet \mathrm{y}=\mathrm{y} \bullet \mathrm{x}$	P7
AND distributes over OR	$\mathrm{x} \bullet(\mathrm{y}+\mathrm{z})=(\mathrm{x} \bullet \mathrm{y})+(\mathrm{x} \bullet \mathrm{z})$	P8
Complement (a)	$\mathrm{x}+\mathrm{x}^{\prime}=1$	P9a
Complement (b)	$\mathrm{x} \bullet \mathrm{x}^{\prime}=0$	P9b
Complements are unique		Thm 1
	$\mathrm{x}+1=1$	Thm 2-1
	$\mathrm{x} \bullet 0=0$	Thm 2-2
	$0^{\prime}=1$	Thm 3-1
	$1^{\prime}=0$	Thm 3-2
Idempotent	$\mathrm{x}+\mathrm{x}=\mathrm{x}$	Thm 4-1
Idempotent	$\mathrm{x} \bullet \mathrm{x}=\mathrm{x}$	Thm 4-2
Involution	$\left(\mathrm{x}^{\prime}\right)^{\prime}=\mathrm{x}$	Thm 5
Absorption	$\mathrm{x}+\mathrm{xy}=\mathrm{x}$	Thm 6-1
Absorption	$\mathrm{x}(\mathrm{x}+\mathrm{y})=\mathrm{x}$	Thm 6-2
	$\mathrm{x}+\mathrm{x}^{\prime} \mathrm{y}=\mathrm{x}+\mathrm{y}$	Thm 7-1
	$\mathrm{x}\left(\mathrm{x}^{\prime}+\mathrm{y}\right)=\mathrm{xy}$	Thm 7-2
OR is associative	$\mathrm{x}+(\mathrm{y}+\mathrm{z})=(\mathrm{x}+\mathrm{y})+\mathrm{z}$	Thm 8-1
AND is associative	$\mathrm{x}(\mathrm{yz})=(\mathrm{xy}) \mathrm{z}$	Thm 8-2
DeMorgan's Law 1	$(\mathrm{x}+\mathrm{y})^{\prime}=\mathrm{x}^{\prime} \mathrm{y}^{\prime}$	Thm 9-1
DeMorgan's Law 2	$(\mathrm{xy})^{\prime}=\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$	Thm 9-2

