
Boolean Algebra 
 

A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) 

and AND (•), a unary operation NOT ('), an equality sign (=) to indicate equivalence of expressions, and 

parenthesis to indicate the ordering of the operations, which preserves the following postulates: 

 

P1. The OR operation is closed 

 for all x, y ∈ B 

x + y ∈ B 

 

P2. The OR operation has an identity (denoted by 0) 

 for all x ∈ B 

 x + 0 = 0 + x = x 

 

P3. The OR operation is commutative 

 for all x, y ∈ B 

 x + y = y + x 

 

P4. The OR operation distributes over the AND operation 

 for all x, y, z ∈ B 

 x + (y • z) = (x + y) • (x + z) 

 

 

 

P5. The AND operation is closed 

 for all x, y ∈ B 

 x • y ∈ B 

 

P6. The AND operation has an identity (denoted by 1) 

 for all x ∈ B 

 x • 1 = 1 • x = x 

 

P7. The AND operation is commutative 

 for all x, y ∈ B 

 x • y = y • x 

 

P8. The AND operation distributes over the OR operation 

 for all x, y, z ∈ B 

x • (y + z) = (x • y) + (x • z) 

 

 

 

P9. Complement 

for all x ∈ B there exists an element x' ∈ B, called the complement of x, such that  

(a) x + x' = 1 

(b) x • x' = 0 

 

P10. There exist at least two elements x, y ∈ B such that x ≠ y 

  



Theorem 1 
The complement of x is unique 
 

Proof : 

 

Assume x1' and x2' are both complements of x. 

 

Then by P9 

 x + x1' = 1,   x • x1' = 0,  x + x2' = 1,   x • x2' = 0 

 

 x1' = x1' • 1 1 is the identity for AND (P6) 

  = x1' • (x + x2') substitution, x + x2' = 1 

  = (x1' • x) + (x1' • x2') AND distributes over OR (P8) 

  = (x • x1') + (x1' • x2') AND is commutative (P7) 

  = 0 + (x1' • x2') substitution, x • x1' = 0 

  = (x • x2') + (x1' • x2') substitution, x • x2' = 0 

  = (x2' • x) + (x2' • x1') AND is commutative (P7), twice 

  = x2' • (x + x1') AND distributes over OR (P8) 

  = x2' • 1 substitution, x + x1' = 1 

  = x2' 1 is the identity for AND (P6) 

 

Thus, any two elements that are the complement of x are equal. 

This implies that x' is unique 

 

Theorem 2-1 
x + 1 = 1 
 

Proof: 

x + 1 = 1 • (x + 1) 1 is the identity for AND (P6) 

 = (x + x') • (x + 1) Complement, x + x' = 1 (P9a) 

 = x + (x' • 1) OR distributes over AND (P4) 

 = x + x' 1 is the identity for AND (P6) 

 = 1 Complement, x + x' = 1 (P9a) 

 
 

Theorem 2-2 
x •••• 0 = 0 
 

 



Theorem 3-1 
AND's identity is the complement of OR's identity 
0' = 1 
 

Proof: 

0' = 0 + 0' 0 is the identity for OR (P2) 

 = 1 Complement, x + x' = 1 (P9a) 

 
 

Theorem 3-2 
OR's identity is the complement of AND's identity 
1' = 0 
 

Theorem 4-1 
Idempotent 
x + x = x 
 

Proof: 

x + x = (x + x) • 1 1 is the identity for AND (P6) 

 = (x + x) • (x + x') Complement, x + x' = 1 (P9a) 

 = x + (x • x') OR distributes over AND (P4) 

 = x + 0 Complement, x • x' = 0 (P9b) 

 = x 0 is the identity for OR (P2) 

 
 

Theorem 4-2 
Idempotent 

x •••• x = x 
 

 

 



Theorem 5 
Involution 
(x')' = x 
 

Proof: 

Let x' be the complement of x and (x')' be the complement of x'. 

Then by P9,  x + x' = 1,   xx' = 0,   x' + (x')' = 1,   and   x'(x')' = 0 

 

(x')' = (x')' + 0 0 is the identity for OR (P2) 

 = (x')' + xx' Substitution, xx' = 0 

 = [(x')' + x][(x')' + x'] OR distributes over AND (P4) 

 = [x + (x')'][x' + (x')'] OR is commutative (P3), twice 

 = [x + (x')'] • 1 Substitution, x' + (x')' = 1 

 = [x + (x')'][x + x'] Substitution, x + x' = 1 

 = x + [(x')' • x'] OR distributes over AND (P4) 

 = x + [x' •  (x')'] AND is commutative (P7) 

 = x + 0 Substitution, x'(x')' = 0 

 = x 0 is the identity for OR (P2) 

 
 

 

Theorem 6-1 
Absorption 
x + xy = x 
 

Proof: 

x + xy = (x • 1) + xy 1 is the identity for AND (P6) 

 = x(1 + y) AND distributes over OR (P8) 

 = x(y + 1) OR is commutative (P3) 

 = x • 1 x + 1 = 1 (Thm 2-1)  

 = x 1 is the identity for AND (P6) 

 
 

Theorem 6-2 
Absorption 
x(x + y) = x 
 



Theorem 7-1 
x + x'y = x + y 
 

Proof: 

x + x'y = (x + x') (x + y) OR distributes over AND (P4) 

 = 1 • (x + y) Complement x + x' = 1 (P9a) 

 = x + y 1 is the identity for AND (P6) 

 
 

Theorem 7-2 
x(x' + y) = xy 
 

 



Theorem 8-1 
OR is associative 
x + (y + z) = (x + y) + z 
 

Proof:  Let A = x + (y + z) and B = (x + y) + z 

To Show: A = B 

 

First,  

xA = x [x + (y + z)] Substitution of A 

 = x Absorption x(x + y) = x (Thm 6-2) 

 

and, xB = x[(x + y) + z] Substitution of B 

 = x(x + y) + xz AND distributes over OR (P8) 

 = x + xz Absorption x(x + y) = x (Thm 6-2) 

 = x Absorption x + xy = x (Thm 6-1) 

Therefore xA = xB = x 

 

Second, 

x'A = x'[x + (y + z)] Substitution of A 

 = x'x + x'(y + z) AND distributes over OR (P8) 

 = xx' + x'(y + z) AND is commutative (P7) 

 = 0 + x'(y + z) Complement, x • x' = 0 (P9b) 

 = x'(y + z) 0 is the identity for OR (P2) 

 

and. x'B = x'[(x + y) + z] Substitution of B 

 = x'(x + y) + x'z AND distributes over OR (P8) 

 = (x'x + x'y) + x'z AND distributes over OR (P8) 

 = (xx' + x'y) + x'z AND is commutative (P7) 

 = (0 + x'y) + x'z Complement, , x • x' = 0 (P9b) 

 = x'y + x'z 0 is the identity for OR (P2) 

 = x'(y + z) AND distributes over OR (P8) 

Therefore x'A = x'B = x'(y + z) 

 

Finally, 

A = A • 1 1 is the identity for AND (P6) 

 = A(x + x') Complement, x + x' = 1 (P9a) 

 = Ax + Ax' AND distributes over OR (P8) 

 = xA + x'A AND is commutative (P7), twice 

 = xB + x'A Substitution xA = xB 

 = xB + x'B Substitution x'A = x'B 

 = Bx + Bx' AND is commutative (P7), twice 

 = B(x + x') AND distributes over OR (P8) 

 = B • 1 Complement, x + x' = 1 (P9a) 

 = B 1 is the identity for AND (P6) 

 

Since A = x + (y + z) and B = (x + y) + z, we have shown that x + (y + z) = (x + y) + z 

 



 

Theorem 8-2 
AND is associative 
x(yz) = (xy)z 
 

 

Theorem 9-1 
DeMorgan's Law 1 
(x + y)' = x' y' 
 

Proof: 

By Theorem 1 (complements are unique) and Postulate P9 (complement), for every x in a Boolean 

algebra there is a unique x' such that 

 x + x' = 1   and   x • x' = 0 

 

So it is sufficient to show that x'y' is the complement of x + y.  We'll do this by showing that (x + y) + 

(x'y') = 1   and    (x + y) • (x'y') = 0 

 

(x + y) + (x'y') = [(x + y) + x'] [(x + y) + y'] OR distributes over AND (P4) 

 = [(y + x) + x'] [(x + y) + y'] OR is commutative (P3) 

 = [y + (x + x')] [x + (y + y')] OR is associative (Thm 8-1), twice 

 = (y + 1)(x + 1) Complement, x + x' = 1 (P9a), twice 

 = 1 • 1 x + 1 = 1 (Thm 2-1), twice 

 = 1 Idempotent, x • x = x (Thm 4-2) 

 

Also, 

 (x + y)(x'y') = (x'y')(x + y) AND is commutative (P7) 

 = [(x'y')x] + [(x'y')y] AND distributes over OR (P8) 

 = [(y'x')x] + [(x'y')y] AND is commutative (P7) 

 = [y'(x'x)] + [x'(y'y)] AND is associative (Thm 8-2), twice 

 = [y'(xx')] + [x'(yy')] AND is commutative (P7), twice 

 = [y' • 0] + [x' • 0] Complement, x • x' = 0 (P9b), twice 

 = 0 + 0 x • 0 = 0 (Thm 2-2), twice 

 = 0 Idempotent, x + x = x (Thm 4-1) 

 
 

 

Theorem 9-2 
DeMorgan's Law 2 
(xy)' = x' + y' 
 



Summary 
OR is closed for all x, y ∈ B, x + y ∈ B  P1 

0 is the identity for OR x + 0 = 0 + x = x P2 

OR is commutative x + y = y + x P3 

OR distributes over AND x + (y • z) = (x + y) • (x + z) P4 

AND is closed for all x, y ∈ B, x • y ∈ B P5 

1 is the identity for AND x • 1 = 1 • x = x P6 

AND is commutative x • y = y • x P7 

AND distributes over OR x • (y + z) = (x • y) + (x • z) P8 

Complement (a) x + x' = 1 P9a 

Complement (b) x • x' = 0 P9b 

Complements are unique  Thm 1 

 x + 1 = 1 Thm 2-1 

 x • 0 = 0 Thm 2-2 

 0' = 1 Thm 3-1 

 1' = 0 Thm 3-2 

Idempotent x + x = x Thm 4-1 

Idempotent x • x = x Thm 4-2 

Involution (x')' = x Thm 5 

Absorption x + xy = x Thm 6-1 

Absorption x (x + y) = x Thm 6-2 

 x + x'y = x + y Thm 7-1 

 x (x' + y) = xy Thm 7-2 

OR is associative x + (y + z) = (x + y) + z Thm 8-1 

AND is associative x(yz) = (xy)z Thm 8-2 

DeMorgan's Law 1 (x + y)' = x' y' Thm 9-1 

DeMorgan's Law 2 (xy)' = x' + y' Thm 9-2 

 


