
The Definitive Guide
to SQLite

■ ■ ■

Michael Owens

Owens_6730 FRONT.fm Page i Friday, April 21, 2006 1:38 PM

The Definitive Guide to SQLite

Copyright © 2006 by Michael Owens

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-673-9

ISBN-10: 1-59059-673-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Keir Thomas
Technical Reviewer: Preston Hagar
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert
Proofreader: April Eddy
Indexer: Toma Mulligan
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Owens_6730 FRONT.fm Page ii Friday, April 21, 2006 1:38 PM

1

■ ■ ■

C H A P T E R 1

Introducing SQLite

SQLite is an open source embedded relational database. Originally released in 2000, it was
designed to provide a convenient way for applications to manage data without the overhead
that often comes with dedicated relational database management systems. SQLite has a reputation
for being highly portable, easy to use, compact, efficient, and reliable.

An Embedded Database
SQLite is an embedded database. Rather than running independently as a standalone process,
it symbiotically coexists inside the application it serves—within its process space. Its code is
intertwined, or embedded, as a part of the program that hosts it. To an outside observer, it
would never be apparent that such a program had a relational database management system
(RDBMS) on board. The program would just do its job and manage its data somehow, making
no fanfare about how it went about doing so. But inside, there is a complete, self-contained
database engine at work.

One advantage of having a database server inside your program is that no network config-
uration or administration is required. Both client and server run together in the same process.
This reduces overhead related to network calls, simplifies database administration, and makes
it easier to deploy your application. Everything you need is compiled right into your program.

Consider the processes found in Figure 1-1. One is a Perl script, another is a standard C/C++
program, and the other is an Apache process with PHP, all using SQLite. The Perl script imports
the DBI::SQLite module, which in turn is linked to the SQLite C API, pulling in the SQLite library.
The PHP library works similarly, as does the C++ program. Ultimately, all three processes inter-
face with the SQLite C API. All three therefore have SQLite embedded in their process spaces,
and all three are independent database servers in and of themselves. Furthermore, even though
each process represents an independent server, they can still operate on the same database
file(s), as SQLite uses the operating system to manage synchronization and locking.

Today there is a wide variety of relational database products on the market specifically
designed for embedded use—products such as Sybase SQL Anywhere, InterSystems Caché,
Pervasive PSQL, and Microsoft’s Jet Engine. Some vendors have retrofitted their large-scale
databases to create embedded variants. Examples of these include IBM’s DB2 Everyplace,
Oracle’s 10g, and Microsoft’s SQL Server Desktop Engine. The open source databases MySQL
and Firebird both offer embedded versions as well. Of all these products, only two are both
open source and unencumbered by licensing fees: Firebird and SQLite. Of these remaining
two, only one is designed exclusively for use as an embedded database: SQLite.

Owens_6730 C01.fm Page 1 Monday, April 17, 2006 7:13 AM

2 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

Figure 1-1. SQLite embedded in host processes

A Developer’s Database
SQLite is quite versatile. It is a database, a programming library, and a command-line tool, as
well an excellent learning tool that provides a good introduction to relational databases. There
are indeed many ways to use it—in embedded environments, websites, operating system
services, scripts, and applications. For programmers, SQLite is like digital duct tape, providing
an easy way to bind applications and their data. Like duct tape, there is no end to its potential
uses. In a web environment, SQLite can help with managing complex session information. Rather
than serializing session data into one big blob, individual pieces can be selectively written to
and read from individual session databases. SQLite also serves as a good stand-in relational
database for development and testing: there are no external RDBMSs or networking to configure,
or usernames and passwords to bother with. SQLite might also serve as a cache, hold configuration
data, or because of its binary compatibility across platforms, even work as an application
file format.

Besides being just a storage receptacle, SQLite can serve as a purely functional tool as well
for general data processing. Depending on size and complexity, it may be easier to represent
some application data structures as a table or tables in an in-memory database. This way, you
can operate on the data relationally, using SQLite to do the heavy lifting rather than having to
write your own algorithms to manipulate and sort data structures. If you are a programmer,

Owens_6730 C01.fm Page 2 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 3

imagine how much code it would take to implement the following SQL statement in your
program:

SELECT AVG(z-y) FROM table GROUP BY x
 HAVING x > MIN(z) OR x < MAX(y)
 ORDER BY y DESC LIMIT 10 OFFSET 3;

If you are already familiar with SQL, imagine coding the equivalent of a subquery, compound
query, GROUP BY clause or multiway join—in C. SQLite embeds all of this functionality into your
application with minimal cost. With a database engine integrated directly into your code, you
can begin to think of SQL as a domain-specific language in which to implement complex
sorting algorithms in your program. This approach becomes more appealing as the size of your
data set grows or as your algorithms become more complex. What’s more, SQLite can be config-
ured to use a fixed amount of RAM and then offload data to disk if it exceeds the specified limit.
This is even harder to do if you write your own algorithms. With SQLite, this limit is instituted
with a single SQL command.

SQLite is also a great learning tool for programmers—a cornucopia for studying computer
science topics. From parser generators, tokenizers, virtual machines, B-tree algorithms, caching,
program architecture, and more, it is a fantastic vehicle for exploration of many well-established
computer science concepts. Its modularity, small size, and simplicity make it easy to present
each topic as an isolated case study that any one individual could easily follow.

An Administrator’s Database
But SQLite is not just a programmer’s database. It is a useful tool for system administrators as
well. It is small, compact, and elegant like a regular expression or a Unix utility such as find,
rsync, or grep. SQLite has a command-line utility that can be used within shell scripts. However,
it works even better with a large variety of scripting languages such as Perl, Python, and Ruby.
Together the two can help with a wide variety of tasks, such as aggregating log file data, monitoring
disk quotas, or performing bandwidth accounting in stateful firewalls. Furthermore, since SQLite
databases are ordinary operating system files, they are easy to work with, transport, and back up.

Also, SQLite is a convenient learning tool. It is an ideal beginner’s database with which to
learn about relational concepts. It can be installed quickly and easily on almost any platform,
and its database files share freely between them without the need for conversion. It is full
featured but not daunting. And it—both the program and the database—can be carried around
on a floppy disk or Universal Serial Bus (USB) stick.

SQLite History
SQLite was conceived on a battleship... well, sort of. SQLite’s author, D. Richard Hipp, was
working for General Dynamics on a program for the U.S. Navy developing software for use on
board guided missile destroyers. The program originally ran on Hewlett-Packard Unix (HPUX)
and used an Informix database as the back-end. For their particular application, Informix was
somewhat overkill. For an experienced database administrator (DBA), it could take almost an
entire day to install or upgrade. To the uninitiated application programmer, it might take forever.
What was really needed was a self-contained database that was easy to use and that could travel

Owens_6730 C01.fm Page 3 Monday, April 17, 2006 7:13 AM

4 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

with the program and run anywhere regardless of what other software was or wasn’t installed
on the system.

In January 2000, Hipp and a colleague discussed the idea of creating a simple embedded
SQL database that would use the GNU DBM B-Tree library (gdbm) as a back-end, one that would
require no installation or administrative support whatsoever. Later, when some free time opened
up, Hipp started work on the project, and in August 2000, SQLite 1.0 was released.

As planned, SQLite 1.0 used gdbm as its storage manager. However, Hipp soon replaced
it with his own B-tree implementation that supported transactions and stored records in key
order. With the first major upgrade in hand, SQLite began a steady evolution, growing in both
features and users. By mid-2001 many projects—both open source and commercial alike—
started to use it. In the years that followed, other members of the open source community
started to write SQLite extensions for their favorite scripting languages and libraries. One by
one, new extensions—an Open Database Connectivity (ODBC) interface followed by exten-
sions for Perl, Python, Ruby, Java and other mainstays—fell into place and testified to SQLite’s
wide application and utility.

SQLite began a major upgrade from version 2 to 3 in 2004. Its primary goal was enhanced
internationalization supporting UTF-8 and UTF-16 text as well as user-defined text-collating
sequences. While 3.0 was originally slated for release in summer 2005, America Online provided
the necessary funding to see that it was completed by July 2004. Besides internationalization,
version 3 brought many other new features such as a revamped C API, a more compact format
for database files (a 25 percent size reduction), manifest typing, Binary Large Object (BLOB)
support, 64-bit ROWIDs, autovacuum, and improved concurrency. In spite of the many new
features, the overall library footprint was still less than 240 kilobytes. Another improvement in
version 3 was a good code cleanup—revisiting and rewriting, or otherwise throwing out extra-
neous stuff accumulated in the 2.x series.

SQLite continues to grow feature-wise while still remaining true to its initial design goals:
simplicity, flexibility, compactness, speed, and overall ease of use. At the time this book went
to press, SQLite added enforcement of CHECK constraints. Next on the docket are recursive trig-
gers and foreign keys. What’s next after that? Well, it all depends. Perhaps you or your company
will sponsor the next big feature that makes this little database even better.

Who Uses SQLite
Today, SQLite is used in a wide variety of software and products. It is used in Apple’s Mac OS X
operating system as a part of their CoreData application framework. It is also used in the system’s
Safari web browser, Mail.app email program, RSS manager, as well as Apple’s Aperture photog-
raphy software. SQLite can be found in Sun’s Solaris operating environment, specifically the
database backing the Service Management Facility that debuted with Solaris 10, a core compo-
nent of its predictive self-healing technology. SQLite is in the Mozilla Project’s mozStorage
C++/JavaScript API layer, which will be the backbone of personal information storage for
Firefox, Thunderbird, and Sunbird. SQLite has been added as part of the PHP 5 standard
library. It also ships as part of Trolltech’s cross-platform Qt C++ application framework, which
is the foundation of the popular KDE window manager, and many other software applications.
SQLite is especially popular in embedded platforms. Much of Richard Hipp’s SQLite-related
business has been porting SQLite to various proprietary embedded platforms. Symbian uses
SQLite to provide SQL support in the native Symbian OS platform. SQLite is also a core

Owens_6730 C01.fm Page 4 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 5

component in the new Linux-based Palm OS, targeted for smart phones. It is also included in
commercial development products for cell phone applications.

Although it is rarely advertised, SQLite is also used in a variety of consumer products, as
some tech-savvy consumers have discovered in the course of poking around under the hood.
Examples include the D-Link Media Lounge, Slim Devices Squeezebox music player, and the
Philips GoGear personal music player. I recently saw online that some clever consumers found
a SQLite database embedded in the Complete New Yorker DVD set—a digital library of every
issue of the New Yorker magazine—apparently used by its accompanying search software.

You can find SQLite as an alternate back-end storage facility for a wide array of open source
projects such as Yum—the package manager for Fedora Core, Movable Type, DSPAM, Edgewall
Software’s excellent Trac SCM and project management system, and KDE’s Amarok audio
player, to name just a few. Even parts of SQLite’s core utilities can be found in other open source
projects. One such example is its Lemon parser generator, which the lighttpd web server project
uses for generating the parser code for reading its configuration file. Indeed there seems to be
such a variety of uses for SQLite that Google took notice and awarded Richard Hipp with “Best
Integrator” at O’Reilly’s 2005 Open Source Convention.

Architecture
SQLite has an elegant, modular architecture that takes some rather unique approaches to rela-
tional database management. It consists of eight separate modules grouped within three major
subsystems (as shown in Figure 1-2). These modules divide query processing into discrete tasks
that work like an assembly line. The top of the stack compiles the query, the middle executes it,
and the bottom handles storage and interfacing with the operating system.

Figure 1-2. SQLite’s architecture

Owens_6730 C01.fm Page 5 Monday, April 17, 2006 7:13 AM

6 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

The Interface
The interface is the top of the stack and consists of the SQLite C API. It is the means through
which programs, scripting languages, and libraries alike interact with SQLite.

The Compiler
The compilation process starts with the tokenizer and parser. They basically work together to
take a Structured Query Language (SQL) statement in text form, validate its syntax, and then
convert it to a hierarchical data structure that the lower layers can more easily work with. SQLite’s
tokenizer is handcoded. Its parser is generated by SQLite’s custom parser generator, which is
called Lemon. The Lemon parser generator is designed for high performance and takes special
precautions to guard against memory leaks. Once the statement has been broken into tokens,
evaluated, and recast in the form of a parse tree, the parser passes the tree down to the code
generator.

The code generator translates the parse tree into a kind of assembly language specific to
SQLite. This assembly language is made up of instructions that are executable by its virtual
machine. The code generator’s sole job is to convert the parse tree into a complete mini-program
written in this assembly and hand it off to the virtual machine for processing.

The Virtual Machine
At the center of the stack is the virtual machine, also called the virtual database engine (VDBE).
The VDBE works on byte code—like a Java virtual machine or scripting language interpreter.
The VDBE’s byte code (or virtual machine language) consists of 128 opcodes, which are all
centered around database operations. The VDBE is a virtual machine designed specifically for
data processing. Every instruction in its instruction set either accomplishes a specific database
operation (like opening a cursor on a table, making a record, extracting a column, or beginning
a transaction) or manipulates the stack in some way to prepare for such an operation. All together
and in the right order, the VDBE’s instruction set can satisfy any SQL command, however
complex. Every SQL statement in SQLite—from selecting and updating rows to creating tables,
views, and indexes—is first compiled into this virtual machine language, forming a standalone
program that defines how to perform the given command. For example, take the statement

SELECT name FROM episodes LIMIT 10;

This compiles into the VDBE program shown in Listing 1-1.

Listing 1-1. VDBE Assembly

0 Integer 10 0
1 MustBeInt 0 0
2 Negative 0 0
3 MemStore 0 1
4 Goto 0 15
5 Integer 0 0
6 OpenRead 0 2
7 SetNumColumns 0 4
8 Rewind 0 13

Owens_6730 C01.fm Page 6 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 7

9 MemIncr 0 13
10 Column 0 3
11 Callback 1 0
12 Next 0 9
13 Close 0 0
14 Halt 0 0
15 Transaction 0 0
16 VerifyCookie 0 190
17 Goto 0 5
18 Noop 0 0

The program consists of 18 instructions. These instructions, performed in this particular order
with the given operands, will return the name field of the first ten records in the episodes table
(which is a part of the example database included with this book).

In many ways the VDBE is the heart of SQLite: all of the modules above it work to create a
VDBE program, while all modules below it exist to execute that program, one instruction at a time.

The Back-end
The back-end is made up of the B-tree, page cache, and OS interface. The B-tree and page
cache (pager) work together as information brokers. Their currency is database pages, which
are uniformly sized blocks of data that, like freight cars, are made for transportation. Inside the
pages are the goods: more interesting bits of information such as records and columns and
index entries. Neither the B-tree nor the pager has any knowledge of the contents. They only
move and order pages; they don’t care what’s inside.

The B-tree’s job is order. It maintains many complex and intricate relationships between
pages, which keeps everything connected and easy to locate. It organizes pages into tree-like
structures (hence the name), which are highly optimized for searching. The pager serves the B-tree,
feeding it pages. Its job is transportation and efficiency. The pager transfers pages to and from
disk at the B-tree’s behest. Disk operations are by far the slowest thing a computer has to do.
Therefore, the pager tries to speed this up by keeping frequently used pages cached in memory
and thus minimizes the number of times it has to deal directly with the hard drive. It uses special
techniques to guess which pages will be needed in the future and thus gambles on the B-tree’s
behalf to keep pages flying as fast a possible. Also in the pager’s job description is transaction
management, database locking, and crash recovery. Many of these jobs are mediated by the
OS interface.

Things like file locking are often implemented differently in different operating systems.
The OS interface provides an abstraction layer that hides these differences from the other SQLite
modules. The end result is that the other modules see a single consistent interface with which
to do things like file locking. So the pager, for example, doesn’t have to worry about doing file
locking one way on Windows and doing it another way on different operating systems such as
Unix. It lets the OS interface worry about this. It just says to the OS interface “lock this file,” and
the OS interface figures out how to do that based on the operating system it happens to be
running on. The OS interface not only keeps code simple and tidy in the other modules, but it
also keeps the messy issues cleanly organized in one place. This makes it easier to port (adapt)
SQLite to different operating systems—all of the OS issues that must be addressed are clearly
identified and documented in the OS interface’s API.

Owens_6730 C01.fm Page 7 Monday, April 17, 2006 7:13 AM

8 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

Utilities and Test Code
Miscellaneous utilities and common services such as memory allocation, string comparison,
and Unicode conversion routines are kept in the utilities module. This is basically a catchall
module for services that multiple modules need to use or share. The testing module contains a
myriad of regression tests designed to examine every little corner of the database code. This
module is one of the reasons SQLite is so reliable: it performs a lot of regression testing.

SQLite’s Features and Philosophy
SQLite offers a surprising range of features and capabilities despite its small size. It supports a
large subset of ANSI SQL92 (transactions, views, check constraints, correlated subqueries, and
compound queries) along with many other features found in relational databases, such as trig-
gers, indexes, autoincrement columns, and the LIMIT/OFFSET clause. It also has many unique
features, such as in-memory databases, dynamic typing, and something called conflict resolution
(explained in a moment).

As mentioned at the beginning of this chapter, SQLite has a number of governing principles
or characteristics that serve to more or less define its philosophy and implementation. Let’s
expand on these issues next.

Zero Configuration
From its initial conception, SQLite has been designed with the specific absence of a DBA in
mind. Configuring and administering SQLite is as simple as it gets. SQLite contains just enough
features to fit in a single programmer’s brain, and like its library, requires as small a footprint
in the gray matter as it does in RAM.

Portability
SQLite was designed specifically with portability in mind. It compiles and runs on Windows,
Linux, BSD, Mac OS X, commercial Unix systems such as Solaris, HPUX, and AIX, as well as
many embedded platforms such as QNX, VxWorks, Symbian, Palm OS, and Windows CE. It works
seamlessly on 16-, 32-, and 64-bit architectures with both big and little endian byte orders.
Portability doesn’t stop with the software either: SQLite’s database files are as portable as its
code. The database file format is binary compatible across all supported operating systems,
hardware architectures, and byte orders. You can create a SQLite database on a Sun SPARC
workstation and use it on a Mac or Windows machine—even cell phone—without any conversion
or modification. Furthermore, SQLite databases can hold up to 2 terabytes of data (limited only
by the operating system’s maximum file size) and natively support both UTF-8 and UTF-16
encoding.

Compactness
SQLite was designed to be lightweight and self-contained: one header file, one library, and you’re
relational, no external database server required. Everything—client, server, virtual machine—
packs into a tidy quarter megabyte, which at the moment is smaller than the home page of the
publishers of this book: www.apress.com (the home page weighing around 260 kilobytes). If you

Owens_6730 C01.fm Page 8 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 9

really work at it and disable unneeded features at compile time, you can further shrink the
library down to under 170 kilobytes (on x86 hardware compiled with the GNU C compiler).
Furthermore, there is a proprietary version of SQLite that is as small is 69 kilobytes, capable of
running on smart cards (see the “Additional Information” section for more details).

Equally compact are SQLite databases. They are ordinary operating system files. Regard-
less of your system, all objects in your SQLite database—tables, triggers, schema, indexes, and
views—are contained in a single operating system file. Furthermore, SQLite uses variable-length
records, allocating only the minimum amount of data needed to hold each field. A 2-byte field
sitting in a varchar(100) column only takes up 3 bytes of space, not 100 (the extra byte is used
to record its type information).

Simplicity
As a programming library, SQLite’s API is one of the simplest and easiest to use. The API is both
well documented and intuitive. It is designed to help you customize SQLite in many ways, such
as implementing your own custom SQL functions in C. Better yet, the open source community
has a created a vast number of language and library interfaces with which to use SQLite. There
are extensions for Perl, Python, Ruby, Tcl/Tk, Java, PHP, Visual Basic, ODBC, Delphi, Microsoft
.NET, Smalltalk, Ada, Objective C, Eiffel, Rexx, Lisp, Scheme, Lua, Pike, Objective Camel, Qt,
WxWindows, REALBASIC, and others. An exhaustive list can be found on the SQLite Wiki:
www.sqlite.org/cvstrac/wiki?p=SqliteWrappers.

Architecturally, SQLite has a modular design. This design includes many innovative ideas
that enable it to be full featured and extensible while at the same time retaining a great degree
of simplicity throughout its code base. Each module is a specialized, independent system that
performs a specific task. This modularity makes it much easier to develop each system indepen-
dently, and to debug queries as they pass from one module to the next—from compilation and
planning to execution and materialization. The end result is that there is a crisp, well-defined
separation between the front-end (SQL compiler) and back-end (storage system), allowing the
two to be coded independently of each other. This design makes it easier to add new features
to the database engine, is faster to debug, and results in better overall reliability.

Flexibility
Several factors work together to make SQLite a very flexible database. As an embedded database,
it offers the best of both worlds: the power and flexibility of a relational database front-end,
with the simplicity and compactness of a B-tree back-end. With it, there are no large database
servers to configure, no networking or connectivity problems to worry about, no platform limi-
tations, no baroque APIs to learn, and no license fees or royalties to pay. Rather, you get simple
SQL support dropped right into your application.

Liberal Licensing
All of SQLite’s code is in the public domain. There is no license. No claim of copyright is made
on any part of the core source code. All contributors to this code are required to sign affidavits
specifically disavowing any copyright interest in contributed code. Thus there are no legal
restrictions on how you may use the source code in any form: you can modify, incorporate,
distribute, sell, and use the code for any purpose—commercial or otherwise—without any
royalty fees or restrictions.

Owens_6730 C01.fm Page 9 Monday, April 17, 2006 7:13 AM

10 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

Reliability
But the source code is more than just free; it also happens to be well written. SQLite’s code base
consists of about 30,000 lines of standard ANSI C, which is clean, modular, and well commented.
It is designed to be approachable, easy to understand, easy to customize, and generally very
accessible. It is easily within the ability of a competent C programmer to follow any part of
SQLite or the whole of it with sufficient time and study.

Additionally, SQLite’s code offers a full-featured API specifically for customizing and
extending SQLite through the addition of user-defined functions, aggregates, and collating
sequences along with support for operational security.

While SQLite’s modular design significantly contributes to its overall reliability, its
source code is also well tested. Whereas the core software (library and utilities) consists of
about 30,000 lines of code, the distribution also includes an extensive test suite consisting of
over 30,000 lines of regression test code, which covers over 97 percent of the core code. That is,
over half of the SQLite project’s total code is devoted exclusively to regression testing. Another
way of saying this is for every line of database code written, there is approximately one line of
test code written as well.

Convenience
SQLite also has a number of unique features that provide a great degree of convenience. These
include dynamic typing, conflict resolution, and the ability to “attach” multiple databases to a
single session.

SQLite’s dynamic typing is somewhat akin to that found in scripting languages (e.g., “duck
typing” in Ruby). Specifically, the type of a variable is determined by its value, not by a declara-
tion as employed in statically typed languages. You could say that where most database systems
work like statically typed languages, SQLite works like a dynamically typed language. That is,
most database systems restrict a field’s value to the type declared in its respective column. For
example, each field in an integer column can hold only integers. In SQLite, while a column can
have a declared type, fields are free to deviate from them, just as a variable in a scripting language
can be reassigned a value with a different type. This can be especially helpful for prototyping:
since SQLite does not force you to explicitly change a column’s type, you need only change
how your program stores information in that column rather than continually having to update
the schema and reload your data.

Conflict resolution is another unique feature. It can make writing SQL, as easy as it is, even
easier. This feature is built into many SQL operations and can be made to perform what I call
“lazy updates.” Say you have a record you need to insert, but you are not sure whether one just
like it already exists in the database. Rather than write a SELECT statement to look for a match, and
then recast your INSERT to an UPDATE if it does, conflict resolution lets you say to SQLite, “Here, try
to insert this record, and if you find one with the same key, just update it with these values
instead.” Now you’ve gone from having to code three different SQL statements to cover all the
bases (i.e., SELECT, INSERT, and possibly UPDATE) to just one: INSERT ON CONFLICT REPLACE (...).
Better yet, you can build this conflict resolution into the table definition itself and dispense with

Owens_6730 C01.fm Page 10 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 11

the need to ever specify it again on future INSERT statements. In fact, you can dispense with
ever having to write UPDATE statements to this table again—just write INSERT statements and let
SQLite do the dirty work of figuring out what to do using the conflict resolution rules defined in
the schema.

Finally, SQLite lets you “attach” external databases to your current session. Say you are
connected to one database (foo.db) and need to work on another (bar.db). Rather than opening
a separate connection and fumbling back and forth between them, you can simply attach the
database of interest to your current connection with a single SQL command:

ATTACH database bar.db as bar;

All of the tables in bar.db are now accessible as if they existed in foo.db. You can detach it just
as easily when you’re done. This makes all sorts of things like copying tables between databases
even easier than it already is.

Performance and Limitations
SQLite is a speedy database. But the words “speedy,” “fast,” “peppy,” or “quick” are rather
subjective, ambiguous terms. To be perfectly honest, there are things SQLite can do quicker
than other databases, and there are things that it cannot. Suffice it to say, within the parameters
for which it has been designed, SQLite can be said to be consistently fast and efficient across
the board. SQLite uses B-trees for indexes and B+-trees for tables, the same as most other data-
base systems. For searching a single table, it is as fast if not faster than any other database on
average. Simple SELECT, INSERT, and UPDATE statements are extremely quick—virtually at the
speed of RAM (for in-memory databases) or disk. Here SQLite is often faster than other data-
bases, as it has less overhead to deal with in starting a transaction or generating a query plan,
and it doesn’t incur the overhead of making a network call to the server. Its simplicity here
makes it fast. As queries become larger and more complex, however, query time overshadows
the network call or transaction overhead, and the game goes to the database with the best opti-
mizer. This is where larger, more sophisticated databases begin to shine. While SQLite can
certainly do complex queries, it does not have a sophisticated optimizer or query planner. It
knows how to use indexes to be sure, but it doesn’t keep elaborate table statistics. If you perform
a 17-way join, SQLite will join the tables and give you the result. What it won’t do is try to determine
optimal paths by computing various alternate query plans and selecting the fastest candidate, as
you might expect from Oracle or PostgreSQL. Thus if you are running complex queries on large
data sets, odds are that SQLite is not going to be as fast as databases with sophisticated query
planners.

So there are situations where SQLite is not as fast as larger databases. But many if not all
of these conditions are to be expected. SQLite is an embedded database designed for small to
medium-sized applications. These limitations are in line with its intended purpose. Many new
users make the mistake of assuming that they can use SQLite as a drop-in replacement for
larger relational databases. Sometimes you can; sometimes you can’t. It all depends on what
you are trying to do.

Owens_6730 C01.fm Page 11 Monday, April 17, 2006 7:13 AM

12 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

In general, there are three major variables that define SQLite’s main limitations. These
variables are:

• Concurrency. SQLite has coarse-grained locking, which allows multiple readers but
only one writer at a time. Writers exclusively lock the database during writes and no one
else has access during that time. SQLite does take steps to minimize the amount of time
in which exclusive locks are held. Generally, locks in SQLite are kept for only a few milli-
seconds. But as a general rule of thumb, if your application has high write concurrency
(many connections competing to write to the same database) and it is time critical, you
probably need another database. It is really a matter of testing your application to know
what kind of performance you can get. I have seen SQLite handle over 500 transactions
per second for 100 concurrent connections in simple web applications. But even the
notion of a transaction is vague. Transactions are a function of the number of records
being modified, as well as the number and complexity of the queries involved. Acceptable
concurrency all depends on your particular application, and can only be determined
empirically by direct testing. In general, this is true with any database: you don’t know
what kind of performance your application will get until you do real-world tests.

• Database size. While SQLite’s databases can scale to 2 terabytes, there are memory
(RAM) costs associated with large databases. When SQLite begins a transaction, it allo-
cates a bitmap for tracking dirty pages, which assists in managing its rollback journal. To
do this, it requires 256 bytes of RAM for every 1MB of database. Thus, when databases
become very large, the size of the bitmap allocated in each transaction can become
significant. A 100GB database would require 25MB of RAM to be allocated before each
transaction. This directly affects the rate at which transactions can be performed regardless
of their complexity. So in reality, the practical limits on database size are in the tens of
gigabytes. They can be much bigger, but keep in mind that the overhead associated with
transaction startup will increase linearly with the database size.

• Networking. While SQLite databases can be shared over network file systems, the latency
associated with such file systems can cause performance to suffer. Worse, bugs in network
file system implementations can also make it error prone. If the file system’s locking
does not work properly, two clients may be allowed to simultaneously modify the same
database file, which will almost certainly result in database corruption. It is not that
SQLite is incapable of working over a network file system because of anything in its
implementation—indeed, it uses standard locking mechanisms such as POSIX advisory
locks on Unix and the equivalent system calls on Windows. Rather, it is simply impos-
sible for SQLite to officially confirm that any given network file system is without bugs
that may adversely affect its operation. It has been claimed that certain network file system
implementations (such are Solaris NFS v4) work just fine and reliably implement the
requisite locking mechanisms needed by SQLite. However, the SQLite developers have
neither the time nor resources to certify that any given network file system works flawlessly
in all cases. Therefore, the official position is that it is safe to use SQLite over a network
file system only if there is no more than one connection operating on a given database at
a time—which is to say when no locking is required.

Owens_6730 C01.fm Page 12 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 13

Again, most of these limitations are intentional—they are a result of SQLite’s design.
Supporting high write concurrency, for example, brings with it great deal of complexity and
this runs counter to SQLite’s simplicity in design. Similarly, being an embedded database,
SQLite intentionally does not support networking. This should come as no surprise. In short,
what SQLite can’t do is a direct result of what it can. It was designed to operate as a modular,
simple, compact, and easy-to-use embedded relational database whose code base is within the
reach of the programmers using it. And in many respects it can do what many other data-
bases cannot, such as run in embedded environments where actual power consumption is a
limiting factor.

While SQLite’s SQL implementation is quite good, there are some things it currently does
not implement. These are as follows:

• Foreign key constraints. Foreign keys are the foundation of referential integrity in relational
databases. While SQLite parses them, it currently does not have support for foreign keys.
It does support check constraints, and foreign key support is estimated to be completed
by sometime in 2006.

• Complete trigger support. There is some support for triggers but it is not complete. Missing
features include FOR EACH STATEMENT triggers (currently all triggers must be FOR EACH ROW),
INSTEAD OF triggers on tables (currently INSTEAD OF triggers are only allowed on views),
and recursive triggers—triggers that trigger themselves. Recursive triggers are needed in
order to implement foreign key constraints.

• Complete ALTER TABLE support. Only the RENAME TABLE and ADD COLUMN variants of the
ALTER TABLE command are supported. Other kinds of ALTER TABLE operations such as
DROP COLUMN, ALTER COLUMN, and ADD CONSTRAINT are not implemented.

• Nested transactions. SQLite allows only a single transaction to be active at one time.
Nested transactions allow for fine-grained control over larger, more complex operations
in that parts of a transaction can be defined and rolled back in case of an error rather
than the entire transaction.

• RIGHT and FULL OUTER JOIN. LEFT OUTER JOIN is implemented, but RIGHT OUTER JOIN
and FULL OUTER JOIN are not. LEFT OUT JOIN can be implemented as a right outer join by
simply reversing the order of the tables and modifying the join constraint. Furthermore,
FULL OUTER JOIN can be implemented as a combination of other relational operations
supported by SQLite.

• Updatable views. VIEWs in SQLite are read-only. You may not execute a DELETE, INSERT,
or UPDATE statement on a view. But you can create a trigger that fires on an attempt to
DELETE, INSERT, or UPDATE a view and do what you need in the body of the trigger.

• GRANT and REVOKE. Since SQLite reads and writes an ordinary disk file, the only access
permissions that can be applied are the normal file access permissions of the underlying
operating system. GRANT and REVOKE commands in general are aimed at much higher-
end systems where there are multiple users who have varying access levels to data in the
database. In the SQLite model, the application is the main user and has access to the
entire database. Access in this model is defined at the application level—specifically,
what applications have access to the database file.

Owens_6730 C01.fm Page 13 Monday, April 17, 2006 7:13 AM

14 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

In addition to what is listed here, there is a page on the SQLite Wiki devoted to reporting
unsupported SQL. It is located at www.sqlite.org/cvstrac/wiki?p=UnsupportedSql.

Who Should Read This Book
As SQLite has many uses, it also has many audiences. Whether you are a programmer, web
developer, systems administrator, or just casual user looking to learn about relational databases,
this book aims at helping you understand and get the most out of your particular use for SQLite.

SQLite is a terrific database to start on if you are new to relational databases. For new data-
base users, this book assumes nothing. If you have never touched a relational database before,
if you have never issued a single SQL statement, this book will help you not only get started
with SQLite but also become a competent user of SQL. It will prepare you to get the most out of
SQLite, as well as provide you with a good foundation with which to move on to larger relational
systems and explore more advanced features and topics.

For programmers, this book assumes only that you know the programming language in
which you intend to use SQLite. Furthermore, it does more than document APIs. If anything,
that is the least of what it does, as API documentation only illustrates how an interface works.
As with any database, you have to have some idea of how that database works internally to get
the most out of it. Every database has unique architectural aspects, specific relational features,
and important limitations, all of which good programmers learn about and take into consider-
ation when writing their code. SQLite, though simple and straightforward, is no exception. As
a programmer, you need to know something about how it processes data internally to get it to
work well with your application. This book shows you how. It covers the API and explores how
it works in relation to SQLite’s architecture, allowing C programmers, web developers, and
scriptwriters alike to write more informed code. This helps you better understand not only
what SQLite can do, but also what it can’t. Your knowledge of the architecture will tell you better
than any list of rules when SQLite is or isn’t a good fit for what you are trying to accomplish.
You’ll know if, when, and where you need to consider another approach.

And that underscores one of the most important aims in this book: to teach concepts over
recipes—to adequately address both how and why. There simply is no substitute for conceptually
understanding how something works. To that end, this book includes both historical and theoret-
ical material where appropriate to help frame complicated, technical, or abstract concepts. At
the same time, it tries to be ruthlessly practical. Intermixed in the writing are many figures and
examples designed specifically to illustrate the topics at hand and provide real-world value.

To help accommodate both those who want to know why in addition to those who want to
know how, the theoretical and the practical are arranged orthogonally in chapters. Those who
don’t care for theory can simply skip past the theoretical chapters. While the practical chapters
draw on some of this material, they are in no way dependent upon them.

How This Book Is Organized
This book is divided into three parts: SQLite the database, SQLite the programming library, and
reference material. The database aspects of SQLite are covered in Chapters 2, 3, and 4. The
programming aspects of SQLite are covered in Chapters 5–8. A brief chapter outline is as follows:

Owens_6730 C01.fm Page 14 Monday, April 17, 2006 7:13 AM

C H AP T E R 1 ■ I N T R O D U C I N G S Q L I T E 15

Chapter 1, “Introducing SQLite,” introduces the main features of SQLite, its origin and
history, as well as the scope and objectives of this book.

Chapter 2, “Getting Started,” covers how to obtain and use SQLite. It illustrates how to get
SQLite in binary and source form, as well as how to compile and build it on a variety of
platforms. It explains how to use the SQLite command-line utility to create and work with
databases.

Chapter 3, “The Relational Model,” provides some background behind SQL. It illustrates
the historical and theoretical basis that led to the formation of SQL and helps explain why
it is the way it is today. It highlights the 30-year history of the relational model in the context
of Codd’s famous 12 rules.

Chapter 4, “SQL,” provides a complete introduction to SQL as implemented by SQLite. It
assumes no prior experience with SQL. It starts with the fundamentals and works through
constructing complex queries and explores every aspect of all commands in SQLite’s SQL
implementation.

Chapter 5, “Design and Concepts,” lays the groundwork for programming with SQLite.
It illustrates the SQLite API, its architecture, and how the two work in relation to one another.
It addresses important topics related to programming such as transactions and locking.
It provides programmers of all languages with a clear understanding of how SQLite works
internally and what to keep in mind when writing programs that use it.

Chapter 6, “The Core C API,” covers the part of the SQLite C API related to executing
queries. From connecting to databases, executing queries, obtaining data, and managing
transactions, this chapter covers all parts of the API related to query and data processing.

Chapter 7, “The Extension C API,” covers the remaining part of the C API devoted to custom-
izing and extending SQLite. SQLite provides facilities for implementing user-defined SQL
functions, aggregates, and collations. This chapter illustrates how to implement each of
these features and provides practical examples of their use.

Chapter 8, “Language Extensions,” uses the basic concepts outlined in Chapter 5 and
provides a concise introduction to SQLite programming in six popular languages: Perl,
Python, Ruby, Java, Tcl, and PHP.

Chapter 9, “SQLite Internals,” explores the inner workings of SQLite. It is a high-level over-
view of the source code and provides a glimpse into how the major subsystems are imple-
mented. This provides programmers with a deeper understanding of SQLite’s design
decisions, assumptions, and trade-offs, as well as a point of departure for developers who
want to work on SQLite.

Finally, complete references for the SQLite C API and SQL syntax are included in the
appendices.

Owens_6730 C01.fm Page 15 Monday, April 17, 2006 7:13 AM

16 C H A P T E R 1 ■ I N T R O D U C I N G S Q L I T E

DATABASE EXAMPLES

The example databases accompanying this book are available online and can be downloaded from the Apress
website (www.apress.com). Each database is in SQL format and you can simply follow the procedures
covered in Chapter 2 to create them using the SQLite command-line program. The example databases are
further explained and illustrated as they are introduced in this book.

The source code for all examples is also available online. All examples compile and run on both Windows
and Unix. For each example, makefiles are included for Unix environments and Visual C++ projects have been
created for Windows users. MinGW users can use the Unix makefiles.

Additional Information
The SQLite website has a wealth of information, including the official documentation, mailing
lists, Wiki, and other general information. It is located at www.sqlite.org. The SQLite community is
very helpful, and you may find everything you need on SQLite’s mailing list. Additionally, SQLite’s
author offers professional training and support for SQLite, which includes custom program-
ming (porting to embedded platforms, etc.), and enhanced versions of SQLite, which include
native encryption and extremely small versions optimized for embedded applications. More
information can be found at www.hwaci.com/sw/sqlite/prosupport.html.

Summary
SQLite is not to be confused with other larger databases like Oracle or PostgreSQL. Whereas
dedicated relational databases such as these are electronic backhoes, SQLite is a digital Swiss
Army Knife. Whereas large-scale dedicated relational databases are designed for thousands of
users, SQLite is designed for thousands of uses. It is more than a database. Although a tool in
its own right, it is a tool for making tools as well. It is a true utility, engineered to enable you—
the programmer, user, or administrator—to quickly and easily shape those disparate piles of
data into order, and manipulate them to your liking with minimal effort.

SQLite is public domain software. Free. You can do anything with it or its source code you
like. No licenses, no install programs, no restrictions. Just copy and run. It is also portable, well
tested, and reliable. It has a clean, modular design that helps keep the system simple, easy to
develop, and easy to debug. In addition to good design, it has good testing. There is more code
written to test SQLite than there is SQLite code to test. It should not be too surprising, then,
that SQLite has proven itself to be a solid, reliable database over its five-year history.

Finally, SQLite is fun. At least I think so. It is a unique and interesting piece of software that
I have found many uses for over the years. I hope that you will find it equally useful and enjoyable.

 If you have any comments or suggestions on this book or its examples, please feel free
to send me an email at sqlitebook@gmail.com. I will also keep additional information related to
the book at www.mikesclutter.com.

Owens_6730 C01.fm Page 16 Monday, April 17, 2006 7:13 AM

