

“Hey, Midas!”

“Sayyy, Midas, you
shouldn’t walk
that way!!”

“NooooOOO,
you’re going
to run smack
into a nerdy

computer boooo-
ooookkk...”

“Midas!!!”

You can do anything. I really believe in you!
This is what I try to tell kids when they are first learning to program. And it is ex-
actly what I would tell you as a newcomer to Shoes. You can accomplish anything
a human could desire!

With one caveat. Since most American children already know they can do most
things (and they so literally believe this,) I always try to remind them that, yes,
although they CAN do most things, well, you know, they can NOT be knighted
by the Queen of Britain, since you must be of British citizenship to qualify really.
Sure Nicholas Cage should be knighted, sure he’s got a crownworthy forehead,
but alas. “So,” I tell the American children, “you can not just do any old thing.”

O, British children, however, you may truly do anything! Go, British children!
Go! I dub thee quite invincible!!

Now, let’s see, so, getting back to what I was saying, Nicholas Cage might
be the nicest guy ever, and there might even be grounds for knighthood, but the
man does not know Shoes. Nobody knows Shoes.

Originally this book was going to be a series of articles and interviews by experts
in the field of Shoes, by leaders in the Shoes republic who could wax eloquent in
the name of the mastery and the style of Shoes. This was to be the quintessential
handbook, the missing volume for that space you’ve all saved on the shelf—the
one with the little brass placard inscribed RESERVED FOR FORTHCOMING
SHOES MASTERWORK. Right, well, that space is forfeit. You can slide this
under your passenger’s seat instead.

No such experts exist. And no republic. This is not the much anticipated mas-
terwork.

At this time, not a soul really knows Shoes. Few have even heard of it. And it
turns out this Shoes character is rather petite anyway and there is no need to have
a book as wide as a hundred pages for such a slender little technology. The tech-
nology we like to call Shoes.

How slender? Shoes is designed so you only need to know ten things.

v

So, can you see the poem? Both in front and in back?

Just stop and look over the code on the right-hand side. The
poem is in there. It’s inside the third “stack” down.

Yes, that’s code! It’s plain old Ruby! Don’t run off and install
Ruby, kid, because Ruby comes inside Shoes.

Yes

So: in front, windows. With buttons and
words and colors. Run a Shoes program and it
pops up like that.

This short program is just a button. And you
click on it and it yells “Klapaucius!”

You’ll be coding in Ruby, quite a beautiful
language, oh you very snappy kid.

Try googling for “ruby guide” or visit
ruby-lang.org to see what I mean. Once
you learn Ruby, no sweat doing Shoes.

Powering Up The Footwear

Save this file as trurl.rb. And run it from a command window like this:

 shoes trurl.rb

Or, just run Shoes by itself, perhaps by clicking on its icon on the desktop or the
Start Menu or something. A folder browser will open up and you can find your
way to trurl.rb from there.

The App, The Button and The Alert

Go back, back up, uppy up the page, with your eyes, to that short bit of code,
seriously up above. Aren’t you glad it’s just a tiny peewee hack? A fingernail clip-
ping.

What’s it do? Well, did you run it? The Shoes.app part means “open the main
Shoes window.” And after that, you’ve got curly braces. A Ruby block. Inside
the braces, we describe what’s inside the window. (In this case, just a button.)

Blocks are used all over Shoes. We’ll get to how the button works in due time.

A Poem in Four Boxes

Okay, save this one and run it, too. Yay! You (I gather) did it!

The code is longer, but you can puzzle it out, I’m sure. Look at all the widths and
heights. Some are numbers (in pixels) and some are percentages. One is a nega-
tive number! Schneikes!

Look for the poem in there. Oh, oh, try changing up the words of the poem.
Swap out the lemon for a halibut. Or put a halibut under the lemon!

It’s Actually a Box With Three Inside

The flow is a box. And the three stacks are each
boxes as well. A box, you know, like a rectangle?
See, look at the pic: three boxes. Inside a flow box.

There’s a whole section coming up on these boxes.
They are #2 & #3 in the essentials list. That’s one-
fifth of the list right there.

Okay, let’s start with para because

it’s easy and you’ll use it all over.

Para. Short for: paragraph. Like this paragraph

right here, which is the paragraph you’re reading.

Shoes.app do

 para "Testing test test. ",

 "Breadsticks. ",

 "Breadsticks. ",

 "Breadsticks. ",

 "Very good."

end

No need to give para any coordinates or any size.

It’ll fill up to the edges of any box it is placed inside.

See, in the sample up there, para fills the window.

Also notice how you
can give para a bunch
of strings and it’ll
glue them together
as a long string of
sentences.

Just like on the web, paragraphs can have bolded or

emphasized or typewriter styles of text. And, you

know, links and strikes,

whatever you like.

Shoes.app do

 para "Testing test test. ",

 strong("Breadsticks. "),

 em("Breadsticks. "),

 code("Breadsticks. "),

 strong(ins("Very good."))

end

Shoes.app do

 title "Title"

 subtitle "Subtitle"

 tagline "Tagline"

 caption "Caption"

 para "Para"

 inscription "Inscription"

end

Aside from para, please enjoy a myriad of other text

sizes. Absent here is banner, the biggest, at 48px.

34px

26px

18px

14px
12px

10px

Of course, if you just want to set a para to a specific

font size, just use :size => 48 (for banner size.)

para "Oh, to fling and be flung.", :size => 48

A stack. Let’s say: of dominoes. A stack of dominoes.
Banded together with a rubber band. Add more, the stack
grows upward.

A flow, on the other hand, is more like a box of matches. As
you fill it up, the matches squeeze in side-to-side. Eventually,
it’ll fill upward. But only after side-to-side. Sardines, right?

ST
A

C
K

S
&

 F
LO

W
S

A stack of flows, which is extremely handy. Each flow will fill
side-to-side. But since they are stacked, they won’t mix with
each other.

And more complex mixtures. The main Shoes window is
itself a flow. Mixing stacks and flows builds columns.

Oh, and gravity is up. See, the window grows downward.

Two columns can be ac-
complished by placing two
stacks inside a flow. And
by giving those two stacks
a 50% width.

Likewise, three columns
can be set up by having
three stacks within a flow
and splitting the width of
each stack in thirds.

And what about a header
+ three columns? Well,
that would be four stacks
in a flow. The first stack
would have a width of
100%. And the remaining
stacks are split three ways.

More complicated designs
might need stacks in flows
in stacks... and so on. This
one’s a flow. With a flow
and a stack inside. In the
left flow (highlighted with
a dotted line,) three more
stacks: a 100% header and
two columns.

One Quick Note About Widths

Widths may be a positive or negative number of pixels.

 stack :width => 80 do; end
 stack :width => -80 do; end

You’ll often see this. The first stack is 80 pixels wide. And
the second is 100% minus 80 pixels wide. So, together they
are 100%, they fill their parent box.

You might also see floating point widths. 1.0 is 100%, 0.9 is
90%, 0.8 is 80% and so on.

“One and two and...
Hey, Midas, wait up!!”

“Check me out! I’m doin’ my
stacks and flows!... five-hippo-
potamus... six-hippopatamus...”

“See, my gravity is even like
a total window application, guy!”

“Yeah, pretend my foot is the
close button and my leg warmer is

like minimize or something
because I’m just about to

totally crash.”

Shoes.app do
 @o = oval :top => 0, :left => 0,
 :radius => 40

 stack :margin => 40 do
 title “Dancing With a Circle”
 subtitle “How graceful and round.”
 end

 motion do |x, y|
 @o.move width - x, height - y
 end
end

 DANCING AROUND THE
 STACKS & FLOWS

Using X & Y.
Using Top & Left.

Clearly, stacks and flows are only for packing things in nice
and tight. Columns. Grids. Flowing text and images. Making pages which
look much like web pages.

But anything can be positioned at specific coordinates using :top and :left in
the style options. And you can still do stacks and flows.

Run this little toy, yeah? And while it’s running, pass your mouse over the window and
watch the circle dance with you.

This window is three things: a circle, a stack of words, and a motion event block. The oval is
in the main window’s flow. But it’s floating freely at position (0, 0). The upper left corner of
the window.

The motion event gets called whenever you move the mouse. The circle then gets moved
based on your mouse coordinates. (The width and height methods get us the window’s
width and height. By subtracting the mouse position, it gives the illusion of the circle mov-
ing to the opposite side of the window from the mouse.)

Resize the window. Jiggle the mouse. You see? It’s all okay?

You feel good. Is it Saturday al-
ready? Well, no, this is just the
very easy page about images.
Two easy sections in a row, how
about that? Like the button, all
you really need to remember
about images is the word “im-
age.” That’s the name of the
method used to put an image
in your Shoes code. The image
will be postioned right inside
the stack or flow.

Q: Suzanne, my images are
all over the place! I want
the image of a hot dog to
be ON TOP of my image of
Bin Laden. Help me!
A: That is a GREAT combi-
nation! Images stack in the
order you have them in the
code. Later in the code means
above everything else. Per-
haps one day Shoes will have
z-ordering, but for now it’s
just dead plain dumb!
Q: How do I swap an im-
age’s for another pic?
A: Swapping is so fun! Try
changing the image’s path
property. See YOU later!

Th
e “

im
ag

e”
 m

et
ho

d
isn

’t
th

e o
nl

y
w

ay
 to

 d
isp

la
y a

n
im

ag
e.

 Th
e “

ba
ck

-
gr

ou
nd

” m
et

ho
d

ca
n

al
so

 b
e u

se
d

to

po
sit

io
n

im
ag

es
 an

d
ev

en
 ti

le
 th

em
.

 Shoes.app do
 image “j.jpg”
 end
Shoes will try to load
the image from the cur-
rent folder. Unless a full
path is given, that is.

The Shoes distro comes
with a few great samples
of using images. In
particular: both bounce.
rb and form.rb in the
samples directory.

“ EDIT LINE ”
LET’S HAVE A WARM WELCOME

THE

X

NOT TO BE CONFUSED WITH THE SO
YOUNG AND TALENTED MS. HAYLEY MILLS

AN AUTHENTIC AND OFT-REVERED RECTANGLE FOR TYPING IN ONE’S DESIRES AND DREAMS!

HERE SHE IS, UNADORNED,
NOTHING MORE THAN

Shoes.app do
 @e = edit_line :width => 400
end

A NATIVE CONTROL: LIKE THE “BUTTON,” BOTH FOLLOW THE CLOAK &
ATTIRE OF THE OPERATING SYSTEM - THE ABOVE IS THE OS X EDIT LINE.

X
NOW, FRIENDS, WE WAIT.

LO AND BEHOLD! SOMEONE HAS USED THE EDIT
LINE, NOT AS PART OF ANY TRICKERY, BUT TO

UNVEIL THEIR DESIRES AND DREAMS!

WHAT CAN BE DONE?

Shoes.app do
 @e = edit_line :width => 400
 button “O.K.” do
 alert @e.text
 end
end

Oh, here we go. The edit line is stored in the @e instance variable. When
the button is clicked, we get the typed words inside the edit line using

@e.text. And to change the edit line, use @e.text = “Owls.”

NOW, FRIENDS, PAGE NEXT.
X

“ EDIT BOX ”

HELLO, CLOSE COUSIN

X

A TRUE BOX, SPARING NO ABSENCE OF CORNERS
AND FOR ALL CHILDREN EVERYWHERE!

THE

JUST A BUNCH OF LINES
RATHER THAN ONE

AND THE WORDS INVOKING THE SPELL ARE

Shoes.app do
 @e = edit_box “Would that I...”,
 :width => 400, :height => 240
end

The edit_box has its very own vertical scrollbar it may deploy.

The edit_line method as well can take a string, if you want the
box to come pre-filled.

X
INSTANCE VARIABLES IN SHOES.APP

A verbose way of writing many of these programs is to use “self ”.

Shoes.app do
 self.stack do
 self.edit_line "Sample sample."
 self.button "Breadsticks."
 end
end

Were you to inspect self in any block, you’d get #<App:0x64eb94>.
So, yeah, all methods run against the Shoes App object.

Instance variables are a good place to store Shoes controls and objects,
since they will be kept in the app and can be yanked at from anywhere

inside the app’s scope.

HILARY THE EXERCISER PRESENTS

SMOOTH CORNER
CUTSa background trick

hhhhhhhhhhhhhhh

a

}
Okay, so on the web web, you see
a lot of rounded corners, right?
Like a box with words in it and
the edges are sanded smooth. }Oh, well, this is going

to be too quick.

Let’s say the background
is going to be:

Which code is:

stack :width => 300, :height => 350 do
 background "murky.seas.png"
end

Just give the background a radius.
(Yeah, it’s a radius for the corners.)
Twelve pixels looks pretty decent.

stack :width => 300, :height => 350 do
 background "murky.seas.png",
 :radius => 12
 para "This one’s got the smooth ",
 "corner cuts.",
 :stroke => white
end

SHOES SMOOTH CORNER CUTS

j

}

To start off, you’re not going to pass a block to Shoes.app. In-
stead, you’re going to subclass Shoes and keep each of your
pages in its own method.

 class BookList < Shoes
 url '/', :index
 url '/twain', :twain
 url '/kv', :vonnegut

 def index
 para "Books I’ve read: ",
 link("by Mark Twain", :click => "/twain"),
 link("by Kurt Vonnegut", :click => "/kv")
 end

 def twain
 para "Just Huck Finn.\n",
 link("Go back.", :click => "/")
 end

 def vonnegut
 para "Cat’s Cradle. Sirens of Titan. ",
 "Breakfast of Champions.\n",
 link("Go back.", :click => "/")
 end
 end

 Shoes.app :width => 400, :height => 500

Yes, it’s true. You really need that Shoes.app at the bottom.
That’s what opens your window!

So, since the BookList class is descended from the Shoes class,
it has a “url” method. And so we use the “url” method to snatch
three URLs: /, /twain and /kv. This class represents those
three “places.” (A link travels you to that “place.”)

The “/” URL will draw the page in the “index” method. Which
contains links to “/twain” and “/kv”, which draw the pages in-
side the other two methods. As usual: run it, try it out.

If you choose, you may also keep your methods organized into
different classes. Shoes will use whichever class answers to a
URL (maybe from a link which has been clicked.)

Say, do you know regular expressions at all? Because you can
drop a regular expression into a Shoes.url() call and it’ll inter-
cept any URLs which match.

 class Dictionary < Shoes
 url '/', :index
 url '/(\w+)', :word

 def index
 stack do
 title "Enter a Word"
 @word = edit_line
 button "OK" do
 visit "/#{@word.text}"
 end
 end
 end

 def word(string)
 stack do
 para "No definition found for #{string}. ",
 "Sorry this doesn’t actually work."
 end
 end
 end

 Shoes.app

Word of warning: use single quotes around the URL expres-
sions! Otherwise, the backslash won’t really work and you’ll
see a 404 NOT FOUND message from Shoes.

Notice how the word matched by the (\w+) expression is sent
as the first argument to the “word” method. Each regular ex-
pression group which is found is sent to the method as an argu-
ment.

So, if you’d like to see a more complex example, see samples/
book.rb in the Shoes distro. It’s a little short story reader.

On the Shoes wiki, see the “Multi Page” link on the front page
for some continuing studies of this very engaging matter.

Please join us on the Shoes mailing list.
Send an e-mail.

TO: shoes@code.whytheluckystiff.net
CC: why@whytheluckystiff.net

A computer is standing by to send you
instructions.

