

Visualizing Data

Ben Fry

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Visualizing Data
by Ben Fry

Copyright © 2008 Ben Fry. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Loranah Dimant
Copyeditor: Genevieve d’Entremont
Proofreader: Loranah Dimant

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Visualizing Data, the image of an owl, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51455-7
ISBN-13: 978-0-596-51455-6
[C]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Table of Contents

Preface . vii

1. The Seven Stages of Visualizing Data . 1
Why Data Display Requires Planning 2
An Example 6
Iteration and Combination 14
Principles 15
Onward 18

2. Getting Started with Processing . 19
Sketching with Processing 20
Exporting and Distributing Your Work 23
Examples and Reference 24
Functions 27
Sketching and Scripting 28
Ready? 30

3. Mapping . 31
Drawing a Map 31
Locations on a Map 32
Data on a Map 34
Using Your Own Data 51
Next Steps 53

iv | Table of Contents

4. Time Series . 54
Milk, Tea, and Coffee (Acquire and Parse) 55
Cleaning the Table (Filter and Mine) 55
A Simple Plot (Represent and Refine) 57
Labeling the Current Data Set (Refine and Interact) 59
Drawing Axis Labels (Refine) 62
Choosing a Proper Representation (Represent and Refine) 73
Using Rollovers to Highlight Points (Interact) 76
Ways to Connect Points (Refine) 77
Text Labels As Tabbed Panes (Interact) 83
Interpolation Between Data Sets (Interact) 87
End of the Series 92

5. Connections and Correlations . 94
Changing Data Sources 94
Problem Statement 95
Preprocessing 96
Using the Preprocessed Data (Acquire, Parse, Filter, Mine) 111
Displaying the Results (Represent) 118
Returning to the Question (Refine) 121
Sophisticated Sorting: Using Salary As a Tiebreaker (Mine) 126
Moving to Multiple Days (Interact) 127
Smoothing Out the Interaction (Refine) 132
Deployment Considerations (Acquire, Parse, Filter) 133

6. Scatterplot Maps . 145
Preprocessing 145
Loading the Data (Acquire and Parse) 155
Drawing a Scatterplot of Zip Codes (Mine and Represent) 157
Highlighting Points While Typing (Refine and Interact) 158
Show the Currently Selected Point (Refine) 162
Progressively Dimming and Brightening Points (Refine) 165
Zooming In (Interact) 167
Changing How Points Are Drawn When Zooming (Refine) 177
Deployment Issues (Acquire and Refine) 178
Next Steps 180

Table of Contents | v

7. Trees, Hierarchies, and Recursion . 182
Using Recursion to Build a Directory Tree 182
Using a Queue to Load Asynchronously (Interact) 186
An Introduction to Treemaps 189
Which Files Are Using the Most Space? 194
Viewing Folder Contents (Interact) 199
Improving the Treemap Display (Refine) 201
Flying Through Files (Interact) 208
Next Steps 219

8. Networks and Graphs . 220
Simple Graph Demo 220
A More Complicated Graph 229
Approaching Network Problems 240
Advanced Graph Example 242
Mining Additional Information 262

9. Acquiring Data . 264
Where to Find Data 265
Tools for Acquiring Data from the Internet 266
Locating Files for Use with Processing 268
Loading Text Data 270
Dealing with Files and Folders 276
Listing Files in a Folder 277
Asynchronous Image Downloads 281
Using openStream() As a Bridge to Java 284
Dealing with Byte Arrays 284
Advanced Web Techniques 284
Using a Database 288
Dealing with a Large Number of Files 295

10. Parsing Data . 296
Levels of Effort 296
Tools for Gathering Clues 298
Text Is Best 299
Text Markup Languages 303

vi | Table of Contents

Regular Expressions (regexps) 316
Grammars and BNF Notation 316
Compressed Data 317
Vectors and Geometry 320
Binary Data Formats 325
Advanced Detective Work 328

11. Integrating Processing with Java . 331
Programming Modes 331
Additional Source Files (Tabs) 334
The Preprocessor 335
API Structure 336
Embedding PApplet into Java Applications 338
Using Java Code in a Processing Sketch 342
Using Libraries 343
Building with the Source for processing.core 343

Bibliography . 345

Index . 349

vii

Preface1

When I show visualization projects to an audience, one of the most common ques-
tions is, “How do you do this?” Other books about data visualization do exist, but
the most prominent ones are often collections of academic papers; in any case, few
explain how to actually build representations. Books from the field of design that
offer advice for creating visualizations see the field only in terms of static displays,
ignoring the possibility of dynamic, software-based visualizations. A number spend
most of their time dissecting what’s wrong with given representations—sometimes
providing solutions, but more often not.

In this book, I wanted to offer something for people who want to get started build-
ing their own visualizations, something to use as a jumping-off point for more com-
plicated work. I don’t cover everything, but I’ve tried to provide enough background
so that you’ll know where to go next.

I wrote this book because I wanted to have a way to make the ideas from
Computational Information Design, my Ph.D. dissertation, more accessible to a wider
audience. More specifically, I wanted to see these ideas actually applied, rather than
limited to an academic document on a shelf. My dissertation covered the process of
getting from data to understanding; in other words, from considering a pile of infor-
mation to presenting it usefully, in a way that can be easily understood and inter-
acted with. This process is covered in Chapter 1, and used throughout the book as a
framework for working through visualizations.

Most of the examples in this book are written from scratch. Rather than relying on
toolkits or libraries that produce charts or graphs, instead you learn how to create
them using a little math, some lines and rectangles, and bits of text. Many readers
may have tried some toolkits and found them lacking, particularly because they want
to customize the display of their information. A tool that has generic uses will pro-
duce only generic displays, which can be disappointing if the displays do not suit
your data set. Data can take many interesting forms that require unique types of dis-
play and interaction; this book aims to open up your imagination in ways that collec-
tions of bar and pie charts cannot.

viii | Preface

This book uses Processing (http://processing.org), a simple programming environ-
ment and API that I co-developed with Casey Reas of UCLA. Processing’s program-
ming environment makes it easy to sit down and “sketch” code to produce visual
images quickly. Once you outgrow the environment, it’s possible to use a regular
Java IDE to write Processing code because the API is based on Java. Processing is free
to download and open source. It has been in development since 2001, and we’ve had
about 100,000 people try it out in the last 12 months. Today Processing is used by
tens of thousands of people for all manners of work. When I began writing this
book, I debated which language and API to use. It could have been based on Java,
but I realized I would have found myself re-implementing the Processing API to
make things simple. It could have been based on Actionscript and Flash, but Flash is
expensive to buy and tends to break down when dealing with larger data sets. Other
scripting languages such as Python and Ruby are useful, but their execution speeds
don’t keep up with Java. In the end, Processing was the right combination of cost,
ease of use, and execution speed.

The Audience for This Book
In the spring of 2007, I co-taught an Information Visualization course at Carnegie
Mellon. Our 30 students ranged from a freshman in the art school to a Ph.D. candi-
date in computer science. In between were graduate students from the School of
Design and various other undergrads. Their skill levels were enormously varied, but
that was less important than their level of curiosity, and students who were curious
and willing to put in some work managed to overcome the technical difficulties (for
the art and design students) or the visual demands (for those with an engineering
background).

This book is targeted at a similar range of backgrounds, if less academic. I’m trying
to address people who want to ask questions, play with data, and gain an under-
standing of how to communicate information to others. For instance, the book is for
web designers who want to build more complex visualizations than their tools will
allow. It’s also for software engineers who want to become adept at writing software
that represents data—that calls on them to try out new skills, even if they have some
background in building UIs. None of this is rocket science, but it isn’t always obvi-
ous how to get started.

Fundamentally, this book is for people who have a data set, a curiosity to explore it,
and an idea of what they want to communicate about it. The set of people who visu-
alize data is growing extremely quickly as we deal with more and more information.
Even more important, the audience has moved far beyond those who are experts in
visualization. By making these ideas accessible to a wide range of people, we should
see some truly amazing things in the next decade.

http://processing.org

Preface | ix

Background Information
Because the audience for this book includes both programmers and non-
programmers, the material varies in complexity. Beginners should be able to pick it
up and get through the first few chapters, but they may find themselves lost as we get
into more complicated programming topics. If you’re looking for a gentler introduc-
tion to programming with Processing, other books are available (including one writ-
ten by Casey Reas and me) that are more suited to learning the concepts from
scratch, though they don’t cover the specifics of visualizing data. Chapters 1–4 can
be understood by someone without any programming background, but the later
chapters quickly become more difficult.

You’ll be most successful with this book if you have some familiarity with writing
code—whether it’s Java, C++, or Actionscript. This is not an advanced text by any
means, but a little background in writing code will go a long way toward understand-
ing the concepts.

Overview of the Book
Chapter 1, The Seven Stages of Visualizing Data, covers the process for developing a
useful visualization, from acquiring data to interacting with it. This is the framework
we’ll use as we attack problems in later chapters.

Chapter 2, Getting Started with Processing, is a basic introduction to the Processing
environment and syntax. It provides a bit of background on the structure of the API
and the philosophy behind the project’s development.

Chapters 3 through 8 cover example projects that get progressively more
complicated.

Chapter 3, Mapping, plots data points on a map, our first introduction to reading
data from the disk and representing it on the screen.

Chapter 4, Time Series, covers several methods of plotting charts that represent how
data changes over time.

Chapter 5, Connections and Correlations, is the first chapter that really delves into
how we acquire and parse a data set. The example in this chapter reads data from the
MLB.com web site and produces an image correlating player salaries and team per-
formance over the course of a baseball season. It’s an in-depth example illustrating
how to scrape data from a web site that lacks an official API. These techniques can
be applied to many other projects, even if you’re not interested in baseball.

Chapter 6, Scatterplot Maps, answers the question, “How do zip codes relate to geog-
raphy?” by developing a project that allows users to progressively refine a U.S. map
as they type a zip code.

x | Preface

Chapter 7, Trees, Hierarchies, and Recursion, discusses trees and hierarchies. It cov-
ers recursion, an important topic when dealing with tree structures, and treemaps, a
useful representation for certain kinds of tree data.

Chapter 8, Networks and Graphs, is about networks of information, also called
graphs. The first half discusses ways to produce a representation of connections
between many nodes in a network, and the second half shows an example of doing
the same with web site traffic data to see how a site is used over time. The latter
project also covers how to integrate Processing with Eclipse, a Java IDE.

The last three chapters contain reference material, including more background and
techniques for acquiring and parsing data.

Chapter 9, Acquiring Data, is a kind of cookbook that covers all sorts of practical
techniques, from reading data from files, to spoofing a web browser, to storing data
in databases.

Chapter 10, Parsing Data, is also written in cookbook-style, with examples that illus-
trate the detective work involved in parsing data. Examples include parsing HTML
tables, XML, compressed data, and SVG shapes. It even includes a basic example of
watching a network connection to understand how an undocumented data protocol
works.

Chapter 11, Integrating Processing with Java, covers the specifics of how the Process-
ing API integrates with Java. It’s more of an appendix aimed at advanced Java pro-
grammers who want to use the API with their own projects.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
I’d first like to thank O’Reilly Media for taking on this book. I was initially put in
touch with Steve Weiss, who met with me to discuss the book in the spring of 2006.
Steve later put me in touch with the Cambridge office, where Mike Hendrickson
became a champion for the book and worked to make sure that the contract hap-
pened. Tim O’Reilly’s enthusiasm along the way helped seal it.

Preface | xi

I owe a great deal to my editor, Andy Oram, and assistant editor, Isabel Kunkle. With-
out Andy’s hard work and helpful suggestions, or Isabel’s focus on our schedule, I
might still be working on the outline for Chapter 4. Thanks also to those who reviewed
the draft manuscript: Brian DeLacey, Aidan Delaney, and Harry Hochheiser.

This book is based on ideas first developed as part of my doctoral work at the MIT
Media Laboratory. For that I owe my advisor of six years, John Maeda, and my
committee members, David Altshuler and Chris Pullman. Chris also pushed to have
the ideas published properly, which was a great encouragement.

I’d also like to thank Casey Reas, my friend, inspiration, and collaborator on Process-
ing, who has ensured that the project continues several years after its inception.

The content of the examples has been influenced by many courses I’ve taught as
workshops or in classrooms over the last few years—in particular, my visualization
courses at Harvard University and Carnegie Mellon (co-taught with Golan Levin),
and workshops at Anderson Ranch in Colorado and at Hangar in Barcelona. I owe a
lot to these student guinea pigs who taught me how to best explain this work.

Finally, thanks to my family, and immeasurable thanks to Shannon Hunt for edit-
ing, input, and moral support. Hers will be a tough act to follow while I return in
kind as she writes her book in the coming months.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, variables, functions, types, classes, methods,
HTML and XML tags, the contents of files, and the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

xii | Preface

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Visualizing Data by Ben Fry. Copy-
right 2008 Ben Fry, 978-0-596-51455-6.”

If you think your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514556

http://www.oreilly.com/catalog/9780596514556

Preface | xiii

The author also has a site for the book at:

http://benfry.com/writing

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/9780596514556
bookquestions@oreilly.com
http://www.oreilly.com

1

Chapter 1 CHAPTER 1

The Seven Stages of Visualizing Data1

The greatest value of a picture is when it forces us to
notice what we never expected to see.

—John Tukey

What do the paths that millions of visitors take through a web site look like? How do
the 3.1 billion A, C, G, and T letters of the human genome compare to those of the
chimp or the mouse? Out of a few hundred thousand files on your computer’s hard
disk, which ones are taking up the most space, and how often do you use them? By
applying methods from the fields of computer science, statistics, data mining,
graphic design, and visualization, we can begin to answer these questions in a mean-
ingful way that also makes the answers accessible to others.

All of the previous questions involve a large quantity of data, which makes it
extremely difficult to gain a “big picture” understanding of its meaning. The prob-
lem is further compounded by the data’s continually changing nature, which can
result from new information being added or older information continuously being
refined. This deluge of data necessitates new software-based tools, and its complex-
ity requires extra consideration. Whenever we analyze data, our goal is to highlight
its features in order of their importance, reveal patterns, and simultaneously show
features that exist across multiple dimensions.

This book shows you how to make use of data as a resource that you might other-
wise never tap. You’ll learn basic visualization principles, how to choose the right
kind of display for your purposes, and how to provide interactive features that will
bring users to your site over and over again. You’ll also learn to program in Process-
ing, a simple but powerful environment that lets you quickly carry out the tech-
niques in this book. You’ll find Processing a good basis for designing interfaces
around large data sets, but even if you move to other visualization tools, the ways of
thinking presented here will serve you as long as human beings continue to process
information the same way they’ve always done.

2 | Chapter 1: The Seven Stages of Visualizing Data

Why Data Display Requires Planning
Each set of data has particular display needs, and the purpose for which you’re using
the data set has just as much of an effect on those needs as the data itself. There are
dozens of quick tools for developing graphics in a cookie-cutter fashion in office pro-
grams, on the Web, and elsewhere, but complex data sets used for specialized appli-
cations require unique treatment. Throughout this book, we’ll discuss how the
characteristics of a data set help determine what kind of visualization you’ll use.

Too Much Information
When you hear the term “information overload,” you probably know exactly what it
means because it’s something you deal with daily. In Richard Saul Wurman’s book
Information Anxiety (Doubleday), he describes how the New York Times on an aver-
age Sunday contains more information than a Renaissance-era person had access to
in his entire lifetime.

But this is an exciting time. For $300, you can purchase a commodity PC that has
thousands of times more computing power than the first computers used to tabulate
the U.S. Census. The capability of modern machines is astounding. Performing
sophisticated data analysis no longer requires a research laboratory, just a cheap
machine and some code. Complex data sets can be accessed, explored, and analyzed
by the public in a way that simply was not possible in the past.

The past 10 years have also brought about significant changes in the graphic capabil-
ities of average machines. Driven by the gaming industry, high-end 2D and 3D
graphics hardware no longer requires dedicated machines from specific vendors, but
can instead be purchased as a $100 add-on card and is standard equipment for any
machine costing $700 or more. When not used for gaming, these cards can render
extremely sophisticated models with thousands of shapes, and can do so quickly
enough to provide smooth, interactive animation. And these prices will only
decrease—within a few years’ time, accelerated graphics will be standard equipment
on the aforementioned commodity PC.

Data Collection
We’re getting better and better at collecting data, but we lag in what we can do with
it. Most of the examples in this book come from freely available data sources on the
Internet. Lots of data is out there, but it’s not being used to its greatest potential
because it’s not being visualized as well as it could be. (More about this can be found
in Chapter 9, which covers places to find data and how to retrieve it.)

With all the data we’ve collected, we still don’t have many satisfactory answers to the
sort of questions that we started with. This is the greatest challenge of our information-
rich era: how can these questions be answered quickly, if not instantaneously? We’re

Why Data Display Requires Planning | 3

getting so good at measuring and recording things, why haven’t we kept up with the
methods to understand and communicate this information?

Thinking About Data
We also do very little sophisticated thinking about information itself. When AOL
released a data set containing the search queries of millions of users that had been
“randomized” to protect the innocent, articles soon appeared about how people
could be identified by—and embarrassed by—information regarding their search
habits. Even though we can collect this kind of information, we often don’t know
quite what it means. Was this a major issue or did it simply embarrass a few AOL
users? Similarly, when millions of records of personal data are lost or accessed ille-
gally, what does that mean? With so few people addressing data, our understanding
remains quite narrow, boiling down to things like, “My credit card number might be
stolen” or “Do I care if anyone sees what I search?”

Data Never Stays the Same
We might be accustomed to thinking about data as fixed values to be analyzed, but
data is a moving target. How do we build representations of data that adjust to new
values every second, hour, or week? This is a necessity because most data comes from
the real world, where there are no absolutes. The temperature changes, the train runs
late, or a product launch causes the traffic pattern on a web site to change drastically.

What happens when things start moving? How do we interact with “live” data? How
do we unravel data as it changes over time? We might use animation to play back the
evolution of a data set, or interaction to control what time span we’re looking at.
How can we write code for these situations?

What Is the Question?
As machines have enormously increased the capacity with which we can create
(through measurements and sampling) and store data, it becomes easier to dis-
associate the data from the original reason for collecting it. This leads to an all-too
frequent situation: approaching visualization problems with the question, “How can
we possibly understand so much data?”

As a contrast, think about subway maps, which are abstracted from the complex shape
of the city and are focused on the rider’s goal: to get from one place to the next. Limit-
ing the detail of each shape, turn, and geographical formation reduces this complex
data set to answering the rider’s question: “How do I get from point A to point B?”

Harry Beck invented the format now commonly used for subway maps in the 1930s,
when he redesigned the map of the London Underground. Inspired by the layout of

4 | Chapter 1: The Seven Stages of Visualizing Data

circuit boards, the map simplified the complicated Tube system to a series of verti-
cal, horizontal, and 45˚diagonal lines. While attempting to preserve as much of the
relative physical layout as possible, the map shows only the connections between sta-
tions, as that is the only information that riders use to decide their paths.

When beginning a visualization project, it’s common to focus on all the data that has
been collected so far. The amounts of information might be enormous—people like
to brag about how many gigabytes of data they’ve collected and how difficult their
visualization problem is. But great information visualization never starts from the
standpoint of the data set; it starts with questions. Why was the data collected,
what’s interesting about it, and what stories can it tell?

The most important part of understanding data is identifying the question that you
want to answer. Rather than thinking about the data that was collected, think about
how it will be used and work backward to what was collected. You collect data
because you want to know something about it. If you don’t really know why you’re
collecting it, you’re just hoarding it. It’s easy to say things like, “I want to know
what’s in it,” or “I want to know what it means.” Sure, but what’s meaningful?

The more specific you can make your question, the more specific and clear the visual
result will be. When questions have a broad scope, as in “exploratory data analysis”
tasks, the answers themselves will be broad and often geared toward those who are
themselves versed in the data. John Tukey, who coined the term Exploratory Data
Analysis, said “...pictures based on exploration of data should force their messages
upon us.”* Too many data problems are labeled “exploratory” because the data col-
lected is overwhelming, even though the original purpose was to answer a specific
question or achieve specific results.

One of the most important (and least technical) skills in understanding data is ask-
ing good questions. An appropriate question shares an interest you have in the data,
tries to convey it to others, and is curiosity-oriented rather than math-oriented.
Visualizing data is just like any other type of communication: success is defined by
your audience’s ability to pick up on, and be excited about, your insight.

Admittedly, you may have a rich set of data to which you want to provide flexible
access by not defining your question too narrowly. Even then, your goal should be to
highlight key findings. There is a tendency in the visualization field to borrow from
the statistics field and separate problems into exploratory and expository, but for the
purposes of this book, this distinction is not useful. The same methods and process
are used for both.

In short, a proper visualization is a kind of narrative, providing a clear answer to a
question without extraneous details. By focusing on the original intent of the ques-
tion, you can eliminate such details because the question provides a benchmark for
what is and is not necessary.

* Tukey, John Wilder. Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

Why Data Display Requires Planning | 5

A Combination of Many Disciplines
Given the complexity of data, using it to provide a meaningful solution requires
insights from diverse fields: statistics, data mining, graphic design, and information
visualization. However, each field has evolved in isolation from the others.

Thus, visual design—-the field of mapping data to a visual form—typically does not
address how to handle thousands or tens of thousands of items of data. Data mining
techniques have such capabilities, but they are disconnected from the means to inter-
act with the data. Software-based information visualization adds building blocks for
interacting with and representing various kinds of abstract data, but typically these
methods undervalue the aesthetic principles of visual design rather than embrace their
strength as a necessary aid to effective communication. Someone approaching a data
representation problem (such as a scientist trying to visualize the results of a study
involving a few thousand pieces of genetic data) often finds it difficult to choose a rep-
resentation and wouldn’t even know what tools to use or books to read to begin.

Process
We must reconcile these fields as parts of a single process. Graphic designers can learn
the computer science necessary for visualization, and statisticians can communicate
their data more effectively by understanding the visual design principles behind data
representation. The methods themselves are not new, but their isolation within indi-
vidual fields has prevented them from being used together. In this book, we use a pro-
cess that bridges the individual disciplines, placing the focus and consideration on how
data is understood rather than on the viewpoint and tools of each individual field.

The process of understanding data begins with a set of numbers and a question. The
following steps form a path to the answer:

Acquire
Obtain the data, whether from a file on a disk or a source over a network.

Parse
Provide some structure for the data’s meaning, and order it into categories.

Filter
Remove all but the data of interest.

Mine
Apply methods from statistics or data mining as a way to discern patterns or
place the data in mathematical context.

Represent
Choose a basic visual model, such as a bar graph, list, or tree.

Refine
Improve the basic representation to make it clearer and more visually engaging.

Interact
Add methods for manipulating the data or controlling what features are visible.

6 | Chapter 1: The Seven Stages of Visualizing Data

Of course, these steps can’t be followed slavishly. You can expect that they’ll be
involved at one time or another in projects you develop, but sometimes it will be four
of the seven, and at other times all of them.

Part of the problem with the individual approaches to dealing with data is that the
separation of fields leads to different people each solving an isolated part of the prob-
lem. When this occurs, something is lost at each transition—like a “telephone game”
in which each step of the process diminishes aspects of the initial question under
consideration. The initial format of the data (determined by how it is acquired and
parsed) will often drive how it is considered for filtering or mining. The statistical
method used to glean useful information from the data might drive the initial presen-
tation. In other words, the final representation reflects the results of the statistical
method rather than a response to the initial question.

Similarly, a graphic designer brought in at the next stage will most often respond to
specific problems with the representation provided by the previous steps, rather than
focus on the initial question. The visualization step might add a compelling and
interactive means to look at the data filtered from the earlier steps, but the display is
inflexible because the earlier stages of the process are hidden. Furthermore,
practitioners of each of the fields that commonly deal with data problems are often
unclear about how to traverse the wider set of methods and arrive at an answer.

This book covers the whole path from data to understanding: the transformation of a
jumble of raw numbers into something coherent and useful. The data under consid-
eration might be numbers, lists, or relationships between multiple entities.

It should be kept in mind that the term visualization is often used to describe the art
of conveying a physical relationship, such as the subway map mentioned near the
start of this chapter. That’s a different kind of analysis and skill from information
visualization, where the data is primarily numeric or symbolic (e.g., A, C, G, and T—
the letters of genetic code—and additional annotations about them). The primary
focus of this book is information visualization: for instance, a series of numbers that
describes temperatures in a weather forecast rather than the shape of the cloud cover
contributing to them.

An Example
To illustrate the seven steps listed in the previous section, and how they contribute
to effective information visualization, let’s look at how the process can be applied to
understanding a simple data set. In this case, we’ll take the zip code numbering sys-
tem that the U.S. Postal Service uses. The application is not particularly advanced,
but it provides a skeleton for how the process works. (Chapter 6 contains a full
implementation of the project.)

An Example | 7

What Is the Question?
All data problems begin with a question and end with a narrative construct that pro-
vides a clear answer. The Zipdecode project (described further in Chapter 6) was
developed out of a personal interest in the relationship of the zip code numbering
system to geographic areas. Living in Boston, I knew that numbers starting with a
zero denoted places on the East Coast. Having spent time in San Francisco, I knew
the initial numbers for the West Coast were all nines. I grew up in Michigan, where
all our codes were four-prefixed. But what sort of area does the second digit specify?
Or the third?

The finished application was initially constructed in a few hours as a quick way to
take what might be considered a boring data set (a long list of zip codes, towns, and
their latitudes and longitudes) and create something engaging for a web audience
that explained how the codes related to their geography.

Acquire

The acquisition step involves obtaining the data. Like many of the other steps, this
can be either extremely complicated (i.e., trying to glean useful data from a large sys-
tem) or very simple (reading a readily available text file).

A copy of the zip code listing can be found on the U.S. Census Bureau web site, as it
is frequently used for geographic coding of statistical data. The listing is a freely
available file with approximately 42,000 lines, one for each of the codes, a tiny por-
tion of which is shown in Figure 1-1.

Figure 1-1. Zip codes in the format provided by the U.S. Census Bureau

8 | Chapter 1: The Seven Stages of Visualizing Data

Acquisition concerns how the user downloads your data as well as how you obtained
the data in the first place. If the final project will be distributed over the Internet, as
you design the application, you have to take into account the time required to down-
load data into the browser. And because data downloaded to the browser is proba-
bly part of an even larger data set stored on the server, you may have to structure the
data on the server to facilitate retrieval of common subsets.

Parse

After you acquire the data, it needs to be parsed—changed into a format that tags
each part of the data with its intended use. Each line of the file must be broken along
its individual parts; in this case, it must be delimited at each tab character. Then,
each piece of data needs to be converted to a useful format. Figure 1-2 shows the lay-
out of each line in the census listing, which we have to understand to parse it and get
out of it what we want.

Each field is formatted as a data type that we’ll handle in a conversion program:

String
A set of characters that forms a word or a sentence. Here, the city or town name
is designated as a string. Because the zip codes themselves are not so much num-
bers as a series of digits (if they were numbers, the code 02139 would be stored
as 2139, which is not the same thing), they also might be considered strings.

Float
A number with decimal points (used for the latitudes and longitudes of each
location). The name is short for floating point, from programming nomenclature
that describes how the numbers are stored in the computer’s memory.

Figure 1-2. Structure of acquired data

string TAB float TAB float TAB character TAB string TAB index TAB index

An Example | 9

Character
A single letter or other symbol. In this data set, a character sometimes desig-
nates special post offices.

Integer
A number without a fractional portion, and hence no decimal points (e.g., –14,
0, or 237).

Index
Data (commonly an integer or string) that maps to a location in another table of
data. In this case, the index maps numbered codes to the names and two-digit
abbreviations of states. This is common in databases, where such an index is
used as a pointer into another table, sometimes as a way to compact the data
further (e.g., a two-digit code requires less storage than the full name of the state
or territory).

With the completion of this step, the data is successfully tagged and consequently
more useful to a program that will manipulate or represent it in some way.

Filter

The next step involves filtering the data to remove portions not relevant to our use.
In this example, for the sake of keeping it simple, we’ll be focusing on the contigu-
ous 48 states, so the records for cities and towns that are not part of those states—
Alaska, Hawaii, and territories such as Puerto Rico—are removed. Another project
could require significant mathematical work to place the data into a mathematical
model or normalize it (convert it to an acceptable range of numbers).

Mine

This step involves math, statistics, and data mining. The data in this case receives
only a simple treatment: the program must figure out the minimum and maximum
values for latitude and longitude by running through the data (as shown in
Figure 1-3) so that it can be presented on a screen at a proper scale. Most of the time,
this step will be far more complicated than a pair of simple math operations.

Represent

This step determines the basic form that a set of data will take. Some data sets are
shown as lists, others are structured like trees, and so forth. In this case, each zip
code has a latitude and longitude, so the codes can be mapped as a two-dimensional
plot, with the minimum and maximum values for the latitude and longitude used for
the start and end of the scale in each dimension. This is illustrated in Figure 1-4.

The Represent stage is a linchpin that informs the single most important decision in
a visualization project and can make you rethink earlier stages. How you choose to
represent the data can influence the very first step (what data you acquire) and the
third step (what particular pieces you extract).

10 | Chapter 1: The Seven Stages of Visualizing Data

Figure 1-3. Mining the data: just compare values to find the minimum and maximum

Figure 1-4. Basic visual representation of zip code data

min
24.655691

max
48.987385

max
-67.040764

min
-124.62608

An Example | 11

Refine

In this step, graphic design methods are used to further clarify the representation by
calling more attention to particular data (establishing hierarchy) or by changing
attributes (such as color) that contribute to readability.

Hierarchy is established in Figure 1-5, for instance, by coloring the background deep
gray and displaying the selected points (all codes beginning with four) in white and
the deselected points in medium yellow.

Interact

The next stage of the process adds interaction, letting the user control or explore the
data. Interaction might cover things like selecting a subset of the data or changing
the viewpoint. As another example of a stage affecting an earlier part of the process,
this stage can also affect the refinement step, as a change in viewpoint might require
the data to be designed differently.

In the Zipdecode project, typing a number selects all zip codes that begin with that
number. Figures 1-6 and 1-7 show all the zip codes beginning with zero and nine,
respectively.

Another enhancement to user interaction (not shown here) enables the users to
traverse the display laterally and run through several of the prefixes. After typing part
or all of a zip code, holding down the Shift key allows users to replace the last num-
ber typed without having to hit the Delete key to back up.

Figure 1-5. Using color to refine the representation

12 | Chapter 1: The Seven Stages of Visualizing Data

Typing is a very simple form of interaction, but it allows the user to rapidly gain an
understanding of the zip code system’s layout. Just contrast this sample application
with the difficulty of deducing the same information from a table of zip codes and
city names.

The viewer can continue to type digits to see the area covered by each subsequent set
of prefixes. Figure 1-8 shows the region highlighted by the two digits 02, Figure 1-9
shows the three digits 021, and Figure 1-10 shows the four digits 0213. Finally,
Figure 1-11 shows what you get by entering a full zip code, 02139—a city name pops
up on the display.

Figure 1-6. The user can alter the display through choices (zip codes starting with 0)

Figure 1-7. The user can alter the display through choices (zip codes starting with 9)

An Example | 13

In addition, users can enable a “zoom” feature that draws them closer to each sub-
sequent digit, revealing more detail around the area and showing a constant rate of
detail at each level. Because we’ve chosen a map as a representation, we could add
more details of state and county boundaries or other geographic features to help
viewers associate the “data” space of zip code points with what they know about the
local environment.

Figure 1-8. Honing in with two digits (02)

Figure 1-9. Honing in with three digits (021)

14 | Chapter 1: The Seven Stages of Visualizing Data

Iteration and Combination
Figure 1-12 shows the stages in order and demonstrates how later decisions com-
monly reflect on earlier stages. Each step of the process is inextricably linked because
of how the steps affect one another. In the Zipdecode application, for instance:

• The need for a compact representation on the screen led me to refilter the data
to include only the contiguous 48 states.

• The representation step affected acquisition because after I developed the appli-
cation I modified it so it could show data that was downloaded over a slow

Figure 1-10. Honing in further with four digits (0213)

Figure 1-11. Honing in even further with the full zip code (02139)

Principles | 15

Internet connection to the browser. My change to the structure of the data
allows the points to appear slowly, as they are first read from the data file,
employing the data itself as a “progress bar.”

• Interaction by typing successive numbers meant that the colors had to be modi-
fied in the visual refinement step to show a slow transition as points in the dis-
play are added or removed. This helps the user maintain context by preventing
the updates on-screen from being too jarring.

The connections between the steps in the process illustrate the importance of the
individual or team in addressing the project as a whole. This runs counter to the com-
mon fondness for assembly-line style projects, where programmers handle the techni-
cal portions, such as acquiring and parsing data, and visual designers are left to
choose colors and typefaces. At the intersection of these fields is a more interesting
set of properties that demonstrates their strength in combination.

When acquiring data, consider how it can change, whether sporadically (such as
once a month) or continuously. This expands the notion of graphic design that’s tra-
ditionally focused on solving a specific problem for a specific data set, and instead
considers the meta-problem of how to handle a certain kind of data that might be
updated in the future.

In the filtering step, data can be filtered in real time, as in the Zipdecode application.
During visual refinement, changes to the design can be applied across the entire sys-
tem. For instance, a color change can be automatically applied to the thousands of
elements that require it, rather having to make such a tedious modification by hand.
This is the strength of a computational approach, where tedious processes are mini-
mized through automation.

Principles
I’ll finish this general introduction to visualization by laying out some ways of think-
ing about data and its representation that have served me well over many years and
many diverse projects. They may seem abstract at first, or of minor importance to the
job you’re facing, but I urge you to return and reread them as you practice visualiza-
tion; they just may help you in later tasks.

Figure 1-12. Interactions between the seven stages

acquire parse filter mine represent refine interact

16 | Chapter 1: The Seven Stages of Visualizing Data

Each Project Has Unique Requirements
A visualization should convey the unique properties of the data set it represents. This
book is not concerned with providing a handful of ready-made “visualizations” that
can be plugged into any data set. Ready-made visualizations can help produce a
quick view of your data set, but they’re inflexible commodity items that can be
implemented in packaged software. Any bar chart or scatter plot made with Excel
will look like a bar chart or scatter plot made with Excel. Packaged solutions can
provide only packaged answers, like a pull-string toy that is limited to a handful of
canned phrases, such as “Sales show a slight increase in each of the last five years!”
Every problem is unique, so capitalize on that uniqueness to solve the problem.

Chapters in this book are divided by types of data, rather than types of display. In
other words, we’re not saying, “Here’s how to make a bar graph,” but “Here are sev-
eral ways to show a correlation.” This gives you a more powerful way to think about
maximizing what can be said about the data set in question.

I’m often asked for a library of tools that will automatically make attractive represen-
tations of any given data set. But if each data set is different, the point of visualiza-
tion is to expose that fascinating aspect of the data and make it self-evident.
Although readily available representation toolkits are useful starting points, they
must be customized during an in-depth study of the task.

Data is often stored in a generic format. For instance, databases used for annotation
of genomic data might consist of enormous lists of start and stop positions, but those
lists vary in importance depending on the situation in which they’re being used. We
don’t view books as long abstract sequences of words, yet when it comes to informa-
tion, we’re often so taken with the enormity of the information and the low-level
abstractions used to store it that the narrative is lost. Unless you stop thinking about
databases, everything looks like a table—millions of rows and columns to be stored,
queried, and viewed.

In this book, we use a small collection of simple helper classes as starting points.
Often, we’ll be targeting the Web as a delivery platform, so the classes are designed
to take up minimal time for download and display. But I will also discuss more
robust versions of similar tools that can be used for more in-depth work.

This book aims to help you learn to understand data as a tool for human decision-
making—how it varies, how it can be used, and how to find what’s unique about
your data set. We’ll cover many standard methods of visualization and give you the
background necessary for making a decision about what sort of representation is
suitable for your data. For each representation, we consider its positive and negative
points and focus on customizing it so that it’s best suited to what you’re trying to
convey about your data set.

Principles | 17

Avoid the All-You-Can-Eat Buffet
Often, less detail will actually convey more information because the inclusion of
overly specific details causes the viewer to miss what’s most important or disregard
the image entirely because it’s too complex. Use as little data as possible, no matter
how precious it seems.

Consider a weather map, with curved bands of temperatures across the country. The
designers avoid giving each band a detailed edge (particularly because the data is
often fuzzy). Instead, they convey a broader pattern in the data.

Subway maps leave out the details of surface roads because the additional detail adds
more complexity to the map than necessary. Before maps were created in Beck’s
style, it seemed that knowing street locations was essential to navigating the subway.
Instead, individual stations are used as waypoints for direction finding. The impor-
tant detail is that your target destination is near a particular station. Directions can
be given in terms of the last few turns to be taken after you exit the station, or you
can consult a map posted at the station that describes the immediate area
aboveground.

It’s easy to collect data, and some people become preoccupied with simply accumu-
lating more complex data or data in mass quantities. But more data is not implicitly
better, and often serves to confuse the situation. Just because it can be measured
doesn’t mean it should. Perhaps making things simple is worth bragging about, but
making complex messes is not. Find the smallest amount of data that can still con-
vey something meaningful about the contents of the data set. As with Beck’s under-
ground map, focusing on the question helps define those minimum requirements.

The same holds for the many “dimensions” that are found in data sets. Web site traf-
fic statistics have many dimensions: IP address, date, time of day, page visited, previ-
ous page visited, result code, browser, machine type, and so on. While each of these
might be examined in turn, they relate to distinct questions. Only a few of the vari-
ables are required to answer a typical question, such as “How many people visited
page x over the last three months, and how has that figure changed each month?”
Avoid trying to show a burdensome multidimensional space that maps too many
points of information.

Know Your Audience
Finally, who is your audience? What are their goals when approaching a visualiza-
tion? What do they stand to learn? Unless it’s accessible to your audience, why are
you doing it? Making things simple and clear doesn’t mean assuming that your users
are idiots and “dumbing down” the interface for them.

18 | Chapter 1: The Seven Stages of Visualizing Data

In what way will your audience use the piece? A mapping application used on a
mobile device has to be designed with a completely different set of criteria than one
used on a desktop computer. Although both applications use maps, they have little
to do with each other. The focus of the desktop application may be finding locations
and print maps, whereas the focus of the mobile version is actively following the
directions to a particular location.

Onward
In this chapter, we covered the process for attacking the common modern problems
of having too much data and having data that changes. In the next chapter, we’ll dis-
cuss Processing, the software tool used to handle data sets in this book.

