CSCI568

Discussion: Similarity Metrics

Dis/similarity Between Two Attributes

Туре	Dissimilarity	Similarity
Nominal		
Ordinal		
Interval/Ratio		

Dis/similarities Between Data Objects

- Euclidean distance
- Pearson Correlation Coefficient
- Simple Matching Coefficient (SMC)
- Jaccard / Tanimoto
- Cosine Similarity
- Bregman Divergence

Minkowski Distance Metric

- General distance calculation
- r=I "City Block"
- r=2 "Euclidean"
- r=(infinity) "Supremum" (think lim(r->inf.))

Euclidean Distance

Simple! Linear distance between two points.

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

 x_k and y_k are values of k^{th} attribute of objects x and y

DM 69 - 71

Simple Matching Coefficient

Linear distance is good for many things, but not necessarily binary data!

Simple Matching Coefficient

Simple!

$$SMC = \frac{f_{11} + f_{00}}{f_{01} + f_{10} + f_{11} + f_{00}}$$

Jaccard Coefficient

Simple!

Jaccard =
$$\frac{\# \text{ of matching } present \text{ attributes}}{\# \text{ of attributes } w/ \text{ values } present}$$

Jaccard =
$$\frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

SMC vs. Jaccard

Like SMC, but for asymmetric binary attributes. (we only care about presence)

Think: market basket data (sparse dataset, asymmetric/binary attributes)

SMC --> most transactions are alike (everyone doesn't purchase most items

Jaccard --> only compares attributes w/ existing values

SMC / Jaccard Example

$$x = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)$$

 $y = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1)$

$$f_{01} = 2$$
 $f_{10} = 1$
 $f_{01} = 4$
 $f_{01} = 1$
 $f_{01} = 6$
 $f_{$

Cosine Similarity

Often used for document word-frequency.

$$\cos_{\sin(x,y)} = \frac{x \cdot y}{||x|| ||y||}$$

Cosine Similarity Example

	cow	pig	dog	cat	log	bug	fox	аре	man	car
X	3	2	0	5	0	0	0	2	0	0
У	I	2	0	5	0	0	0		0	2

$$x = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)$$

$$y = (1, 2, 0, 0, 0, 0, 0, 1, 0, 2)$$

$$x \cdot y = 3*1 ... 2*0 + 0*0 + 5*0 + 0*0 ... 2*1 ... 0*2 = 5$$

$$||x|| = sqrt(3*3+2*2...) = 6.48$$

$$||y|| = sqrt(||x|| + 0*0...) = 2.24$$

Extended Jaccard aka Tanimoto Coefficient

(reduces to Jaccard for binary attributes)

jaccard() --> compute similarities of binary attributes

tanimoto() --> compute similarities of continuous attributes

Extended Jaccard (Tanimoto Coefficient)

EJ(x,y) =
$$\frac{x \ y}{||x||^2 + ||y||^2 - x \cdot y}$$

Pearson Correlation

Think: Like Euclidean, but corrects for "grade inflation."

eg: Movie ratings. Some users consistently give more stars than others. Euclidean is ok, Pearson is better.

Pearson Correlation

For binary/continuous attributes.

Always [-I, I]

DM 77 CI II

Example: Movie Recommendations

CI chapter 2