CSCl568

Discussion: Similarity Metrics

Dis/similarity Between Two Attributes

Type	Dissimilarity	Similarity
Nominal		
Ordinal		
Interval/Ratio		

Dis/similarities

Between Data Objects

- Euclidean distance
- Pearson Correlation Coefficient
- Simple Matching Coefficient (SMC)
- Jaccard / Tanimoto
- Cosine Similarity
- Bregman Divergence

Minkowski Distance Metric

- General distance calculation
- $r=1$ "City Block"
- $\mathrm{r}=2$ "Euclidean"
- r=(infinity) "Supremum" (think lim(r->inf.))

DM 70

Euclidean Distance

Simple! Linear distance between two points.

$$
d(x, y)=\sqrt{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{2}}
$$

x_{k} and y_{k} are values of $k^{\text {th }}$ attribute of objects x and y

DM 69-7I

Simple Matching Coefficient

Linear distance is good for many things, but not necessarily binary data!

Simple Matching Coefficient

Simple!

SMC $=\frac{\# \text { of matching attributes }}{\# \text { of attributes }}$

$$
\text { SMC }=\frac{f_{11}+f_{00}}{f_{01}+f_{10}+f_{11}+f_{00}}
$$

Jaccard Coefficient

Simple!

$$
\begin{aligned}
\text { Jaccard } & =\begin{array}{l}
\# \text { of matching present attributes } \\
\# \text { of attributes } \mathrm{w} / \text { values present }
\end{array}
\end{aligned}
$$

$$
\text { Jaccard }=\frac{f_{\mid I}}{f_{0 \mid}+f_{\mid 0}+f_{\mid l}}
$$

SMC vs. Jaccard

Like SMC, but for asymmetric binary attributes. (we only care about presence)

Think: market basket data (sparse dataset, asymmetric/ binary attributes)

SMC --> most transactions are alike (everyone doesn't purchase most items

Jaccard --> only compares attributes w/ existing values

SMC / Jaccard Example

$$
\begin{aligned}
& x=(1,0,0,0,0,0,0,0,0,0) \\
& y=(0,0,0,0,0,0,1,0,0,1)
\end{aligned}
$$

$$
\begin{aligned}
f_{01} & =2 \\
f_{10} & =1
\end{aligned}
$$

$$
\text { SMC }=\frac{f_{11}+f_{00}}{f_{01}+f_{10}+f_{11}+f_{00}}=\frac{0+7}{2+1+0+7}
$$

$$
f_{00}=7
$$

$$
f_{11}=0
$$

$$
\text { Jaccard }=\frac{f_{11}}{f_{01}+f_{10}+f_{11}}=\frac{0}{2+I}
$$

Cosine Similarity

Often used for document word-frequency.

$$
\text { cos_sim }(x, y)=\frac{x^{\cdot} y}{\|x\|\|y\|}
$$

Cosine Similarity Example

	cow	pig	dog	cat	log	bug	fox	ape	man	car
x	3	2	0	5	0	0	0	2	0	0
y	1	2	0	5	0	0	0	1	0	2

$$
\begin{aligned}
& x=(3,2,0,5,0,0,0,2,0,0) \\
& y=(1,2,0,0,0,0,0,1,0,2)
\end{aligned}
$$

$$
x \cdot y=3 *|\ldots 2 * 0+0 * 0+5 * 0+0 * 0 \ldots 2 *| \ldots 0 * 2=5
$$

$$
\begin{aligned}
& \|x\|=\operatorname{sqrt}(3 * 3+2 * 2 \ldots)=6.48 \\
& \|y\|=\operatorname{sqrt}(1 * 1+0 * 0 \ldots)=2.24
\end{aligned}
$$

Extended Jaccard aka Tanimoto Coefficient

(reduces to Jaccard for binary attributes)
jaccard() --> compute similarities of binary attributes
tanimoto() --> compute similarities of continuous attributes

Extended Jaccard

 (Tanimoto Coefficient)$$
E J(x, y)=\frac{x \cdot y}{\|x\|^{2}+\|y\|^{2}-x \cdot y}
$$

Pearson Correlation

Think: Like Euclidean, but corrects for "grade inflation."
eg: Movie ratings. Some users consistently give more stars than others. Euclidean is ok, Pearson is better.

Pearson Correlation

For binary/continuous attributes.
Always [-I, I]

DM 77
CIII

Example: Movie Recommendations

Cl chapter 2

