CSCl568

Discussion 7: Intro to Similarity, Dissimilarity

Hello. I am a computer.

And I have no idea what love, happiness or similarity mean.

Defining Similarity (to a computer)

Similarity between two objects is a numerical measure of the degree to which the two objects are alike.

Dis/Similarity Values

Usually, use ranges [$-1,1$] or [0, 1].

(But not everyone does, so you may need to transform the similarity score.)

DM 66, 67

Dis/similarity Between Two Attributes

Type	Dissimilarity	Similarity
Nominal		
Ordinal		
Interval/Ratio		

Dissimilarity of Single Attributes

- nominal: it is or it isn't
- ordinal

$$
\begin{aligned}
& \text { - } d=|x-y| /(n-I) \\
& \bullet s=\mid-d
\end{aligned}
$$

- continuous:
- $d=|x-y|$
- $s=$ I/I+d (more, DM69)

Proximity Calculation Issues

- attributes w/ different scales
- (eg, age vs. income)
- heterogeneous attributes
- (eg, nominal and interval attributes)
- attributes w/ different importance

Euclidean Distance

Simple! Linear distance between two points.

$$
d(x, y)=\sqrt{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{2}}
$$

x_{k} and y_{k} are values of $k^{\text {th }}$ attribute of objects x and y

DM 69-7I

Measuring Proximity of Data Objects

- Euclidean / Minkowski distance
- Simple Matching Coefficient (SMC)
- Jaccard / Tanimoto
- Cosine Similarity
- Pearson Correlation Coefficient
- Bregman Divergence

Example: Movie Recommendations

