CSCI568

Discussion 4: Data Fundamentals

Organize Your Mind

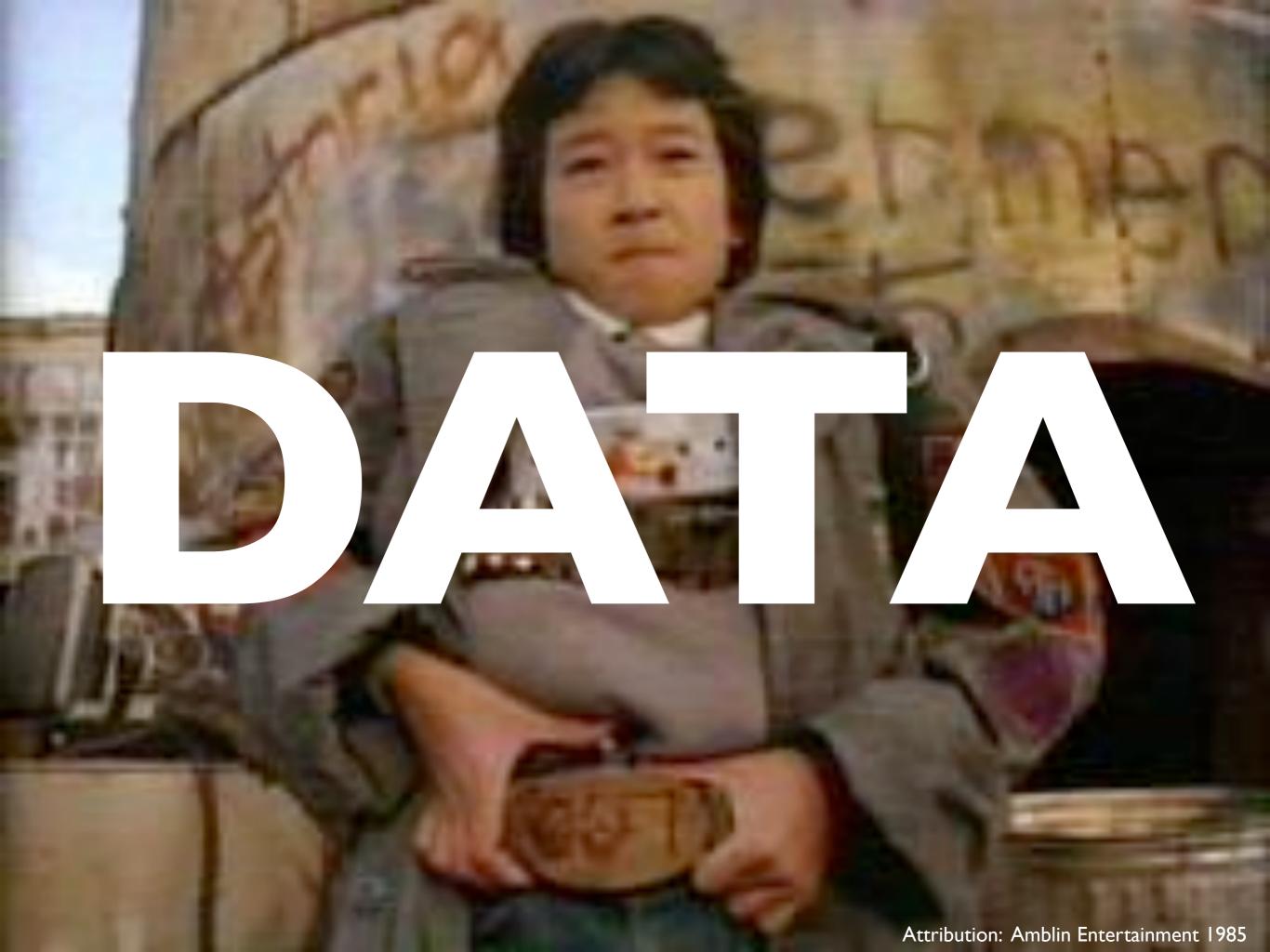
Two general purposes

predictive

descriptive

Four families of tasks

cluster analysis


classification

exploration

association analysis

anomaly detection

visualization & interaction

Common "Formats?"

Data Mining Starts With Data! (duh)

- type
- quality
- preprocessing
- existing/obvious relationships

Types

Categorical (qualitative)

Numeric (quantitative)

Nominal

zip codes student ID eye color gender **Ordinal**

hardness grades street numbers Interval

dates temperature (in C/F)

Ratio

temp in K money age lengths

(DM 26)

Data Transformations

(changes that don't affect the meaning of an attribute)

Categorical (qualitative)

Numeric (quantitative)

Nominal

preserve 1:1 mapping

Ordinal

preserve order

Interval

consistent scaling

Ratio

preserve ratio, but units can change

Bottom line: statistical operations should yield same results whether or not data is transformed.

(DM 27)

of possible values

- finite ... discrete
- infinite.. continuous (limited precision)

A "Special" Type: Asymmetric Attributes

We only care about presence (or non-presence)

Influences the meaning of "similarity"

Data Sets (collections of objects)

- Dimensionality (# of attributes)
- Sparsity (how often a value exists)
- Resolution
 - too fine? pattern buried in noise
 - too coarse? pattern not evident

Data Sets Have Types Too

Record-Based

- General (most common)
- Transaction / Market Basket Data
 - One attribute includes a set of values
- Data Matrix
 - sparse data matrices
 - document-term matrices

Graph-Based

- Relationships among objects
 - data objects are mapped to nodes
 - relationships are represented as links
- Object attributes might be graphs

Ordered Data

- Temporal data
 - "candy sales peak before Halloween
 - purchase history, predictions
 - subject to temporal autocorrelation
- Sequence data (position, no timestamps)
- Spatial data (eg, weather data by location)
 - subject to spatial autocorrelation

Unstructured Data

- non-record data can become record data
- but you might not capture certain aspects of the data

Data Quality Issues

- collected for other purposes
- collected without specified application
- errors
- often cannot be addressed at the source

Data Mining Includes...

- detection and correction of problems
- use of algorithms that tolerate poor quality

Data Is Rarely Perfect (damn!)

- human error
- limitation of measuring tools
- flaws in collection process
- missing values
- missing records
- duplicate records

Measurement Error

- recorded value differs from true value
- measure the measurement error (aka "error")
 of continuous attributes

Collection Error

- eg, omitting data objects or attributes
- inappropriately including a data object
- collection process problems
- keyboard errors

Noise & Artifacts

- NOISE = random component of measurement error
 - distortion or added spurious objects
 - most often with temporal / spatial datasets
 - elimination is often difficult
 - so we use algorithms that are robust against noise
- ARTIFACTS = deterministic errors
 - think: "a repeated streak on a set of photos"

Precision, Bias, Accuracy (simple, but important!)

- Precision: closeness of repeated measurements
 - std. dev. of a set of values
- Bias: systematic imprecision
 - diff between mean of values and real value
- Accuracy: closeness to true value

Outliers

- data objects that have characteristics that are very different from most of the other objects
- values of an attribute that are very different from typical values of that attribute
- outliers are not noise per se
 - are often legitimate data objects/values

Missing Values (and what to do about it)

- Eliminate data object or attribute
- Estimate missing values
- Ignore missing values during analysis

Inconsistent Values

- think: "incorrect city for a zip code"
- often easy to detect
 - eg, human height shouldn't be negative
- can use other valid data to resolve inconsistencies

Duplicate Data

- duplicates or "almost-duplicates"
- eg, John Smith vs John Q. Smith
 - Same object but slightly different attributes
- Values should be resolved/merged
 - aka "deduplication"

What Defines Quality Data?

Data is of "high quality" if it is suitable for its intended use.

Timeliness
Relevance
Documentation / Knowledge

Exploring Data

Common Summary Stats

- frequency, mode
- percentiles (esp. ordered data)
- mean, median, trimmed mean
- min, max, range, variance/std-dev
 - absolute average deviation (AAD)
 - median absolute deviation (MAD)
 - interquartile range (IQR)

Multivariate Summary Statistics

- Covariance
 - "to what degree do the values of two attributes vary together?"
- Correlation
 - "how strongly are two attributes linearly related?"

Visualization

Simple: the display of information in a graphical format

Why Visualizations?

- Humans have a great ability for analyzing large amounts of information visually
 - Can detect general patterns/trends
 - Can detect outliers / unusual patterns

Homework

- Reading 4
- Post one cool data visualization on Piazza