
47

! ! !

C H A P T E R 3

The Relational Model

SQL has a very practical exterior but a very theoretical interior. That interior is the relational
model. The relational model came before SQL and created a need for SQL. The power of SQL
lies not in the language itself but in the concepts set forth in the relational model. These concepts
form the basis of SQL’s design and operation.

The relational model is a powerful and elegant idea that has pervaded not only computer
science but our daily lives as well, whether we know it or not. Like the automobile, or penicillin,
it is one of the many great examples of human thought and discovery that has fundamentally
impacted the way the world works. The relational model has spawned a billion-dollar industry,
and has become an integral part of almost every other industry. You’ll see the relational model
at work nearly everywhere that deals with information of any kind—in Fortune 500 companies,
universities, hospitals, grocery stores, websites, routers, MP3 players, cell phones, and even
smart cards. It is truly pervasive.

Background
The relational model was born in 1969, inside of IBM. A researcher named E. F. Codd distributed
an internal paper titled “Derivability, Redundancy, and Consistency of Relations Stored in
Large Data Banks,” which defined the basic theory of the relational model. This paper was
circulated internally and not widely distributed. In 1970, Codd published a more refined version of
this paper in Communications of the ACM called “A Relational Model for Large Shared Data
Banks,” which is more widely recognized as the seminal work on relational theory. This is the
paper that changed the industry.

Despite the enormous influence of this paper, the relational model in its entirety did not
appear overnight, or within the scope of a single historic paper. It evolved, grew, and expanded
over time and was the product of many minds, not just Codd alone. For example, the term
“relational model” wasn’t coined until 1979, nine years after publication of the paper proposing
it (see Date, 1999, in the References section). Codd’s 12 rules, now famous as the working defi-
nition of relational, weren’t posited until 1985, appearing in a two-part series published by
Computerworld magazine. Thus, while there was a seminal paper proposing the general concept,
much of the relational model as we know it today is actually the result of a series of papers, articles,
and debates by many people over a 30-year period, and indeed continues to develop to this
very day. That is also why in some of the various quotes included in this chapter you may see
terms such as “data base,” which may initially appear to be a typo. They aren’t. At the time
these statements were made, the terminology still had not congealed and all sorts of various
terms were being thrown around.

Owens_6730 C03.fm Page 47 Wednesday, April 12, 2006 11:21 AM

48 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

The Three Components
By 1980, enough was known about the relational model for Codd to identify three principle
components:

• The structural component: This component defines how information is structured, or
represented. Specifically, all information is represented as relations, which are composed of
tuples, which in turn are composed of attribute and value components. The relation is
the sole data structure used to represent all information in the database. Relations as
defined in the relational model are derived from relations in set theory, a branch of
mathematics, and share many of their properties. They are formally defined in Codd’s
1970 paper.

• The integrity component: This component defines methods that enforce relationships
within and between relations (or tables) in the structural component. These methods
are called constraints, and are expressed in the form of rules. There are three principle
types of integrity: domain integrity, governing values in columns; entity integrity, governing
rows in tables; and referential integrity, governing how tables relate to one another. Integrity
has no analog in set theory, but rather is unique to relational theory. It was initially
addressed in Codd’s 1970 paper and greatly expanded upon in the 1980s by Codd
and others.

• The manipulative component: This aspect defines the methods with which to operate
on or manipulate information. Like relations, these operations also have their roots in
mathematics. They are formalized in relational algebra and relational calculus as origi-
nally presented in Codd’s 1972 paper “Relational Completeness of Data Base
Sublanguages.”

SQL, likewise, is structured similarly along these lines—so similarly, in fact, that it is hard
to talk about SQL without addressing the relational model to some degree, directly or indirectly.
It is true that SQL is for the most part a straightforward language, which to many people appears as
an island unto itself. But in reality, it is the offspring of the relational model, and in many ways
is clearly a reflection of it.

SQL and the Relational Model
This chapter presents the theoretical roots of SQL, and examines the power and elegance
behind SQL. It prepares you to deal with SQL not in isolation but in the context of the relational
model. If nothing else, it should give you an appreciation for how elegant, powerful, and complex
a beast a relational database really is. You may be surprised by what even the most rudimentary
relational databases are capable of.

You don’t have to read this chapter in order to understand SQL; it merely provides a theoretical
and historical backdrop. To this end, I present the theoretical aspects in terms of several influential
papers and articles written by Codd between 1970 and 1985 that define the essence of the relational
model, along with the ideas and work of other contributors to the field. Two of Codd’s papers
mentioned here are available online, and are listed in the References section at the end of the
chapter. Again, others contributed to the development of the relational model, but this chapter
will draw primarily from Codd’s work.

Owens_6730 C03.fm Page 48 Wednesday, April 12, 2006 11:21 AM

Th
is

 b
oo

k
w

as
 p

ur
ch

as
ed

 b
y

yb
ak

os
@

m
in

es
.e

du

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 49

This chapter is not an exhaustive treatment of the relational model, or a complete history
of it. It is merely an appetizer. The SQL chapter that follows is the main course. This chapter
presents only the minimal material needed to get an appreciation of the origin and theoretical
underpinnings of SQL. We illustrate the relational model in terms of both its three components
in general and in the context of Codd’s 12 rules in particular. The relational model in its full
splendor is far beyond the scope of this book, and I have neither the qualifications nor the
stamina to fully describe it. See the References section at the end of this chapter if you want to
learn more. The rules as they are presented here are taken directly from Codd’s October 14, 1985,
Computerworld article.

The Structural Component
The structural component of the relational model lays the foundation upon which the other
components build. It defines the form in which information is represented. It is defined by the
first of Codd’s 12 rules, which is the cornerstone of the relational model.

The Information Principle
The first rule, called the Information Rule, is also known as the Information Principle. It is
defined as follows:

1. The Information Rule. All information in a relational data base is represented
explicitly at the logical level and in exactly one way—by values in tables.

Date summarizes this rule as follows:

The entire information content of the database is represented in one and only one way,
namely as explicit values in column positions in rows in tables.

There are two import expressions here: “logical level” and “values in tables.” The logic level, or
logical representation, refers to the way that you, the user, see the database and information
within it. It is a kind of ideal worldview for information. The logical level is a consistent, uniform
depiction of data, which has two important properties:

• The view presented in the logical level consists of tables, made up of rows, which in turn
are made up of values.

• The view is completely independent of the database system—the technology (software
or hardware) that enables it.

The logical representation is a world unto itself, which is completely distinct from how the
database is implemented, or how it stores data physically, or how it operates internally. These
latter components—software, operating system, and hardware—are referred to as the physical
representation—the technology of the system. If the database vendor decides to store database
tables in a different way on disk, the Information Principle mandates that such a change in
physical representation can in no way affect or change the logical representation of that data—
the way in which you (or your programs) see that data. The logical representation is indepen-
dent of physical representation. A result of the Information Principle is that it is possible to

Owens_6730 C03.fm Page 49 Wednesday, April 12, 2006 11:21 AM

50 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

represent the same information in the same way across multiple database implementations on
multiple operating systems on different hardware, as shown in Figure 3-1.

Figure 3-1. Logical and physical representation

You can create a relation (or table) in Oracle on Solaris that is represented in exactly the
same way as a table in PostgreSQL on Linux, or SQLite on Mac OS X.1 The Information Principle
guarantees you a consistent logical view of information regardless of how the database soft-
ware is implemented, or the operating system or hardware it runs on.

The Sanctity of the Logical Level
So important are these two constraints in the relational model that they are expanded upon
and reinforced in several other rules (8, 9, 11, and 12) so as to eliminate any possible ambiguity.
In short, Codd says:

8. Physical Data Independence. The logical view can in no way be impaired by the
underlying software or hardware.

9. Logical Data Independence. Application programs and terminal activities remain
logically unimpaired when information-preserving changes of any kind that theoretically
permit un-impairment are made to the base tables.

1. In reality, this is not 100 percent true (it’s more like 95 percent true). There are slight differences in database
implementations so that relations in one database may contain features not present in other data-
bases. Nevertheless, they still all adhere to the same general structure: relations made of tuples made
of values.

Owens_6730 C03.fm Page 50 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 51

11. Distribution Independence. Even if the database is spread across various locations,
it cannot impact the logical view of data.

12. Nonsubversion Rule. The database software may not provide any facility which can
subvert the integrity constraints of the logical view.

The separation of logical from physical was very important to Codd from the outset. In the
opening of his original paper he had strong words concerning this separation:

Future users of large data banks must be protected from having to know how the data
is organized in the machine (the internal representation)… Activities of users at
terminals and most application programs should remain unaffected when the
internal representation of data is changed and even when some aspects of the external
representation are changed.

The relational model was in part a reaction to the database systems of the day, which closely
tied applications to both database implementation and data format on disk. Codd’s relational
model challenged this:

It provides a means of describing data with its natural structure only—that is, without
superimposing any additional structure for machine representation purposes. Accordingly,
it provides a basis for a high level data language which will yield maximal independence
between programs on the one hand and machine representation and organization of
data on the other.

So in the relational model, the Information Principle provides a level of abstraction through
which information can be represented in a consistent way. The user sees and works with data
exclusively in terms of this logical representation. This representation is completely insulated
from the underlying technology. It cannot be undermined, influenced, or affected by it in any
way. As stated before, the Information Principle is the foundation of the relational model.

The Anatomy of the Logical Level
The logical level is made up of more than relations. It is made up of tables, rows, columns, and
types. In relational parlance, these are often referred to more formally as relation variables, tuples,
values, and domains, respectively. SQL, for example, uses many of the former, and relational
theory tends to use many of the latter. Throughout the literature, however, you will see these
terms used almost interchangeably. Even in Codd’s papers, both sets of terms are used. Interest-
ingly, there is one term that both lexicons have in common: relations. (In case you’re wondering,
tables and relations are not the same thing; we’ll address the difference later in this chapter.)

This big soup of terminology comprises the anatomy of the relational body, which will be
explained in detail over the next several sections. The relationships between all of these terms
are illustrated in Figure 3-2.

At the center of everything is the relation. It is the central object around which the structural,
integrity, and manipulative components of the relational model are built. All of the fundamental
operations in the relational model are expressed in terms of relations, and all integrity constraints
are defined within relations. Your understanding of the relational model is only as good as your
understanding of relations themselves. To have a good grasp of relations, however, you must
first understand tuples.

Owens_6730 C03.fm Page 51 Wednesday, April 12, 2006 11:21 AM

52 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

Figure 3-2. The logical representation of data

Tuples
A tuple is a set of values, each of which has an associated attribute. An attribute defines a value’s
name and domain. The attribute’s name is used to identify the value in the tuple, and its domain
defines the kind of information stored within it. The combination of attribute and value is called
a component. In Figure 3-2, you can see that the first component is named num, and that it has a
value of 3.14 and a domain of real (as in real numbers).

A component is kind of a tidy, self-contained unit of data. It has three essential ingredients:
a name, a domain, and a value. Its name gives it identity, its domain a description of its content,
and its value the content itself. Together, components aggregate into larger structures such as
tables and relations, and their qualities propagate into those structures, imparting to them
identity, description, and content as well.

The name and value parts of a component are easy enough to understand, but what exactly is
a domain? The word domain, like the words relation and tuple, comes from mathematics. In
mathematics, the domain of a function is the set of all values for which the function is defined.
Some familiar domains in mathematics are the sets of all integers, rational numbers, real numbers,
and complex numbers. Generally, the term domain corresponds to a set of permissible values.
A domain is sometimes referred to as a type, and is synonymous to a data type in programming
languages. A domain, especially in the relational sense, also implies a set of operators that can
be used to operate on its associated values. For example, common operators associated with
integers are addition, subtraction, multiplication, and division.

So the job of a domain is to define a finite or an infinite set of permissible values along with
ways of operating on them. In a way, the domain controls or restricts the value of an attribute,
but it does so only by providing information. The database actually restricts an attribute’s value
so that it conforms to its associated domain. As you will see later, this particular restriction is
defined in the integrity component of the relational model, and is called domain integrity. The
group of collective attributes in a tuple is called its heading. Just as an attribute defines the
properties of its associated value, the heading defines the properties of its tuple.

Relations
A relation, simply enough, is a set of one or more tuples that share the same heading. Just as
domains have analogs in programming languages, so do tuples and relations. And even if you
are not a programmer, the analogy is quite helpful in illustrating the relationship between
tuples, relations, and headings.

Owens_6730 C03.fm Page 52 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 53

For example, consider the relation and its C equivalent shown in Figure 3-3. You could say
that a tuple is similar to a C structure. They both are made up of attributes that have a name
and a type. As shown in the figure, a C structure’s attributes are defined in its declaration, just
as a tuple’s attributes are defined in its heading. The declaration and heading both provide
information about the contents of their respective data structures.

Figure 3-3. Header as declaration; tuple as instance

Similarly, a tuple’s values are analogous to an instance of a C structure. Its values form a
composite data structure that corresponds to the attributes defined in its heading. Each value
in the structure is identifiable by an attribute name, and each value is restricted by an attribute
domain.

Thus, tuples are more than just rows of amorphous values like what you might find in a
spreadsheet. They are well-defined data structures with a high degree of specificity over the
information within them. They have more in common with constructs in programming languages
than with rows in a spreadsheet.

But the analogy doesn’t stop there. As also shown in Figure 3-3, a relation is the C equivalent
of an array of structures. Each structure in the array along with the array itself shares the same
type, just as relations and their tuples share the same heading.

The bottom line is that relations and tuples are highly structured. Furthermore, this structure
is defined by their common heading.

Degree and Cardinality
Associated with tuples and relations are the notions of degree and cardinality. These are just
fancy words for width and height, respectively. You could say a relation’s width is the number
of attributes in its heading. This is called the degree. Its height is the number of tuples it contains;
this is called cardinality. These terms are illustrated in Figure 3-2. A relation with four attributes
and five tuples would be said to be of degree 4 and cardinality 5.

Owens_6730 C03.fm Page 53 Wednesday, April 12, 2006 11:21 AM

54 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

While tuples don’t have cardinality, they nonetheless have their own fancy terms. A tuple
of degree 1 is said to be a unary tuple. Tuples of degree 2, 3, and 4 are said to be binary, ternary,
and quaternary, respectively. Generally, a tuple of degree N is said to be an N-ary tuple. In fact,
the word tuple is taken from the N-ary form. In the strictest sense, a unary tuple is called a
monad, a binary tuple a pair, a ternary tuple a triple, a quaternary tuple a tetrad, and so on,
as shown in Table 3-1.

Typically, the term tuple is used as a generic catchall for tuples of all degrees, and using
terms like monad and triad is often more confusing than it is precise. As with tuples, a relation
composed of binary tuples is a binary relation. A relation composed of N-ary tuples is an N-ary
relation, and so forth.

Mathematical Relations
The notion of a relation in relational theory is taken directly from the relation in set theory,
with a few modifications. To really understand relations, as defined in relational theory, you
must understand their predecessors in mathematics.

Just as in relational theory, mathematical relations are sets of mathematical tuples. Like
mathematical relations, mathematical tuples also differ somewhat from their relational name-
sakes. In mathematics, tuples are ordered sequences and relations are unordered sets. Sets by
their very nature are ambivalent to order. That is, the order of elements in a set does not affect
the fundamental identity of that set, whereas the order of items in a sequence does affect its
identity.

To begin with, every value in a tuple has a specific domain associated with it. Suppose we
have a tuple composed of the following two domains:

• The domain of all integers {...,-1,0,1,...}, denoted by I

• The domain of the first names of all Seinfeld characters {‘Jerry’, ‘Cosmo’, ‘Newman’, ...},
denoted by F

Now, suppose we have a relation composed of such tuples. The relation then is also composed
of the domains I and F (in that order). The first column of the relation must consist of integer
values, and the second column must consist of the first names of Seinfeld characters. Using
this as an example, the formal definition of a relation can be expressed as follows:

Table 3-1. Tuple Terminology

Degree Qualification Designation Example

1 Unary Monad 1

2 Binary Pair, twin (0, 1)

3 Ternary Triple, triad (0, 1, 2)

4 Quaternary Quadruple, tetrad (0, 1, 2, 3)

N N-ary N-tuple (tuple) (0, 1, 2, … N)

Owens_6730 C03.fm Page 54 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 55

A relation over I and F is any subset of the cross product of I and F, represented by I×F.

This is a somewhat annoying definition because it defines a relation in terms of another perhaps
unfamiliar concept: the cross product. The cross product, also called the Cartesian product, is
quite simple, however. It is the combination of every value in every domain with every value in
every other domain. To compute I×F, for example, you take each integer i in I, and pair it with
each name f in F. This yields an infinitely large set of (i,f) tuples (binary tuples), as illustrated in
Figure 3-4. Note that the figure is somewhat simplistic and depicts the set of all integers as the
values to {-1, 0, 1}.

Figure 3-4. The cross product of integers and Seinfeld character first names

What does the cross product do here? Why is it used? The cross product of domains I and F
is a set containing every tuple that could ever exist by the combination of these two domains.
That is, every tuple that has an integer as its first value and the first name of a Seinfeld character
as its second value is contained in the cross product I×F. The cross product is itself just a set,
albeit a very big one. It is a set defining the limit of every tuple that could ever be formed from
the domains I and F. That being said, any subset of this cross product is a relation, specifically
a “relation over I and F.” That is a mathematical relation: any subset of a cross project.

Put more simply, a relation is defined in terms of its constituent domains—it is a portion
(or subset) of their cross product. This cross product is a superset containing every possible
tuple that could ever appear in the relation. (I know this seems circuitous.) The proper way of
expressing a relation is to speak of a relation R over the domains X, Y, and Z. If we were to expand
our relation to include the domain of all Seinfeld episodes, denoted by E, it would then be “a
relation R over I, F, and E”—represented by I×F×E, which in turn is an even larger set than I×F.

Relational Relations
There is one fundamental difference between tuples in mathematics and tuples in relational
theory. In mathematics, the order of values in a tuple is significant; in relational theory it isn’t.
This is because members (attributes) of relational tuples have names, which are used to iden-
tify them. Mathematical ones do not. Therefore, mathematical tuples in relations over I×F are
always of the form (i,f) because this is the only way to identify them—by ordinal positions. This
convention is not needed in relational tuples because they have attributes that have names to

Owens_6730 C03.fm Page 55 Wednesday, April 12, 2006 11:21 AM

56 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

identify them, rather than ordinal positions. Order, then, in a relational tuple offers no real
advantage. The same applies to relational relations, as they share the same attributes through
their common heading.

In his original paper, Codd differentiated mathematical relations (which he called domain-
ordered relations) from his relational relations (called domain-unordered relations) by referring to
the latter as “relationships”:

Accordingly, we propose that users deal, not with relations which are domain-ordered,
but with relationships which are their domain-unordered counterparts. To accomplish
this, domains must be uniquely identifiable at least within any given relation, without
using their position.

Domains (or attributes) are uniquely identifiable through attribute names. Therefore, both
column and row order do not matter in the relational model. This is the principal way in which
the relations of set theory and the relations of relational theory differ. In all other respects,
tuples and relations in the relational theory share all the same properties of their counterparts
in set theory.

And that is a relation. It is the fundamental object upon which relational theory is built. If
you understand it, you are well on your way to understanding the core mechanics of relational
theory. Relational theory is fitted so as to mirror the true mathematical relation as closely as
possible. The reason is that the closer the relational model fits the mathematical model, the
more it benefits from other facets of mathematics already well established. A prime example is
relational algebra, which is part of the manipulative component of the relational model. Many
of the operations defined for relations in set theory carry over to relational algebra because
relational relations are sufficiently similar. The same is true for relational calculus, which employs
methods of formal logic. As Codd put it

Moreover, the (relational) approach has a close tie to first-order predicate logic—a logic
on which most of mathematics is based, hence a logic which can be expected to have
strength, endurance, and many applications.

Codd recognized not only that the elegance of mathematics is beneficial as a basis to build
upon, but that it also offers a vast reservoir of existing knowledge that can be harnessed as well.

Tables: Relation Variables
A relation, though it contains values, is itself just a value, just like an integer or a string. The
value of a relation is given by the particular set of tuples it contains. Likewise, the value of each
tuple in turn is given by the specific values within it. Thus, the value of a relation is determined
by the sum of its parts. Figure 3-5 illustrates this. It depicts three relations, represented by R1,
R2, and R3, taken over I×F. Each represents a different value, or relation.

R1, R2, and R3 are not relations but rather relation variables. They represent relations.
Codd referred to them as named relations. Date (2003) calls them relvars. SQL calls them tables.
They are also known as base tables. The bottom line is that they are simply variables whose
values are relations. I will simply refer to them here as tables, as that is what you will be dealing
with in SQL.

Owens_6730 C03.fm Page 56 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 57

Figure 3-5. Relations over I×F

In practice, the precise meaning of “relation” can sometimes be a bit murky. Relations are
often referred to in the same context as tables. However, they are not the same thing. One is a
value; the other is a variable. A relation is a value, like an integer value is 1, 2, or 3. A table is a
variable—to which relations are assigned. Tables, like variables, have both a name and a value.
Their name is just a symbol. Their value is a relation. They are no different than variables in
algebra, such as x and y in the equation of a line. Tables share all the properties of relations
(heading, degree, cardinality, etc.) just as integer variables share the properties of integers.

With this in mind, what does it mean to update or modify a table? If you are familiar with
SQL, you probably think of it in terms of modifying a single value, or a few rows. You see it the
same as changing cells in a spreadsheet. You modify parts of the spreadsheet. You see those
parts as individual values. The relational view is different. In the relational view, you don’t
modify parts of a table. A table is a variable holding an entire relation as its value. If you change
anything, you change the entire relation—no matter how small the difference might be. You
aren’t changing a row or column; you are actually swapping one relation with an entirely new
one, where the new relation contains the rows or columns you want changed.

I know that it may seem like frivolous semantics. But just as you don’t modify part of an
integer variable, you don’t modify part of a relation variable either. There is nothing wrong

Owens_6730 C03.fm Page 57 Wednesday, April 12, 2006 11:21 AM

58 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

with thinking in terms of the SQL view—where you are changing values in a row. It is logically
equivalent: in a SQL update, you are articulating the change you want to make in a statement,
and that statement produces a new relation. But that is where you should make the distinction:
the change produces a new relation, not a patched-up version of the old one. That new relation
becomes a new value that the table holds.

Be aware that when you talk about tables in a database, you are referring to variables,
specifically relation variables—not relations. If a database were composed strictly of relations,
then its contents would be fixed values, not subject to change. But databases are dynamic. And
the reason is because their contents—tables—are relation variables, which are subject to change.
They change by assigning those relation variables new relation values, not by adding, subtracting,
or changing tuples.

Views: Virtual Tables
Views are virtual tables. They look like tables and act like tables, but they’re not. Views are rela-
tional expressions that yield relations. It is like saying that the algebraic expression x+y is not a
number per se, though it can yield a number if the expression is evaluated, provided we have
specific values for x and y. The same is true for views. Codd (1980) described them as follows:

A view is a virtual relation (table) defined by means of an expression or sequence of
commands. Although not directly supported by actual data, a view appears to a user as
if were an additional base table kept up-to-date and in the state of integrity with other
base tables. Views are useful for permitting application programs and users at terminals to
interact with constant view structures, even when the base tables themselves are under-
going structural changes at the logical level...

Logical Data Independence
In one sense, views are simply a matter of convenience. They let you assign a name to a set of
operations and treat the result like a relation. They are a kind of shorthand. This is perhaps the
most common use of views. Another use was for security. In some systems, views can be used
to selectively present parts of tables, while excluding other sensitive or restricted parts. But the
original intent of views was much more than these two applications. The main application for
views was facilitating what is called logical data independence, which is defined as follows:

9. Logical Data Independence. Application programs and terminal activities remain
logically unimpaired when information-preserving changes of any kind that theoretically
permit un-impairment are made to the base tables.

Logical data independence means that applications and users should theoretically be able to
see the same logical structure (e.g., the same attributes in a relation), even if it is changed (e.g.,
an attribute in that relation is moved to another relation). An example is when a relation is
decomposed into two relations for the sake of normalization, as described in the section
“Normalization.”

More precisely, logical data independence means that users and applications should be
able to be insulated from changes at the logical level of the database. That doesn’t mean the
database is supposed to automatically shield users and programs from the database adminis-
trator (DBA) doing something really bone-headed like dropping a table and going home for the

Owens_6730 C03.fm Page 58 Wednesday, April 12, 2006 11:21 AM

Th
is

 b
oo

k
w

as
 p

ur
ch

as
ed

 b
y

yb
ak

os
@

m
in

es
.e

du

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 59

day. Rather, it means that the relational model provides a means for the administrator to
bridge the gap if she wants to make substantive changes at the logical level that would impact
the logical view seen by users and applications. For instance, if the DBA decomposes a table
into two smaller ones, she can create a view that looks like the original table, though it is in
reality a relational expression that combines (joins) the two new tables. The users and applica-
tions know no differently.

Updatable Views
But logical data independence entails more than just viewing data. Many people who are
familiar with views understand them as read-only. However, the relational model clearly states
that you should be able to write to views as well, just as if they were ordinary tables. While logical
data independence would seem to imply this, Rule 6 makes it explicit:

6. View Updating Rule. All views that are theoretically updatable are also updatable by
the system.

Rule 6 is essential for logical data independence. “Theoretically updatable” means the view is
constructed in such a way that it is theoretically possible to map changes made on it to its
respective base tables. That is, if it can be done in theory, the system should be able to do it.

That said, Rule 6 and updatable views (sometimes referred to as materialized views) are
not fully supported in all relational databases, simply because they are not easy to implement.
Programming a system to know what is “theoretically updatable” in relational algebra and/or
calculus is not exactly a weekend project. On the other hand, read-only views are extremely
common. In fact, it is almost hard to find relational databases today that don’t support them.

The System Catalog
As a database is composed of tables and views, you might at some point wonder how you can
find out exactly what is in a given database. As it turns out, a relational database contains tables
and views describing its tables and views—information about the information. That is, all tables,
views, constraints, and other database objects belonging in a database are registered in what is
referred to as the system catalog. Per Rule 4:

Rule 4. Dynamic On-Line Catalog Based on the Relational Model. The data base
description is represented at the logical level in the same way as ordinary data, so that
authorized users can apply the same relational language to its interrogation as they
apply to the regular data.

The system catalog is subject to the Information Principle: it is required to be represented in
a relational format that can be queried in the same way as other relations in the system. This
means that even metadata (information about information) in a database has to be represented
relationally. In many database products, many of the tables in the system catalog are often
implemented as views. The beauty of views and the system catalog is that together they enable
you to extend or enhance the catalog itself. You can create your own catalog views that contain
information you find useful or informative. Those views in turn may even use catalog tables as
a basis.

Owens_6730 C03.fm Page 59 Wednesday, April 12, 2006 11:21 AM

60 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

The Integrity Component
While the structural aspect of the model relates to the structure of information, the integrity
aspect relates to the information within the structure. Information can be arranged in relations
in a way that gives rise to various relationships, both within columns of a single relation and
between columns of different relations. These relationships provide additional structure and
indeed add even more information to what is already present.

The integrity aspect of the relational model provides a way to explicitly define and protect
such relationships. Although their use in a database is entirely optional, the degree to which
they are employed can ultimately determine the consistency of your data.

Primary Keys
Codd’s second rule is the starting point of data integrity, and deals with the nature of data
within relations. This rule is called the Guaranteed Access Rule and is defined as follows:

2. Guaranteed Access Rule. Each and every datum (atomic value) in a relational data
base is guaranteed to be logically accessible by resorting to a combination of table
name, primary key value and column name.

The relational model requires that every relation have a primary key. The primary key is the set
of attributes in a relation that uniquely identifies each tuple within it. This rule carries with it
an important corollary: relations may not contain duplicate tuples.

The Guaranteed Access Rule states that every field (or value in a tuple) in a relational data-
base must be addressable. To be addressable, it must be identifiable. To be identifiable, each
tuple must be distinguishable in some way from all other tuples in the relation, which is to say
unique (thus, duplicate tuples would violate this constraint).

Uniqueness is the business of the primary key. A key is a designated attribute (or group of
attributes) in a relation such that

1. The value (or combined values) of that attribute (or attributes) is unique for every tuple
in the relation.

2. If the key is composed of more than one attribute, all of the attributes that define the
key must be necessary to ensure uniqueness. That is, every attribute in the key is sufficient
to ensure uniqueness, but also necessary as well—if one were absent, then the uniqueness
condition would not hold.

If both conditions 1 and 2 are met, then the resulting attribute or group of attributes is a key
(also called a candidate key). If condition 1 is met but not condition 2, then the attribute (or
group of attributes) is called a superkey. It is a key that could stand to lose some weight. That is,
it has more attributes than necessary to ensure uniqueness: a smaller key containing fewer
attributes could be defined that still guarantees uniqueness.

A relation may have one or more candidate keys. If it does, then which one of them that is
defined as the primary key is arbitrary:

Whenever a relation has two or more nonredundant primary keys, one of them is
arbitrarily selected and called the primary key of the relation.

Owens_6730 C03.fm Page 60 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 61

The primary key is just a rule that requires that every relation have at least one candidate key. The
definition of a primary key serves more as an affirmation of the Guaranteed Access Rule than it
does in defining a new relational concept.

Foreign Keys
With keys comes more than simply identification. While keys define relationships between
tuples within a single relation (you might say vertically), they can also define relationships
between tuples in different relations (horizontally). A key’s identification property allows a
tuple in one relation to identify (or reference) a specific tuple in another relation by way of a
common key value. This is called a foreign key relationship. Specifically, a key in one table
corresponds to, or references, the primary key in another table (the foreign key), thereby relating
the tuples in each table. Take, for example, the foods and food_types tables, as shown in Figure 3-6.
Each row in foods corresponds to a distinct food item (Junior Mints, Mackinaw Peaches, etc.),
the name of which is stored in the name attribute. Each row in food_types stores various food
classifications (e.g., Junk Food, Fruit, etc.). Each row in foods references a row in food_types by
using a common key. foods contains a key called type_id, every value of which corresponds to
a value in the primary key (id) of the food_types, as illustrated by the arrow in Figure 3-6.

Figure 3-6. Foreign key relationship between foods and food_types

From a relational standpoint, this is merely a foreign key relationship. But in reality it is
more than that. This relationship models a relationship in the real world. It has a basis in reality,
has real meaning, and adds information above and beyond the information contained in the
individual tables. Therefore, it is a critical part of the information itself.

It is easy to see that such relationships, if not properly maintained, can be precarious. If an
application comes to assume this relationship, and its normal operation depends on the fact
that a tuple in foods always has a corresponding tuple in food_types, what happens if someone
deletes all the tuples from food_types? Where does that leave the type_id values in the foods
tuples pointing to now? What has become of this relationship?

For that matter, what is to stop a user from just ignoring the primary key rule and jamming
a thousand identical food_types tuples back into the database? If there is nothing in place to
protect and ensure these relationships, they can be as destructive as they are beneficial. Such
rules, like laws, are worthless without enforcement.

Owens_6730 C03.fm Page 61 Wednesday, April 12, 2006 11:21 AM

62 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

Constraints
Enter the constraint. Constraints are relational cops. They enforce database rules and relation-
ships and preserve order in general. They bring consistency and uniformity to information
within a database. With constraints, you can rest assured that tuples in the foods table will
always reference legitimate tuples in food_types. Primary keys will always exist in tables, and
their values will always be unique. This kind of uniformity and consistency is called data integrity.
It is the integrity component of the relational model.

Constraints work by governing database operations. Like the precogs in Minority Report,
they stop bad things before they happen. If a user or an application issues a request that would
result in an inconsistent relationship or data, the database refuses to carry out the operation
and issues an error, called a constraint violation. In the relational model, constraints fall into
four general classes of integrity:

• Domain integrity: Domain integrity is the relationship between attribute values and
their associated domains. In the relational model, domain integrity is instituted through
domain constraints. A domain constraint requires that each attribute value in a tuple
exist within its associated domain. For example, if the type_id attribute in the foods table is
declared as an integer, then the corresponding values of type_id in all tuples in the foods
table must be integer values—not floating-point numbers or strings. Domain integrity is
also referred to as attribute integrity—it pertains to the attributes of a relation. Domain
integrity is not limited to just checking that a given value resides in a given domain.
It includes additional constraints as well, such as CHECK constraints. CHECK constraints
(which are covered in Chapter 4) can define arbitrarily complex rules on what constitutes a
permissible value for a given attribute.

• Entity integrity: This form of integrity is mandated by the Guaranteed Access Rule: each
tuple in a relation must be uniquely identifiable. Whereas domain integrity is concerned
with a relation’s attribute values, entity integrity is concerned with its tuples. The term
“entity” here is a rather loose term for table. It originates from database modeling (i.e.,
entity-relationship diagrams). In this particular context, an entity simply refers to anything
in the real world that must be represented in a database.

• Referential integrity: This form of integrity pertains to relationships between tables,
specifically the preservation of foreign key relationships. Whereas entity integrity
pertains to tuples in a relation, referential integrity pertains to tuples between relations.

• User-defined integrity: User-defined integrity encompasses any form of integrity not
defined in the other forms. Many relational databases offer various facilities that go
beyond the normal constraint mechanisms. One such example is triggers, which are
covered in Chapter 4.

The relational model requires that databases and query languages support integrity constraints.
Furthermore, these constraints, like all other data and metadata in the database, must also be
defined directly in the database, specifically in the system catalog:

10. Integrity Independence. Integrity constraints specific to a particular relational data
base must be definable in the relational data sub-language and storable in the catalog,
not in the application programs.

Owens_6730 C03.fm Page 62 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 63

Null Values
Closely associated with data integrity in the relational model is a special value (or lack thereof),
which exists both inside and outside of every domain. This special value denotes the absence of
a value and is called a null value, or null for short. Nulls are prescribed in Codd’s third rule:

3. Systematic Treatment of Null Values. Null values (distinct from the empty character
string or a string of blank characters and distinct from zero or any other number) are
supported in fully relational DBMS for representing missing information and inapplicable
information in a systematic way, independent of data type.

There are multiple interpretations for what null values mean. The prevailing view of null seems
to be “unknown.” But there are others. For example, a tuple containing employee information
may have an attribute for the employee’s middle name. But not everyone has a middle name.
A tuple for a person without a middle name might use a null value for that particular attribute.
In this case, the null value doesn’t necessarily mean “unknown” but rather “not applicable.”
Thus, a value may be null because it is either missing (a value exists but was not input) or
uncertain (it is not known whether a value exists at all), or it is simply not applicable for the
tuple (or employee) in question.

The inclusion of nulls in the relational model has been a source of controversy for many
years, and there are people on both sides of the debate who feel very strongly for their positions.
Codd, for example, felt the need for nulls:

In general, controversy still surrounds the problem of missing and inapplicable infor-
mation in data bases. It seems to me that those who complain loudly about the
complexities of manipulating nulls are overlooking the fact that handling missing
information and inapplicable information is inherently complicated.

Date, Codd’s colleague and well-known authority on the relational model, is opposed to them:

…we should make it very clear that in our opinion (and in that of many other writers
too, we hasten to add), nulls and 3VL are a serious mistake and have no place in a clean
formal system like the relational model.

The “3VL” acronym in the quote stands for “three-valued logic,” which corresponds to how
nulls are evaluated in logical expressions. This is addressed in Chapter 4.

Normalization
The implication of no duplicate tuples provided by the Guaranteed Access Rule gives rise to an
important concept in database design called normalization. Normalization concerns itself
with the organization of attributes within relations so as to minimize duplication of data. Data
duplication, as you will see, has more deleterious effects than just taking up unnecessary space.
It increases the opportunity for database inconsistencies to arise. Normalization is about designing
your database to be more resistant to the ill effects of thoughtless users and buggy programs.

While based on principles of the relational model, normalization is somewhat a subject
(some even say an art) in itself. It can become quite complicated, introducing a considerable

Owens_6730 C03.fm Page 63 Wednesday, April 12, 2006 11:21 AM

64 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

amount of new concepts and terminology. A proper treatment of the subject is beyond the
scope of this book. What follows is a very brief introduction.

Normal Forms
As stated, the chief aim of normalization is to eradicate duplication. Relations that have dupli-
cation removed are said to be normalized. However, there are degrees of normalization. These
degrees are called normal forms. The first degree is called first normal form, followed by second
normal form, and so on. They are abbreviated 1NF, 2NF, 3NF, and so on. Each normal form
defines specific conditions a relation must meet in order to be so classified. Thus a relation that
meets the conditions of first normal form is said to be “in first normal form.” Normal forms
build on each other so that higher normal forms require all the conditions of lower forms as
prerequisites. For data to be in 2NF, it must also be in 1NF. Essentially, the higher the normal
form of a relation, the less duplication it has, and the more resistant it is to inconsistencies. The
most common and perhaps most widely used normal form is 3NF, although there are even
more advanced normal forms such as Boyce-Codd normal form (BCNF), 4NF, 5NF, and higher.
The first three normal forms are easy enough to describe.

First Normal Form
First normal form simply states that all attributes in a relation use domains that are made up of
atomic values. The working definition of “atomic” is the same as other disciplines, meaning
simply “that which cannot be broken down further.” For example, integer values would seem
to be atomic, as you can’t break them down further. But you could argue that integer values
could be decomposed into their prime factors. Atomicity, then, is determined by the method of
decomposition, which can be a subjective matter. For all practical purposes, it is the database
management system that decides what is atomic. And the domains provided by the system can
safely be considered as such.

That said, first normal form basically means that a single attribute cannot hold more than
a single value. For example, take the episodes table shown in Table 3-2 in the next section. 1NF
states that you couldn’t store both the values 1992 and 1993 (two integer values) in a year attribute
of a single tuple. It sounds so silly that it can be kind of hard to imagine. But it’s that simple.
It is so simple, in fact, that you have to work at violating 1NF; most databases won’t even give
you the means to do it.

Functional Dependencies
To understand second and third normal form, you have to first understand functional depen-
dencies. The simple definition of a functional dependency is a correlation between columns in
a table. If the values of one column (or set of columns) correlate to the values of another, then
they have a functional dependency. More precisely, a functional dependency describes a relation-
ship between two or more attributes in a relation such that the value of one attribute (or set of
attributes) can be inferred from the value of another attribute (or attributes) for every tuple in
the relation. This is more easily illustrated by example. Consider the table, called episodes,
shown in Table 3-2.

There is a functional dependency between season and year. For any given value of season,
you will find the same value of year. If you ever come across a tuple with a value of 4 for season,
you know the value for year will be 1992. If you know the former, you can determine the latter.

Owens_6730 C03.fm Page 64 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 65

Many times, functional dependencies are a warning sign that duplication lurks within a
table. And already you can see in this example how inconsistencies can crop up. If there is in
fact a correlation between year and season, what happens to that relationship if someone
modifies the first row so that its value for year is 1999 (but fails to do so for the second row)?
That relationship has been compromised. It is inconsistent. One tuple with season=4 has
year=1992, and another with season=4 has year=1999. How can season 4 have happened in
both 1992 and 1999? This is logically inconsistent, and the functional dependency (or lack of
sufficient normalization) is what made it possible to introduce this inconsistency. What is even
more interesting is that there is no standard integrity constraint designed to guard against this
problem. It is purely the result of bad design.

Functional dependencies always involve exactly two sets of attributes: one set (the deter-
minant) determines (or relates to) the value of another (the dependent). Call the attribute(s)
making up the determinant A and the attribute(s) making up the dependent B. With this in
place, you can express this relationship using the following two (equivalent) statements:

1. B is functionally dependent upon A.

2. A functionally determines B.

There is even a fancy notation for this as well: A → B. The bottom line: for any value of A, the
value of B has some kind of correlation.

Second Normal Form
Second normal form is defined in terms of functional dependencies. It requires that a relation
be in first normal form and that all non-key attributes be functionally dependent upon all
attributes of the primary key (not just part of them). Remember that normalization is about
cutting out duplication, so while this sounds like an arbitrary rule, it is in fact aimed at weeding
out duplication.

You have already seen what duplication looks like when 2NF is not followed, using episodes
as an example. The primary key in episodes is composed of both season and week. You know
that year is functionally dependent on season, which in turn is only part of the primary key
(red-flag). Specifically, for every season=x (e.g., 4) you have the same year=y (e.g., 1992). There
is no reason to include the year attribute in the relation if its value is correlated with season.
That’s duplication. It must go.

Table 3-2. The Unnormalized episodes Table

season week year name

4 1 1992 The Junior Mint

4 2 1992 The Smelly Car

5 1 1993 The Mango

5 2 1993 The Puffy Shirt

6 21 1994 The Fusilli Jerry

6 25 1994 The Understudy

Owens_6730 C03.fm Page 65 Wednesday, April 12, 2006 11:21 AM

66 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

So what do you do? You decompose the table into two tables. Cut out year, and move it to
its own table: call it the seasons table. Now episodes is decomposed into two tables with a foreign
key relationship where episodes.season references seasons.season (see Tables 3-3 and 3-4).

This is like factoring out a common variable in an algebraic expression. Now episodes is in
2NF. Furthermore, no information is lost because year is functionally determined by season.
But look what else you get: the new design allows referential integrity to back you up: you have
a foreign key constraint guarding this relationship (the correlation between season and year),
which you couldn’t get in the previous form. What was previously only implied is now both
explicit and enforceable.

Now consider the specific case mentioned earlier where someone modifies the first row.
The logical inconsistency is no longer possible: it is impossible to mess up the year, because it
is not in episodes. If someone changes year=1992 to 1999 in seasons, it may be inaccurate, but
it is still logically consistent. That is, both rows that refer to it in episodes (season=4) will still be
in agreement about the year in which season 4 took place. Normalization cannot make you get
your facts right, but it can ensure that at least your data is consistent about them.

Second normal form works by tightening the specificity between the primary key and the
non-key attributes. If the values of a non-key attribute correlate to only part of the primary key,
then logically that attribute can introduce duplication. Why? Because only part of a primary
key is not unique (all of the primary key is required for uniqueness, as mentioned earlier), and
a correspondence between two columns, neither of which is unique, opens the possibility for
duplication, and duplication invites inconsistency.

Table 3-3. The episodes Table in Second Normal Form

season week name

4 1 The Junior Mint

4 2 The Smelly Car

5 1 The Mango

5 2 The Puffy Shirt

6 21 The Fusilli Jerry

6 25 The Understudy

Table 3-4. The seasons Table from Normalizing episodes

season year

4 1992

5 1993

6 1994

Owens_6730 C03.fm Page 66 Wednesday, April 12, 2006 11:21 AM

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 67

Third Normal Form
Third normal form shifts attention from functional dependencies on the primary key to depen-
dencies on any other non-key attributes in a relation. It roots out a special class of functional
dependencies called transitive dependencies. A transitive dependency is just a chain of two or
more functional dependencies spanning two or more attribute groups (two or more correlations).
For example, say you have a relation with three sets of attributes, A, B, and C, where A is the
primary key, and B is a candidate key. If A → B and B → C, then C is transitively dependent on
A: it depends on A indirectly through its relationship with B. Transitive dependencies harbor
duplication. Third normal form dictates that a relation must be in second normal form and
also have no transitive dependencies.

To picture this, let’s rig the original episodes table to have an integer primary key called id, and
the candidate key is now the combination of season and week. This relation is shown in Table 3-5.

In this version of episodes, year is functionally dependent on season, which in turn is
functionally dependent on id. So we have id → season → year. How do you know this? Work
backwards. Ask yourself if you can determine season from id. Yes. Then can you determine year
from season? Yes. Therefore, you have a transitive dependency: id functionally determines season
and season functionally determines year. To be in third normal form, year, which is functionally
dependent on a non-key attribute, must go. And as with the previous example, you relegate year
into its own table, again splitting episodes into two tables, as shown in Tables 3-6 and 3-7.

Table 3-5. An Unormalized episodes Table with an Integer Primary Key

id season week year name

1 4 1 1992 The Junior Mint

2 4 2 1992 The Smelly Car

3 5 1 1993 The Mango

4 5 2 1993 The Puffy Shirt

5 6 21 1994 The Fusilli Jerry

6 6 25 1994 The Understudy

Table 3-6. The episodes Table in Third Normal Form

id season week name

1 4 1 The Junior Mint

2 4 2 The Smelly Car

3 5 1 The Mango

4 5 2 The Puffy Shirt

5 6 21 The Fusilli Jerry

6 6 25 The Understudy

Owens_6730 C03.fm Page 67 Wednesday, April 12, 2006 11:21 AM

68 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

Just as in the 2NF example, decomposition made an implicit relationship explicit.

Since functional dependencies between non-key attributes are not allowed in a table, you
may wonder why it is okay for functional dependencies to exist between keys. The answer is
simple: uniqueness. Even if there is a correlation between one key and another, the fact that
they are unique guarantees that their correlation is also unique; therefore, no duplication exists.

In the end, 2NF and 3NF aim not to introduce confusing rules, but to seek out and destroy
duplication and the inconsistencies that can arise from it. It is essential to proper database
design. The more important your data, the more attention you should pay to ensure that your
database is properly designed and normalized.

The Manipulative Component
The manipulative component of the relational model defines the ways in which information
can be manipulated and changed. It is the dynamic part of the model that connects the data in
the logical view to the outside world.

Relational Algebra and Calculus
In his original paper, Codd described a language that could be used to operate on data:

The adoption of a relational model of data, as described above, permits the development
of a universal data sublanguage based on an applied predicate calculus… Such a
language would provide a yardstick of linguistic power for all other proposed data
languages, and would itself be a strong candidate for embedding (with appropriate
syntactic modification) in a variety of host languages (programming, command- or
problem-oriented).

This “universal data sublanguage” would have a sound mathematical basis. Codd defined this
basis in the form of relational algebra and relational calculus, illustrated in his 1972 paper
“Relational Completeness of Data Base Sublanguages.” As described in the abstract of that paper:

In the near future, we can expect a great variety of languages to be proposed for interro-
gating and updating data bases. This paper attempts to provide a theoretical basis
which may be used to determine how complete a selection capability is provided in a
proposed data sublanguage independently of any host language in which the sublan-
guage may be embedded.

Table 3-7. The seasons Table from Normalizing episodes

season year

4 1992

5 1993

6 1994

Owens_6730 C03.fm Page 68 Wednesday, April 12, 2006 11:21 AM

Th
is

 b
oo

k
w

as
 p

ur
ch

as
ed

 b
y

yb
ak

os
@

m
in

es
.e

du

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 69

A relational algebra and relational calculus are defined. Then, an algorithm is
presented for reducing an arbitrary relation-defining expression (based on the
calculus) into a semantically equivalent expression of the relational algebra.

Finally, some opinions are stated regarding the relative merits of calculus-oriented
versus algebra-oriented sublanguages from the standpoint of optimal search and
highly discriminating authorization schemes.

These two “pure” languages—relational algebra and calculus—focused on mathematical
theory rather than a particular language syntax. The latter is the job of the “data sublanguage,”
or “query language,” as we know it today. Like the structural part of the relational model, the
manipulative part drew heavily from mathematics. Relational algebra has its basis in set theory.
Likewise, relational calculus has its basis in predicate calculus. From a computer science
perspective, relational algebra can be considered more of a procedural language while rela-
tional calculus is more of a declarative language. The meanings of these terms are explained in
more detail in Chapter 4.

As stated in the quote, while the particular forms of expression in the two languages are
different, they are nevertheless logically equivalent. That is, any operation in relational algebra
can also be expressed in terms of calculus, and vice versa. Another way of saying this is that the
two languages have the same expressive power—the same fundamental operations can be
performed or expressed in either system.

Relational Query Language
Together, relational algebra and calculus serve as a guideline, or a yardstick as Codd describes
it, for query languages implemented in relational databases. Any query language that can express
all of the fundamental operations set forth in relational algebra and/or calculus is said to be
relationally complete.

The query language must also address the other aspects (structural and integrity) of the
relational model as well. This is summed up in Codd’s fifth rule, defined as follows:

5. Comprehensive Data Sublanguage Rule. A relational system may support several
languages and various modes of terminal use (for example, the fill-in-the-blanks
mode). However, there must be at least one language whose statements are expressible,
per some well-defined syntax, as character strings and that is comprehensive in
supporting all the following items:

Data Definition, View Definition, Data Manipulation (Interactive and by program),
Integrity Constraints, and Authorization, Transaction boundaries (begin, commit,
and rollback).

Additionally, Codd’s seventh rule requires that the database (and by extension the query
language) not only use relations for storage, manipulation, and retrieval, but also as operands
for the purpose of modifying the database:

7. High Level Insert, Update, and Delete. The system must support set at a time insert,
update, and delete operators.

Owens_6730 C03.fm Page 69 Wednesday, April 12, 2006 11:21 AM

70 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

A user then should be able to insert tuples by providing a relation composed of the tuples to be
inserted, and similarly for updating and deleting information within the system. While this rule
keeps things consistent—using relations—its primary intent at the time was actually in optimizing
database performance. The idea was that in some cases the database could make better opti-
mizations by seeing modifications together as a set than it could by processing them individually.

So, first, a relational database must provide at least one query language that addresses the
structural, integrity, and manipulative aspects of the relational model. And with respect to the
manipulative aspect, it must be capable of expressing the mathematical concepts set forth in
relational algebra and/or calculus. Furthermore, it must accept relations as a means for modi-
fying data in the system. Note that Codd never mandated a particular query language. He only
mandated that a relational database provide one and what it must do.

The Advent of SQL
Thus, over the years, there have been multiple competing query languages. However, the most
popular and widely adopted of these languages today is undoubtedly SQL. SQL is a relationally
complete query language that exhibits aspects of both relational algebra and relational calculus.
That is, it has both declarative features (calculus) and procedural features (algebra). In fact, as
you will see in the next chapter, SQL includes almost all of the operators defined in relational
algebra.

SQL also reflects each aspect of the relational model. Part of its language is dedicated to
working with the structural aspect of the model, specifically to creating, altering, and destroying
tables. This part of the language is called data definition language (DDL). Within DDL lies also
the integrity aspect, allowing the creation of keys and various database constraints. Likewise,
part of the language is dedicated to the operational aspect, called data manipulation language
(DML). And as stated, it includes ideas from both relational algebra and calculus.

Ironically, despite the clear influence of the relational model on SQL, the current SQL standard
does not mention the relational model or use relational terminology.2 And while SQL is relationally
complete, in many ways it falls short of the true power of the relational model. Although it was
primarily inspired by relational calculus, some have claimed that there are ways in which SQL
also violates it. Furthermore, SQL lacks some relational operations that some consider impor-
tant, such as relational assignment, and has a number of redundant features. Part of the reason
for this was that the organization(s) responsible for creating the SQL standard felt that it was
more important to release a standard as early as possible in order to establish a base that data-
base implementations could build upon (Connolly, 2001). Thus, when the initial standard was
released in 1987, though practical, it was found wanting in many ways by researchers involved
with the relational model (Codd included). Among other things, it omitted some relational
operations and included no mention of referential integrity constraints. Subsequent standards
filled in some of the gaps here and there, but this seems to have done little to appease its detractors
or deter database vendors from “extending” their SQL dialects to include proprietary features.

Entire books and websites are devoted to both SQL’s inadequacies as well as what an ideal
query language should be. Furthermore, alternative query languages have been proposed and
implemented (both before and after SQL) that in the minds of their creators are more expressive
and better reflect the principles and intent of the relational model.3

2. See http://en.wikipedia.org/wiki/Relational_model.
3. Tutorial D is one such example. See www.thethirdmanifesto.com for more information.

Owens_6730 C03.fm Page 70 Wednesday, April 12, 2006 11:21 AM

http://en.wikipedia.org/wiki/Relational_model
http://www.thethirdmanifesto.com

C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L 71

Despite its criticisms and shortcomings, however, SQL is what we have to work with. It is
undoubtedly the most popular and widely adopted query language in the industry, and given
its longstanding dominance in the marketplace, it is unlikely that its position will change any
time in the near future.

The Meaning of Relational
Given all this information, what exactly is relational? It is a common misconception that relational
databases derive the name “relational” from their ability to “relate” a column in one table to a
column in another through a foreign key relationship. The true meaning of relational, however,
stems from the central structural component of the relational model: the relation, which itself
is based on the mathematical concept. First and foremost, a relational database is one that uses
relations as the sole structural unit in which to represent information, as mandated by the
Information Principle.

A more specific definition of relational, however, is provided by Codd’s Rule Zero:

Rule Zero. For any system that is advertised as, or claimed to be, a relational data base
management system, that system must be able to manage data bases entirely through
its relational capabilities.

For a database to be called relational, it must provide all of the facilities required by the rela-
tional model. That is, it must conform to all of the other 12 rules. And believe it or not, you have
covered every one of them. You therefore should have a good idea at this point what it means
to be relational. Don’t get too cocky, though, as Codd later expanded the 12 rules to over 300.

Summary
This was a nickel tour through the relational model. While our discussion isn’t definitive, my
goal was to give you enough history to make the topic enjoyable and enough theory for you to
understand some of the thinking behind SQL—why it works the way it does. The relational
model has clearly influenced its design and has provided it with a solid theoretical foundation.

The relational model has proven itself over its 30-year history. It has had an enormous
impact not only on computing but on the way we do business. Today, it can be found in a wide
array of electronic machinery, ranging from mainframes to cell phones.

The relational model was created to provide a logical, consistent representation of data
that is independent of hardware and software. The model built on well-founded theory set
forth in mathematics. This model provides database users with a consistent, unchanging view
of information, powerful methods to operate on it, and mechanisms to protect and ensure its
consistency and integrity.

There are many more aspects to the relational model, and much that builds on it. It is the
subject of entire books, some of which I have included in the “References” section. While it is a
large subject, its core concepts are logical and straightforward. These concepts ground, frame,
and form the basis of the subject covered in the next chapter: SQL.

If you are new to SQL and you’ve patiently endured this chapter, you should have a much
easier time grasping the concepts in the next chapter. You will see SQL not as an arbitrary language
but as a gateway into a powerful database management system. You will find that its syntax is
heavily geared to what you’ve learned here in this chapter.

Owens_6730 C03.fm Page 71 Wednesday, April 12, 2006 11:21 AM

72 C H A P T E R 3 ! T H E R E L A T I O N A L M O D E L

References
Codd, E. F. 1970. “A relational model for large shared data banks.” Communications
of ACM, 13(6): 377–387.

Codd, E. F. 1972. Relational Completeness of Data Base Sublanguages in Data Base
Systems. In Rustin, R. J. (ed.), Data Base Systems, Courant Computer Symposia Series, v. 6.
Englewood Cliffs, NJ: Prentice-Hall.

Codd, E. F. 1979. “Extending the Database Relational Model to capture more meaning.”
ACM Transactions on Database Systems. 4(4): 397–434.

Codd, E. F. 1980. Data Models in Database Management. In Proceedings of the 1980
Workshop on Data Abstraction, Databases and Conceptual Modeling (Pingree Park, CO,
June 23–26, 1980). New York: ACM Press, 112–114.

Codd, E. F. 1982. “Relational database: a practical foundation for productivity.”
Communications of ACM 25(2): 109–117.

Codd, E. F. 1985. “Is your DBMS really relational?,” Computerworld (Part 1: October 14, 1985,
Part 2: October 21, 1985).

Connolly, C. E. B. 2001. Database Systems: A Practical Approach to Design, Implementation
and Management. Boston: Addison-Wesley.

Date, C. J. 1999. Thirty Years of Relational: Relational (series of 12 articles), Intelligent
Enterprise 1, Nos. 1–3 and 2, Nos. 1–9 (October 1998 onward). Note: Most installments
after the first publication in the online portion of the magazine at
www.intelligententerprise.com, accessed on March 16, 2006.

Date, C. J. 2003. An Introduction to Database Systems, 8th ed. Boston: Addison-Wesley.

Grimaldi, R. P. 1998. Discrete and Combinatorial Mathematics, 4th ed. Boston:
Addison-Wesley.

Reiter, R. 1978. On Closed World Data Bases. In Gallaire, H. and Minker, J. (eds.), Logic and
Data Bases. New York: Plenum, 119–140.

Silberschatz, A., H. F. Korth, and S. Sidharshan. 2002. Database System Concepts. New
York: McGraw Hill.

Owens_6730 C03.fm Page 72 Wednesday, April 12, 2006 11:21 AM

http://www.intelligententerprise.com

