
,--

-

{+

\

.nupt",. 1 3

Disk StoragG, Basic File
Structures, and Hashing
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. . '  atabases are stored physically as fi les of records,
,,:,:,i:r,,rr,::liil' *6i.5 are typically stored on magnetic disks.

This chapter and the next deal with the organization of databases in storage and the
techniques for accessing them efficiently using various algorithms, some of lvhich
require auxil iary data structures called indexes. We start in Section t3.l by intro-
ducing the concepts of cornputer storage hierarchies and how they are used in data-
base systems. Section 13.2 is devoted to a description of magnetic disk storage
devices and their characteristics, and we also briefly describe magnetic tape storage
devices, After discussing different storage technologies, lve tLlrn our attention to the
methods for organizing data on disks. Section 13.-3 covers the technique of double
buffering, which is used to speed retrieval of multipie disk blocks. In Section 13.4
we discuss various ways of formatting and storing fi le records on disk. Section 13.5
discr.rsses the various types of operations that are typically applied to fi le records. We
present three pr imary methods for organiz ing f i le records on disk:  unordered
records, in Section 13.6; ordered records, in Section 13.7; and hashed records, in
Sect ion 13.8.

Section 13.9 briefl,v discusses fi les of mixed records and other prir-nary methods for
organizing records, such as B-trees. These are particularly relevant for storage of
object-oriented databases, which we discuss later in Chapters 20 and 21. Section
13.10 describes RAID (Redr.rndant Arrays of Inexpensive (or Independent) Disks)-
a data storage system architecture that is commonly used in large orgar.rizations for
better reliabil i ty and performance. Finally, in Section 13.11rve describe two recent
developments in the storage systems area: storage area networks (SAN) and network
attached storage (NAS). In Chapter l4 we discuss techniques for creating ar.rxil iary
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Chapter 13 Disk Storage, Basic File Structures, and Hashing

ciata structures, called indexes, which speed up the search tbr and retrieval oI records.
Tl-rese techniques involve storage of auxil iary data, called incler f i les, in addition to
the file records thernselves.

Chapters 13 and l4 n-ray be brorvsed through or even omitted by reaclers rvho
have already studied fi le organizations. The material covered here, in particular
Sect ions 13.1 through 13.8,  is  necessary for  understanding Chapters l5 and 16,
which deal with qr-rery processing ancl query optimization.

13.1 Introduction
The collection of data that makes up a computerized database must be stored phys-
ically on some computer storage medium. The DBMS software can then retrieve,
tupdate, and process this data as needed. Cornputer storage media fbrm a -irr)ft isc
Itit 'rnrclty lhat includes two nrain cateqories:

' l  Primary storage. This category includes storase media that can be operated
on directly by the computer cerrtral processirtg rl l ir (CPU), such as the com-
puter r.nair.r memory and smaller but faster cache rremories. Prirnrrry storage
usually provides fast access to data but is of l imited storage capacity.

,u: Secondary and tertiary storage. This category includes magnetic disks,
optical disks, :rnd tapes. Hard clisk drives are classifled as secondary storage,
whereas removable media are considered tertiary storage. These devices usu-
ally have tr larger capacity, cclst less, and provide slower access to data than do
primary storage devices. Data in secondary or tertiary storage cannot be
processed directly by the CPU; first it rnust be copied into prirnary storage.

We will give an overview of the variolrs storage devices used for primary and sec-
ondarry storage in Section l3.l. l  and then we wil l discuss horv databases i lrc t\ ' l-r i-
cally handled in the storage hierarcl-r,v in Section 1-1.1.2.

13.1.1 Memory Hierarchies and Storage Devices
In a modern computer system, data resides and is transported throughout a hierar-
chy of storage media. The highest-speed rnemory is the nlost expensive and is there-
fore available with the least capacity. The lowest-speecl r.nenrory is otl l ine tape
storage, which is essentially available in indefinite storige capacity.

At the prinnry storage level, the memory hierarchy includes at the rnost expensive
end, cache memory, which is a static RAM (Random Access Memory). Cache mem-
ory is typically used by the CPU to speed up executiorr of programs. The nert level
o[ primary storage is DRAM (Dynamic RAM), which provides the rnain rvork irreir
fbr the CPU for keeping programs and data. It is popularly called main memory.
The advanttrge of DRAM is its lorv cost, which colrtinues to decrease; the drawback
is its volatilityr and lower speed conrpirred with static RAM. hr rhe second(lr), dnd ter-

1. Volat  le memory typical ly loses ts contents in case of  a power outage, whereas nonvo at i  e memory
does not.
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13.1 Introduct ion

tiary storage level, the hierarchy includes magnetic disks, as well as mass storage in
the form of CD-ROM (Compact Disk-Read-Only Memory) and DVD devices, and
finally tapes at the least expensive end of the hierarchy. The storage capacity is
measured in kilobytes (Kbyte or 1000 bytes), megabytes (MB or 1 mill ion bytes),
gigabytes (GB or I bil l ion bytes), and even terabytes (1000 GB).

Programs reside and execute in DRAM. Generally, large permanent databases
reside on secondary storage, and portions ofthe database are read into and written
from buffers in main memory as needed. Now that personal computers and work-
stations have hundreds of megabytes of data in DRAM, it is becoming possible to
load a large part of the database into main memory. Eight to l6 GB of RAM or.r a
single server is becoming commonplace. In some cases, entire databases can be
kept in main memory (with a backup copy on magnetic disk), leading to main
memory databases; these are particularly useful in real-time applications that
require extremely fast response times. An example is telephone switching applica-
tions, which store databases that contain routing and line information in main
memory.

Between DRAM and magnetic disk storage, another form of memory, flash mem-
ory, is becoming common, particularly because it is nonvolatile. Flash memories are
high-density, high-performance memories using EEPROM (Electrically Erasable
Programmable Read-Only Memory) technology. The advantage of flash memory is
the fast access speed; the disadvantage is that an entire block must be erased and
written over simultaneously.z Flash memory cards are appearing as the data storage
medium in appliances with capacities ranging from a few megabytes to a few giga-
bytes. These are appearing in cameras, MP3 players, USB storage accessories, and
so on.

CD-ROM disks store data optically and are read by a laser. CD-ROMs contain prere-
corded data that cannot be overwritten. WORM (Write-Once-Read-Many) disks are
a form of optical storage used for archiving data; they allow data to be written once
and read any number of times without the possibility of erasing. They hold about
half a gigabyte of data per disk and last much longer than magnetic disks.r Optical
jukebox memories use an array of CD-ROM platters, which are loaded onto drives
on demand. Although optical jukeboxes have capacities in the hundreds of gigabytes,
their retrieval times are in the hundreds of milliseconds, quite a bit slower than mag-
netic disks. This type of storage is continuing to decline because of the rapid decrease
in cost and increase in capacities of magnetic disks. The DVD (Digital Video Disk) is
a recent standard for optical disks allowing 4.5 to 15 GB of storage per disk. Most
personal computer disk drives now read CD-ROM and DVD disks.

Finally, magnetic tapes are used for archiving and backup storage of data. Tape
jukeboxes-which contain a bank of tapes that are catalogued and can be automat-

2, For example,  the INTEL DD2BF032SA is a 32-megabit  capaci ty f lash memory wi th 7O-nanosecond
access speed, and 430 KBlsecond wri te t ransfer rate,

3.  Their  rotat ional  speeds are lower (around 400 rpm),  g iv ing higher iatency delays and low transfer
rates (around 1 O0 to 200 KBlsecond),
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ically loaded onto tape drives-are becoming popular as tertiary storage to hoid
terabytes of data. For example, NASA's EOS (Earth Observation Satellite) systenr
stores archived databases in this fashion.

Many large organizations are already finding it normal to have terabyte-sized data-
bases. The term very large database can no longer be precisely defined because disk
storage capacities are on the rise ancl costs are declining. Very soon the term may be
reserved for datirbases containing tens of terabytes.

13.1.2 Storage of Databases
Databases typically store large amounts of data that must persist over long periods
of t ime. The data is accessecl and processed repeatedlyduringthis period. This con-
trasts with the notion of transient data structures that persist fbr only a l imited time
during program execution. Most databases are stored permanently (or persistentlyt
on magnetic disk secondary storage, for the following reasolts:

w Generally, databases are too large to fit entirely in main memory.
* The circumstances that cause permanent loss of stored data arise less fre-

quentiy for disk secondary storagc than for primary storage. Hence, we refer
to disk-and other secondary storage devices-as nonvolati le storage,
whereas mirin memory is ofien callecl volatile storage.

* The cost of storage per unit of data is an order of magnitude less for disk sec-
ondary storage than for primary storage.

Some of the newer technologies-such as opt ical  d isks,  DVDs, and tape juke-
boxes-are likely to provide viable alternatives to the use of magnetic disks. In the
future, databases may therefore reside at different levels of the memory hierarchr
from those descr ibed in Sect ion l3. l . l .  However,  i t  is  ant ic ipated that magnet ic
disks wil l continue to be the primary medium of choice for large databases for years
to come. Hence, it is important to study and understand the properties and charac-
teristics of magnetic disks and the way dirtar f i les cirn be organized on disk in order to
design effective databases with acceptable performance.

Magnetic t i lpes are frequer-rtly used as a storage medium for backing up databases
because storage on tape costs even less than storage on disk. However, access to data
on tape is quite slow. Data stored on tapes is offline; that is, some intervention by an
operator-or an etutomatic loading device-to load a tape is needed before the data
becomes available. In contrast, disks are online devices that can be accessed clirectlr
at any time.

The techniques used to store large amounts of structured data on disk are impor-
tant for database designers, the DBA, and implementers of a DBMS. Databas.-
designers and the DBA must know the advantages and disadvantages of each stor-
age technique when they desigr-r, implement, and operate a database on a specific
DBMS. Usually, the DBMS has several options available for organizing the data. The
process ofphysical database design involves choosing the particular data organiza-
tion techniques that best suit the given application requirements from among thc
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options. DBMS system implementers must study data organization techniques so
that they can implement them efficiently and thus provide the DBA and users of the
DBMS with suf f ic ient  opl ions.

Typicai database applications need only a small portion of the database at a time for
processing. Whenever a certain portion of the data is needed, it must be located on
disk, copied to main memory for processing, and then rewritten to the disk if the
data is changed. The data stored on disk is organized as files ofrecords. Each record
is a collection of data values that can be interpreted as facts about entit ies, their
attributes, and their relationships. Records should be stored on disk in a manner
that makes it possible to locate them efficiently when they are needed.

There are several primary file organizations, which determine how the file records
are physically placed on the disk, and hence how the records can be accessed. A heap fiIe
(or unordered fi le) places the records on disk in no particular order by appending
new records at the end of the fi le, whereas a sorted fi le (or sequential f le) keeps the
records ordered by the value of a particular f ield (called the sort key). A hashed fi le
uses a hash function applied to a particular f ield (called the hash key) to determine
a record's placement on disk. Other primary file organizations, such as B-trees, use
tree structures. We discuss primary fi le organizations in Sections 13.6 through 13.9.
A secondary organization or auxiliary access structure allows efficieut access to
file records based on alternate fields than those that have been used for the primary
fi le organization. Most of these exist as indexes and wil l be discussed in Chapter 14.

13.2 Secondary Storage Devices
In this section we describe some characteristics of magnetic disk and rnagnetic tape
storage devices. Readers who have already studied these devices may simply browse
through this section.

13.2.1 Hardware Description of Disk Devices
Magnetic disks are used for storing large amounts of data. The most basic unit of
data on the disk is a single bit of information. By magnetizing an area on disk in cer-
tain ways, one can make it represent a bit value of either 0 (zero) or 1 (one). To code
information, bits are grouped into bytes (or characters). Byte sizes are typically 4 to
8 bits, depending on the computer and the device. We assume that one character is
stored in a single byte, and we use the terms byte and charocter interchangeably. The
capacity of a disk is the number of bytes it can store, which is usually very large.
Srnall f loppy disks used with microcomputers typically hoid from 400 KB to 1.5
MB; hard disks for micros typically hold from several hundred MB up to tens of GB;
and large disk packs used with servers and mainframes have capacities of hundreds
of GB. Disk capacities continue to grow as technology improves.

Whatever their capacity, all disks are made of magnetic rnaterial shaped as a thin
circular disk, as shown in Figure 13.1(a), and protected by a plastic or acrylic cover.
A disk is single-sided if it stores information on one of its surfaces only and double-
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sided ifboth surfaces are used. To increase storage capacity, disks are assernbled into
a disk pack, as shown in Figure 13.1(b), which may include many disks and there-
fore rnany surfaces. Information is stored on a disk surface in concentric circles of
srnoll width,a each having a distinct diarneter. Each circle is called a track. In disk
packs, tracks with the same diameter on the various surfaces are called a cylinder
because of the shape they would form if connected iu space. The concept of a cylin-
der is important because data stored on one cylinder can be retrieved much faster
than if i t were distributed among different cylinders.

The number of tracks on a disk ranges from a few hundred to a few thousand, ancl
the capaci ty of  each track typical ly ranges from tens of  Kbytes to 150 Kbytes.
Because a track usually contailrs a large amount of information, it is divided into
smaller blocks or sectors. The division of a track into sectors is hard-coded on thc
disk surface and cannot be changed. One type of sector organization, as shown in

Figure 13.1
(a) A single-sided disk with readlwrite hardware, (b) A disk pack with readlwrite hardware

tII
Arm
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Read/write
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(b)

Cylinder
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(imaginary)

4, In some disks,  the c rc les are now connected into a k nd of  cont inuous spiral
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13.2 Secondary Storage Devices

Figure 13.2(a), calls a portion of a track that subtends a fixed angle at the center a
sector. Several other sector organizations are possible, one of which is to have the
sectors subtend smaller irngles irt the center as one moves away, thus n-raintaining a
uniform density of recording, as shown in Figure 13.2(b). A technique called ZBR
(ZoneBit Recording) allows a range of cylinders to have the same number of sectors
per arc. For example, cylinders 0-99 may have one sector per track, 100-i99 may
have two per track, and so on. Not all disks have their tracks divided ir-rto sectors.

The division of a track into eqr.ral-sized diskblocks (or pages) is set bv tl.re operat-
ing system during disk formatting (or init ialization). Block size is f lxed during ini-
t i ir l ization and cannot be changed dynamically. ' Iypical disk block sizes ranse fror.r.r
512 to 8192 bytes. A disk with hard-coded sectors often has the sectors subdivided
into blocks during init ialization. Blocks irre separated by fixed-size interblock gaps,
rvhich include specially coded control iufbrmation written during disk init ializa-
tion. This information is used to determine which block on the track fbllows each
interblock gap. Table l3.l represents specifications of a typical disk.

There is continuous imprrovement in the storage capacity and transfel rates associ-
ated with disks; they are also progressivelv getting cheaper-currently costing only a
fraction r.r[ a dollar per r-negabyte of disk storage. Costs are going dorvn so rapi{11'
that costs as low 0.1 cent/MB which translates to $l/GB and $lK/TB are not too fhr
arvay.

Adiskis arandotn cccessaddressabledevice.Transf 'erof  databetweenmain menrory
and disk takes place in units of disk blocks. The hardware address of a block-a
combination of a cylinder nunrber, track nun'rber (surfirce number within the cylin-
der on which the track is located), and block number (within the track) is supplied
to the disk I/O hardware. In many modern disk tlr ives, a single number called LBA
(Logical Block Address), which is a number between 0 and rr (assunting the total
capacity of the disk is rr + I blocks), is mapped automatically to the right block by
the disk drive controller. The acldress of a buffer-a contiguons reserved areir in
main storaqe that holds one block-is also provided. For a read cornn.rand, the

Sector (arc of track) Figure 13.2
Different secior

organizat ions on disk.
(a) Sectors subtend-
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(b) Sectors maintain-
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Table 13,1
Specifications of Typical High-end Cheetah Disks from Seagate

Description
Model Number
Form Factor (width)
Form Factor (height)
Height
Width
Lengtl-r
Weight

Ca pacity/ | nterface
Formatted Capacity
Interface Type

Configuration
Number of disks (physical)
Number of heads (physical)
Number of Cylinders
Total Tracks
Bytes per Sector
Areal Density
Track Density
Recording Der-rsity
Bytes/Track (avg)

Performance
Transfer Rates
Internal Transfer Rate (min)
Internal Transfer Rate (max)
Formated Int. Transfer Rate (rnin)
Formated Int. Transfer Rate (max)
External I/O Tiansfer Rate (ntax)
Average Formatted Tiansfer Rate
Seek Times
Avg. Seek Time (Read)
Avg. Seek Time (Write)
Track-to-track, Seek, Read
Track- to -track, Seek, Write
Full Disc Seek, Read
Full Disc Seek, Write
Avelage Latency
Other
Defaul t  Buft 'er  {cae l re)  s ize
Spindle Speed
Power-on to Ready Tine

Cheetah 10K.6
sT3 I 46807LC
3.5 inch
I inch
25.4 mm
101.6 mm
146.05 mm
0.73 Kg

146.8 Gbytes
80-pin

4
8
49,854

512
36,000 Mb/sq. inch
64,000 Tracks/inch
570,000 bitsiinch

475 Mbisec
840 Mb/sec
43 MB/sec
78 MB/sec
320 MB/sec
59.9 MB/sec

4.7 ms (typical)
5.2 ms (typical)
0.3 ms (typical)
0.5 ms (typical)

2.99 rns

8,000 KB
10000 RPM

Cheetah 10K.7
sT3300007Lw
3.5 inch
I inch
25.4 mm
101.6 mnr
146.05 mm
0.726 kg

300 Gbytes
68-pin

4
8
90,774
726,192
512

105,000 Tracks/inch
658,000 bits/inch
556

472 Mblsec
944 Mb/sec
59 MB/sec
118 MB/sec
320 MB/sec
59.5 MB/sec

4.7 ms (typical)
5.3 ms (typical)
0.2 rr-rs (typical)
0.5 ms (typical)
9.,5 ms (tvpical)
10.3 ms (typical)
3 msec

8,192 KB
10000 RPM
25 sec
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Table 13.1 (continued)
Specifications of Typical High-end Cheetah Disks from Seagate

Electrical Requirements
Current
Typical Current (12VDC +l- 5o/o)
Typical Current (5VDC +l- 5o/o)
Idle Power (typ)
Reliability
Mean Time Between Failure (MTBF)
Recoverable Read Errors
Nonrecoverable Read Errors
Seek Errors
Service Life
Limited Warranty Period

Cheetah 'l 0K.6

0.95 amps
0.9 amps
10.6 watts

1,200,000 Hours
10 per 1012 bi ts
10 per 1015 bi ts
l0 per 108 bi ts
5 year(s)
5 year(s)

Cheetah 10K.7

1.09 amps
0.68 amps
10.14 watt

1,400,000 Hours
l0 per l0 l2 bi ts read
10 per i015 bi ts read

5 year(s)
5 year(s)

( Courtesy Seagate Tech nolog,v )

block from disk is copied into the bufTer; whereas for a write command, the con-
tents of the buffer are copied into the disk block. Sometimes several contiguous
blocks, called a cluster, may be transferred as a unit. In this case, the buffer size is
adjusted to match the number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk read/write
head, which is part of a system called a disk drive. A disk or disk pack is mounted in
the disk drive, which includes .r motor that rotates the disks. A read/write head
includes an electronic component attached to a mechanical arm. Disk packs with
multiple surfaces are controlled by several read/write heads-one for each surface,
as shown in Figure t3. l (b) .  Al l  arms are connected to an actuator at tached to
another electrical n-lotor, which moves the read/write heads in unison and positior-rs
them precisely over the cylinder of tracks specified in a block address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed
(typically ranging between 5400 and 15,000 rpn-r). For a floppy disk, the disk drive
begins to rotate the disk whenever a particular read or rvrite request is init iated and
ceases rotation soon after the data trar-rsfer is completed. Once the read/write head is
positioned on the right track and the block specified in the block address moves
under the read/write head, the electronic component of the read/write head is acti-
vated to transfer the data. Son-re disk units have fixed read/write heads, with as many
heads as there are tracks. These are called fixed-head disks, whereas disk units with
an actuator are called movable-head disks. For fixed-head disks, a track or cylinder
is selected by electronically switching to the appropriate read/write head rather than
by actual mechanical movement; cor.rsequently, it is much fhster. However, the cost
of the additional read/write heads is quite high, so fixed-head disks are not com-
monly used.
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A disk controller, typically embedded in the disk drive, controls the disk drive ancl
interfaces it to the computer system. One of the standard interfaces used today fbr
disk dr ives on PCs and workstat ions is cal led SCSI (Smal l  Computer Storagc
Interface). The controller accepts high-level I/O commands and takes appropriatc
action to position the arm and causes the read/write action to take place. To transfer
a disk block, given its address, the disk cor.rtroller must f irst mechanically position
the read/write head on the correct track. The time required to do this is called thc
seektime. Typical seek times are 7 to l0 msec on desktops and 3 to 8 msecs on
servers. Following that, there is another delay-called the rotational delay or
latenry-while the beginning of the desired block rotates into position under thc
read/write head. It depends on the rprn of the disk. For example, at 15,000 rpm, thc
time per rotation is 4 msec and the average rotational delay is the time per half rer -
olution, or 2 msec. Finally, some additional t ime is needed to transfer the data; this
is called the block transfer t ime. Hence, the total t ime needed to locate and transfer
an arbitrary block, given its address, is the sun-r of the seek time, rotational delar.
and block transfer t ime. The seek tin.re and rotational delay are usually much largcr
than the block transfer t ime. To make the trar.rsf'er of rnultiple blocks more efficient.
it is common to transfer several consecutive blocks on the same track or cylinder.
This eiiminates the seek time and rotational delay for all but the first block ar-rd can
result in a substantial saving of t ime when numerous contiguous blocks are trans
ferred. Usually, the disk rnanufacturer provides a bulk transfer rate for calculatins
the time required to transfer consecutive blocks. Appendix B contains a discussion
of these and other disk parameters.

The time needed to locate and trar-rsfer a disk block is in the order of mil i iseconcls.
usually ranging from 9 to 60 msec. For contiguous blocks, locating the first block
takes from 9 to 60 msec, but transf'erring subsequent blocks may take only 0.4 to i
msec each. Many search techniques take advantage of consecutive retrieval of block:
when searching fbr data on disk. In any case, a transfer t ime in the order of rnil l isec-
onds is considered quite high compared with the time required to process data in
main memory by current CPUs. Hence, locating data on disk is a nnjor bottleneck in
database applications. The fi le structures we discuss here and in Chapter 14 attempt
to ninimize the number of block transJ'ers needed to locate and transfer the requirecl
data from disk to main memorv.

13.2.2 Magnetic Tape Storage Devices
Disks are random access secondary storage devices because ar-r arbitrary disk block
may be accessed at randoru once we specifr its address. Magnetic tapes are sequen -
tial access devices; to access the rrth block on tape, f irst we must scan the precedinu
n - I blocks. Data is stored on reels of high-capacity rnagnetic tape, somewhat sinr-
i lar to audiotapes or videotapes. A tape drive is required to read the data from or
write the data to a tape reel. Usually, each group of bits that forms a byte is storcrl
across the tape, and the bytes themselves are stored consecutively on the tape.

A readhvrite head is used to read or write data on tape. Data records on tape are also
stored in blocks-although the biocks may be substantially larger than those fbr



13.3 Buffering of Blocks

disks, and interblock gaps are also quite large. With typical tape densities of 1600 to
6250 bytes per inch, a typical interblock gap5 of 0.6 inches corresponds to 960 to
3750 bytes of wasted storage space. It is customary to group rnany records together
in one block for better space uti l ization.

The main characteristic of a tape is its requirement that we access the data blocks in
sequential order. To get to a block in the middle of n reel of terpe, the tape is
mounted and then scanned unti l the required block gets under the read/write head.
For this reason, tape access can be slow and tapes are not used to store online data,
except for some specialized applications. However, tapes serve a very important
function-backing up the database. One reason for backup is to keep copies of disk
fi les in case the data is lost due to a disk crash, which can happen if the disk
read/write head touches the disk surface because of mechanical malfunction. For
this reason, disk fl les are copied periodicaily to tape. For mar-ry online crit ical appli-
cations, such as airl ine reservation systems, to avoid any downtime, mirrored sys-
tems are used to keep three sets of identical disks-two in online operation and one
as backup. Here, offline disks become a backup device. The three are rotated so that
they can be switched in case there is a failure on one of the iive disk drives. T[pes can
also be used to store excessively large database files. Database files that are seldom
used or are outdated but required for historical record keeping can be archived on
tape. Recently, smaller 8-mm magnetic tapes (sirnilar to those used in camcorders)
that can store up to 50 GB, as well as 4-mm helical scan data cartridges and writable
CDs and DVDs, have become popular n-redia for backing up data fi les from PCs and
workstations. They are also used for storing irnages and system libraries. Backing up
enterprise databases so that no transaction information is lost is a major undertak-
ing. Currently, tape libraries with slots for several hundred cartridges are used with
Digital and Superdigital Linear Tapes (DLfs and SDLTs) having capacities in hun-
dreds of gigabytes that record data on l inear tracks. Robotic arms are used to write
on multiple cartridges in parallel using rnultiple tape drives with automatic labeling
software to identify the backup cartridges. An example of a giant l ibrary is the
L5500 model of Storage Technology that can store up to 13.2 petabytes (petabyte =
1000 TB) with a throughput rate of 55TB/hour. We defer the discussion of disk stor-
age technology called RAID, and of storage area networks and network-attached
storage, to the er-rd of the chapter.

13.3 Buffering of Blocks
When several blocks need to be transferred from disk to main memory and all the
block addresses are known, several buffers can be reserved in main memory to
speed up the transfer. While one bufTer is being read or written, the CPU can
process data in the other buffer because an ir-rdependent disk I/O processor (con-
troller) exists that, once started, can proceed to transfer a data block between rnem-
ory and disk independent of and in parallel to CPU processing.
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Figure 13.3 i l lustrates how two processes can proceed in parallei. Processes A ancl i i
are running concurrently in an interleaved fashion, whereas processes C and D ar.
lunr.ring concurrently in a parallel fashion. When a singie CPU controls rrult i l . i .
processes, parallel executiolt is not possible. However, the processes can sti l l  rur:
concurrently in an ir.rterleaved way. Buffering is most useful when processes can nul
concurrently in a parallel fashion, either becar,rse a separate disk I/O processor i.
available or because multiple CPU processors exist.

Figure 13.4 i l lustrates how reading and processing can proceed in parallel when thc
tirne required to process a disk block in mernory is less than the time required t(r
read the next block and fi l l  a buffer. The CPU can start processing a biock once ir.
transfer to main memory is completed; at the same time, the disk I/O processor can
be reading and transf'erring the next block into a different buffer. This techniqr.re i:
called double buffering and can also be used to read a corrtinuous stream of block.
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from disk to memory. Double buffering perrnits continuous reading or writ ing of
data on consecutive disk blocks, which elirninates the seek time and rotational delay
for all but the first block transfer. Moreover, data is kept ready for processing, thus
reducing the lvaiting time in the programs.

13.4 Placing File Records on Disk
In this section, we define the concepts of records, record types, and fi les. Then rve
discuss techniques for placing fi le records on disk.

13.4.1 Records and Record Types
Data is usuallystored in the form of records. Each record consists of a collection of
related data values or items, where each value is formed of one or more bytes ar-rd
corresponds to a particular f ield of the record. Records usually describe entit ies and
their attributes. For example, an EMPLOYEE record represents an employee entity,
and each field value in the record specifies some attribute of that employee, such as
Name, Birlh date, Salary, or Supervisor. A collection of f ield names and their corre-
sponding data types constitutes a record type or record format definition. A data
type, associated with each field, specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in program-
ming. These include nuneric (integer, long integer, or f loating point), string of
characters (fixed-length or varying), Boolean (having 0 and I or TRUE and FALSE
values only), and sometimes specially coded date and time data types. The number
of bytes required for each data type is fixed for a given computer system. An integer
mayrequire4bytes,alonginteger8bytes,arealnumber4bytes,aBooleanlbyte,
a date l0 bytes (assuming a format of YY\Y-MM-DD), and a fixed-length string of
k characters k bytes. Variable-length strings may require as many bytes as there are
characters in each field value. For exampie, an EMPLOYEE record type may be
defined-using the C progran-rrning language notation-as the following structure:

struct  employee{
^hrr 

n^m6r ?n I  .

char ssn[9] i
' in+ c^l^rrr .

in t  job_code;
char department [  20 ]  ;

I i

In recent database applications, the need may arise for storing data items that con-
sist of large unstructured objects, which represent images, digit ized video or audio
streams, or free text. These are referred to as BLOBS (Binary Large Objects). A
BLOB data item is typically stored separately from its record in a pool of disk blocks,
and a oointer to the BLOB is included in the record.
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13.4.2 Files, Fixed-Length Records, and
Va riable- Length Records

A fi le is 
^ 

sequence of records. In rnany cases, all records in a fi le are of the same
record type. If every record in the fi le has exactly the same size (in bytes), the fi le is
saicl to be made up of fixed-length records. If different records in the file have dif-
ferent sizes, the file is said to be rnade up of variable-length records. A file may have
variable-length records for severirl reasons:

irr Jhs fi ie records are of the same record type, but one or more of the fields are
of varying size (variable-length fields). For example, the Name field of
EMPLOYEE can be a variable-length field.

or The fi ie records are of the sane record type, but one or more of the fields
may have multiple values for individual records; such a field is called a
repeating field and a group oi values fbr the field is often called a repeating
group.

rr The fi le records are of the sarne record type, but one or more of the fields are
optional; that is, they may have values for some but not all of the fi le records
(optional f ields).

:', The file contains records of differe ttt recLtrd t,vpes and hence of varying size
(mixed file). This would occur if related records of different types were c/us-
rered (placed together) on disk blocks; for exarnple, the GRADE_REPORT
records of a particular student n.ray be placed following that STUDENT's
record.

The fixed-length EM PLOYEE records in Figtrre 13.5(a) have a record size of 71 bytes.
Every record has the same fields, and fleld iengths are fixed, so the system can iden-
tif, the starting byte position of each field relative to the starting position of the
record. This facil i tates locating fleld values by programs that access such fi les. Notice
that it is possible to represent a fi le that logically should have variable-length records
as a fixed-length records fl le. For example, in the case of optional f ields, we could
have every field inclucled in every file rccorrl but store a special N U LL value if no value
exists for that fleld. For a repeating field, n'e could allocate as many spaces in each
record as the naxintunr nuntber of values that the fieid can take. In either case, space
is lvasted when certain records do not have values for all the physical spaces pro-
vided in each record. Now rve cor.rsider other options for formatting records of a fi le
of variable-length records.

For variable-Iength fields, each record has a value for eirch field, but we c-lo not knorv
the exact length of some field values. To determine the bytes within a particular
record that represent each fleld, we can use special separator characters (such as ? or
% or $)-which do not appear in ar.ry field value-to terminate variable-length
fields, as showrr in Figure 13.5(b), or we can store the length in bytes of the field in
the record, preceding the field value.

A file of records with optional Jields can be formatted in different ways. If the total
nunrber of f ields for the record type is large, but the nurnber of f ields that actually
appear in a typical record is small, lve can include in each record a sequence of
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Department

40 44 48

Salary Job_code Department

Smith,  John I  123456789 I  XXXX I  XXXX I  Computer I Seoarator Characters

Name: Smith,  John I  Ssn :  123456789 I  DEPARTMENT: Computer Separator Characters

: Separates field name
from field value

I Separates fields

ffi Terminates record

Figure 13.5
Three record storage formats. (a) A fixed-length record with six fields and size
of 71 bytes.  (b)  A record wi th two var iable- length f ie lds and three f  xed- length

fields. (c) A variable-field record wrth three types of separator characters.

292521

Salary Job_

<field-name, field-value> pairs rather than just the field values. Three types of sep-
arator characters are used in Figure 13.7(c), although lve could use the same separa-
tor character for the first two purposes-separating the field name frorn the field
value and separating one field from the next f ield. A more practical option is to
assign a short field type code-say, an integer number-to each field and include in
each record a sequence of <field-type, f ield-value> pairs rather than <field-name,
field-value> pairs.

A repeating lield needs one separator character to separate the repeating values of
the field and another separator character to indicate termination of the field.
Finally, for a file that includes records of different types, each record is preceded by a
record type indicator. Understandably, programs that process fi les of variable-
length records-which are usually part of the file system and hence hidden from the
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typical progranmers-need to be more complex thirn those for f ixed-length
recorcls, where the starting position and size of each field are known and fixed.6

13.4.3 Record Blocking and Spanned
versus Unspanned Records

The records of a file must be allocated to disk blocks because a block is the unit of
data transfer between disk and memory. When the block size is larger than the record
size, each block wil l contain numerous records, although sorre fi les may have unusu-
al ly large records that cannot f l t  in one block.  Suppose that the block s ize is
B bytes. For a fi le of l ' ixed-length records of size R bytes, with B > R, we can fit
Itfr =lB/R) records per block, where the l(x)) (Jloor function) rounds down rhe num-
ber x to an integer. The value b/r is called the blocking factor for the file. In general,
R may not divide B exactly, so we have sor-ne unused space in each block equal to

B - (bli * R) bytes

To uti l ize this unused space, we can stole part of a record on one block and the rest
on another. A pointer at the end of the frrst block points to the block containing the
remainder of the record in case it is not the next consecutive block on disk. This
organizat ion is cal led spanned because records can span more than one block.
Whenever a record is larger than a block, rve ntust use a spanned organization. If
records are not al lowed to cross block boundar ies,  the organizat ion is cal led
unspanned. This is used with fixed-length records having B > R because it makes
each record start at a known location in the block, simplifying record processing. For
variable-length records, either a spanned or an unspanned organization can be used.
If the average record is large, it is advantageous to use spanning to reduce the lost
space in each block. Figure 13.6 i l lustrates spirnned versus Llnspilnned organization.

For variable-length records using spar.rr.red organization, each block may store a dif-
ferent number of records. In this case, the blocking factor bfr represents the average

Figure 13.6
Types of record organization. (a) Unspanned. (b) Spanned.

Block i

Block i  + 1

Block i

Block i  + 1

Record1 |  Record2 |  Record3

Record4 |  Recordb I  Record6

Record4(rest)  I  Record5 |  Record6 |  RecordT I  P

(b)

6.  Other schemes are also possible for  represent ing var iable- length records.
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number of records per block 1br the file. We can use b/r to calculate the number of
blocks b needed for a file of r records:

b =l trtbfrt lblocks
where the | @)1 Geiling fttnction) rounds the value .r up to the next integer.

13.4.4 Allocating File Blocks on Disk
There are several standard techniques for allocating the blocks of a fi le on disk. In
contiguous allocation, the file blocks trre allocated to consecutive disk blocks. This
makes reading the whole fi le very fast using double buffering, but it makes expnnd-
ing the fi le diff icult. In l inked allocation, each fi le block contains a pointer to the
next file block. This makes it easy to expand the file but rnakes it slow to read the
whole fi le. A combination of the two allocates clusters of consecutive disk biocks,
and the clusters are linked. Clusters are sometimes called file segments or extents.
Another possibility is to use indexed allocation, where one or more index blocks
contain pointers to the actual f i le blocks. It is also common to use combir.rations of
these techniques.

13.4.5 Fi le Headers
A fi le header or f i le descriptor contains information about a fi le that is needed by
the system progranrs that access the fi le records.' l 'he header includes information to
determine the disk addresses of the fi le blocks as well as to record format descrip-
tions, which rnay include field lengths and order of f ields within a record for f lxed-
Iength unspanned records and field t1,pe codes, separator characters, and record
type codes for variable-length records.

To search fbr a record on disk, one or nrore blocks are copied into nrain memorv
buffers. Programs then search for the desired record or records within the buffers,
using the information in the fi le header. lf the address of the block that contains the
desired record is not known, the search progralns must do a l inear search thror.rgh
the fi le blocks. Each fi le block is copied into a buffer and searched unti l the record is
Iocated or all the file blocks have been searched unsuccessfully. This can be very time
consuming for a large fi le. The goal of a good fi le organization is to locate the block
that contains a desired record with a minimal number of block transf-ers.

13.5 Operations on Files
Operations on files are usually grouped into retrieval operations and update oper-
ations. The former do not change any dirta in the file, but only locate certain records
so that their f ield values can be examined and processed. The latter change the fi le
by insertion or deietion of records or by modification of t ield values. In either case,
we may have to select one or more records for retrieval, deletion, or modification
based on a selection condition (or f i l tering condition), which specifies criteria that
the desired record or records rnust satisfy.
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Consider an EMPLOYEE ti le with fields Name, Ssn, Salary, Job_code, and Department.
A simple selection condition may involve an equality comparison on some t-ield
value-fbr example, (Ssn = '123456789') or (Department = 'Reserrrch'). More com-
plex conditions can involve other types of comparison operators, such as I e1 ); an
example is (Salary > 30000). The general case is to h:rve an arbitrary Boolean expres-
sion on the flelds of the tl le as the selection conditiorl.

Search operations on fi les are generally based on simple selection conditions. A
complex condition must be decomposed by the DBMS (or the programmer) to
extract a simple condition that can be used to locate the recorcls on disk. Each
Iocated record is then checked to deterrnine whether it satisfies the full selection
condi t ion.  For exanrple,  we may extract  the s imple condi t ion (Department =
'Research')  f rom the complex condi t ion ((Salary > 30000) AND (Department =
'Research')); each record satisSzing (Department ='Research') is located and ther-r
tested to see if i t also satisfies (Salary > 30000).

When several f i le records satisfy a search condition, the/irst record-with respect to
the phvsical sequence of f i le records-is init ially located and desigrrated the current
record. Subsequent search operations commence from this record and locate the
next record in the fi ie that satisfies the condition.

Actual oprerertions for locirt ing and accessing fi le records vary from s,vstem to systeln.
Below, \ ,e present a set of representative operations. Typically, high-level progritms,
such as DBMS software programs, trccess records by using these commands, so we
sometimes refer to program variables in the following descriptions:

,;, Open. Prepares the fi le for reading or writ ing. Allocates apprropriate buff-ers
(typicaiiy at least two) to hold t-i le blocks fiom disk, and retrieves the fi le
header. Sets the fi le pointer to the beginning of the fi le.

r! [sss[. Sets the fi le pointer of an open fi le to the beginning of the fi le.
,, l, Fi.d (or Locate). Searches for the first record that satisfies a search concli-

t ion. Transfers tl-re block containing that record into a main mernory buf'fer
(if i t is not alreirdy there). The fi le pointer points to the record in the buffer
ar"rd it becomes Ihe current record. Sometirr-res, different verbs are usecJ to
indicate whether the located record is to be retrieved or updated.

!,:, Read (or Get). Copies the current record from the buffer to a Program vilr i-
able in the useL program. This comnrand r .nay also t rdvance the current
record pointer to the next record in the frle, which n-ray necessitate reading
ti-re next file block from disk.

',, '  FindNext. Searches for the next record in the fi le that satisfies the search
condition. Transf-ers the block containing thart record into zr rttain memor!'
buffer (if i t is not alread,v tl-rere). The record is located in the buff 'er;rnd
bc'comes the current record.

,, Delete. Deletes the current record and (eventually) update's the fi le on disk
to reflect the deletion.
Modify. Modifies some field vzrlues for the current record and (eventr.rally)
updates the f-i le on disk to ref' lect the modification.
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Insert. Inserts a new record in the file by locating the block where the record
is to be inserted, transferring that block into a main memory buffer (if i t is
not already there), writ ing the record into the buffer, and (eventualiy) writ-
ing the buffer to disk to reflect the insertion.
Close. Completes the file access by releasing the bufTers and performing any
other needed cleanup operations.

The preceding (except for Open and Close) are called record-at-a-time operations
because each operation applies to a single record. It is possible to streamline the
operations Find, FindNext, and Read into a single operation, Scan, whose descrip-
tion is as follows:

:r $641. If the fi le has just been opened or reset, Sccrr returns the first record;
otherwise it returns the next record. If a condition is specified with the oper-
ation, the returned record is the flrst or next record satisfying the condition.

In database systems, addi t ional  set-at-a-t ime higher- level  operat ions may be
applied to a fi le. Examples of these are as follows:

FindAll. Locates n/l the records in the file that satisf' a search condition.
Find (or Locate) n. Searches for the first record that satisfies a search condi-
tion and then continues to locate the next ri - I records satisfying the same
condition. Tiansfers the blocks containing the n records to the rnain memory
buffer (if not zrlready there).

FindOrdered. Retrieves all the records in the file in some specified order.

Reorganize. Starts the reorganization process. As we shall see, some fi le
organizations require periodic reorganization. An example is to reorder the
file records by sorting them on a specified field.

At this point, it is worthwhile to note the difference between the terms f/e organiza-
tion and access method. A file organization refers to the organization of the data of
a fi le into records, blocks, and access structures; this includes the way records and
blocks are placed on the storage medium and interl inked. An access method, on the
other hand, provides a group of operations-such as those listed earlier-that can
be applied to a fi le. In general, it is possible to apply several access methods to a fi le
organization. Some access methods, though, can be applied only to fi les organized
in certain ways. For example, we cannot apply an indexed access method to a file
without an index (see Chapter 14).

Usually, we expect to use some search cor-rditions more than others. Some files may
be static, meaning that update operations are rarely performed; other, rnore
dynamic files may change frequently, so update operations are constantly applied to
thern. A successful f i le organization should perform as efficiently as possible the
operations we expect to epply Jrequently to the fi le. For example, consider the
EMPLOYEE fi le, as shown in Figure 13.5(a), which stores the records for current
employees in a company. We expect to insert records (when employees are hired),
delete records (when employees leave the company), and modifr records (for exam-
ple, when an employee's salary or job is changed). Deleting or modifring a record
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requires a select ion condi t ion to ident i fo a part icular record or set  of  records.
Retrieving one or more records also requires a selection condition.

If users expect mainly to apply a search condition based on Ssn, the designer must
choose a fi le organization that facil i tates locating a record given its Ssn value. This
rray involve physically ordering the records try Ssn vaiue or defining an index on
Ssn (see Chapter l4). Suppose that a second application uses the fi le to generate
employees'paychecks and requires that paychecks are grouped by departnent. For
this application, it is best to store all empioyee records having the s:rme department
value contiguously, clustering them into blocks and perhaps ordering them by name
within each department. However, this arrangement conflicts with ordering the
records by Ssn values. I i  both appl icat ions are important,  the designer should
choose an organization that allows both operations to be clone efTiciently.
UnfortunatelS in rnany cases there may not be an organization that allows all
needed operations on a fi le to be implemented efficiently. In such cases, a compro-
mise must be chosen that takes into account the expected importance and mix of
retr ieval  and update operat ions.

In the follorvir.rg sections and in Chapter 14, we discuss methods for organizing
records of a fi le on disk. Several ger.reral techniques, such as ordering, hashing, and
indexing, are used to create access methods. Additionally, various general tech-
r.riques for handling insertions and deletions work with many fi le organizations.

13.6 Files of Unordered Records
(Heap Files)

In this simplest and most basic type of organization, records are placed in the fi le in
the order in which they are inserted, so new records are inserted at the end of the
fi le. Such an organization is called a heap or pile fi1e.7 This organization is often
used rvith additional access paths, such irs the secondary indexes discussed in
Chapter 14. It is also used to collect irnd store data records for future use.

lnserting a new record is very eficienr. The last disk block of the fi le is copied into a
buffer, the new record is added, and the block is then rewritten back to disk. The
address of the last f i le block is kept in the fi le header. Howel'er, searching for a
record using any search condition involves a linear search through the file block by
block-an expensive procedure. If only one record satisfies the search condition,
then, on the average, a prograrn wil l read into tnemory and search half the fi le
blocks before it f inds the record. For a fi le of b blocks, this requires searching (b/2)
blocks, on average. If no records or several records satisfy the search condition, the
program must read and search all b blocks in the fi le.

To delete a record, a program must first find its block, copy the block into a buffer,
delete the record from the buffer, and finally rewrite the block back to the disk. This
leaves unused space in the disk block. Deleting a large number of records in this way

7 Sometrmes this organizatron is cal led a sequent ia l  f i le.
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results in wasted storage space. Another technique used for record deletion is to
have an extra byte or bit, called a deletion marker, stored with each record. A record
is deleted by setting the deletion marker to a certain value. A different value of the
marker indicates a valid (not deleted) record. Search programs consider only valid
records in a block wher.r conducting their search. Both of these deletion techniques
require periodic reorganization of the file to reclaim the unused space of deleted
records. During reorganization, the fi le blocks are accessed consecutively, and
records are packed by removing deleted records. After such a reorganization, the
blocks are fi l led to capacity once more. Another possibil i ty is to use the space of
deleted records when inserting new records, although this requires extra bookkeep-
ing to keep track of empty locations.

We can use either spanned or unspanned organization for an unordered fi le, and
it may be used with either fixed-length or variable-length records. Modifying a
variable-length record may require deleting the old record and inserting a modified
record because the modified record may not fit in its old space on disk.

To read all records in order of the values of some field, we create a sorted copy of the
fi le. Sorting is an expensive operation for a large disk fi le, and special techniques for
external sorting are used (see Chapter l5).

For a file of unordered fixed-length records using urtspanned blocks and contigttous
allocation, it is straightforward to access any record by its position in the file. If the
fi le records are numbered 0, 1, 2, . . . , r - 1 and the records in each block are num-
bered 0, 1,. . . ,bfr - I, rvhere b/r is the blocking factor, then the lth record of the fi le
is located in block t1/bJi)) and is the (l mod bli)th record in that block. Such a fi le
is often called a relative or direct file because records can easily be accessed directly
by their relative positions. Accessing a record by its position does not help locate a
record based on a search condition: however, it facil i tates the construction ofaccess
paths on the fi le, such as the indexes discussed in Chapter 14.

13.7 Files of Ordered Records (Sorted Files)
We can physically order the records of a file on disk based on the values of one of
their fields-called the ordering field. This leads to an ordered or sequential file.E
If the ordering field is also a key field of the fi le-a field guaranteed to have a
unique value in each record-then the field is called the ordering key for the file.
Figure 13.7 shows an ordered fi le with Name as the ordering key field (assuming that
employees have distinct names).

Ordered records have some advantages over unordered files. First, reading the records
in order of the ordering key values becomes extrernely efficient because no sorting is
required. Second, finding the next record from the current one in order ofthe order-
ing key usually requires no additional block accesses because the next record is in the
same block as the current one (unless the current record is the last one in the block).
Third, using a search condition based on the value of an ordering key field results in

B. The term sequenttal  i r le has also been used to refer to unordered f i les



Block 1

Figure 13.7
Some blocks of  an ordered (sequent ia l )  f i le of  EMPLOYEE
records wrth Name as the orderino kev field.

Chapter 13 Disk Storage, Basic File Structures, and Hashing

Block 2 Adams, John

Adams, Robin

Akers,  Jan

Block 3 Alexander,  Ed
Alfred, Bob

Al len,  Sam

Block 4 Allen, Troy
Anders,  Kei th

Anderson, Rob

Block 5 Anderson, Zach

Angel i ,  Joe

Archer. Sue

Block 6 Arnold,  Mack

Arnold,  Steven

Atkins, Timothy

Block n-1 Wong, James
Wood, Donald

Woods, Manny

Block n Wrioht,  Pam
Wvatt, Charles

Zimmer,  Byron

Name Ssn Birth date Job Salary Sex
Aaron, Ed
Abbott ,  Diane

Acosta, Marc
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faster access rvhen the binary searcl-r technique is used, which constitutes an improve-
ment over linear searches, although it is not often used for disk files.

A binary search for disk files can be done on the blocks rather than on the records.
Suppose that the f i le has b blocks numbered 1,2, . . . ,  b;  the records are ordered by
ascending value of their ordering key field; and we are searchir.rg for a record whose
ordering key field vah-re is K. Assunring that disk addresses of the flle blocks are avail-
abie in the fi le header, the bir-rary search c:rn be described by Algorithm l 3. 1 . A binary
search usual ly accesses log,(b) blocks,  whether the record is found or not-an
improvement over l inear searches, rvhere, on the average, (lr l2) blocks are accessed
when the record is found and b blocks are accessed when the record is not found.

Algor i thm 13.1.  Binary Search on an Order ing Key of  a Disk Fi le
I <- 1; u <- Ir; (" b is the number of frle blocks *)
whi le(u2l)do

begin I e- (/ + rr) div 2;
read block i of the fi le into the buffer;
if K < (ordering key field value of the frsr record in block i )

thenrr<- i - l
else if K > (ordering key field value of the last record in block i )

thenle- i+l
else if the record with ordering kev field value = K is in the buffer

then goto tbund
else goto notfbund;
end;

goto notfound;

A search criterion involving the conditionS ), (, ), and (, on the ordering field is
quite efficient, since the physical ordering of records means that all records satisfr-
ing the condition irre contiguous in the frle. For example, referring to Figure 13.9, if
the search cr i ter ion is (Name <'G')-where < means alphal tet icnl ly before-rhe
records satisfring the searrch criterion are those from the beginning of the fi le up to
the tlrst record that has a Name vtrlue starting with the letter'G'.

Ordering does not provide any advantages for random or ordered access of the
records based on values of the other nonordering fields of the fi le. In these cases, we
do a l inear search for random access. To access the records in order based on a
nonordering field, it is necessary to create another sorted copy-in a different
order-of the file'.

Inserting and deleting records are expensive operations for an ordered fi le because
the records must remain physicall l.ordered. To insert a record, we must f ind its cor-
rect position in the fi le, based on its orcle'ring field value, and then make space in the
fi le to insert the record in that position. For a large fi le this can be very time con-
suming because, on the average, half the records of the file must be moved to make
space for the new record. This means that half the fi le blocks must be read and
rewritten after records are moved among them. For record deletion, the problem is
less severe if deletion markers and periodic reorganization are used.



Chapter 13 Disk Storage, Basic File Structures, and Hashing

One option for making insertion more efficient is to keep some unused space in each
block for new records. However, once this space is used up, the original problem
resurfaces. Another frequently used method is to create a temporary unordered file
called an overflow or transaction fiie. With this technique, the actual ordered file is
called the main or master file. New records are inserted at the end of the overflow file
rather than in their correct position in the main file. Periodically, the overflow file is
sorted and merged with the master file during file reorganization. Insertion becomes
very efficient, but at the cost of increased complexity in the search algorithm. The
overflow file must be searched using a linear search if, after the binary search, the
record is not found in the main file. For applications that do not require the most up-
to-date information, overflow records can be ignored during a search.

Modifying a field value of a record depends on two factors: the search condition to
locate the record and the field to be modified. If the search condition involves the
ordering key field, we can locate the record using a binary search; otherwise we must
do a linear search, A nonordering field can be modified by changing the record and
rewriting it in the same physical location on disk-assuming fixed-length records.
Modiffing the ordering fieid means that the record can change its position in the file.
This requires deletion of the old record followed by insertion of the modified record.

Reading the file records in order of the ordering field is quite efficient if we ignore
the records in overflow, since the blocks can be read consecutively using double
buffering. To include the records in overflow, we must merge them in their correct
positions; in this case, f irst we can reorganize the fi le, and then read its blocks
sequentially. To reorganize the file, first we sort the records in the overflow file, and
then merge therr with the master file. The records marked for deletion are removed
during the reorganization.

Table 13.2 summarizes the average access time in block accesses to find a specific
record in a file with b blocks.

Ordered files are rarely used in database applications unless an additional access path,
called a primary index, is used; this results in an indexed-sequential file. This further
improves the random access time on the ordering key tield. We discuss indexes in
Chapter 14. If the ordering attribr.rte is not a key, the file is called a clustered file.

13.8 Hashing Techniques
Another type of primary file organization is based on hashing, which provides very
fast access to records under certain search conditions. This organization is usually
called a hash file.e The search condition must be an equality condition on a single
field, called the hash field. In most cases, the hash field is also a key field of the file, in
which case it is called the hash key. The idea behind hashing is to provide a function
h, called a hash function or randomizing function, which is applied to the hash field
value of a record and yields the address of the disk block in which the record is stored.
A search for the record rvithin the block can be carried out in a main memory buffer.
For most records, we need only a single-block access to retrieve that record.

9. A hash f i le has also been cal led a duect l t le,



13.8 Hashino Technioues

n each
cblem
ed file
file is

rw file
' f i le is
comes
:r. The
:h, the
)st uP-

' lon to
'es the
, 'must
rd and
rcords.
he file.
'ecord.

lgnore
louble
,orrect
blocks
le, and
ntoved

pecific

s path,
urther
exes in

r l le.

Table 13.2
Average Access Times for a File of b Blocks under Basic File Organizations

Type of Organization Access/Search Method
Heap (unordered) Sequential scan (l inear

Average Blocks to Access
a Specific Record

bl2

es very
usually
. single
file, in

Lnction
ih field
stored.
buffer.

Ordered
Ordered

search)
Sequential scan
Binary search

bt2
iog, b

Hashing is also used as an internal search structure within a program whenever a
group of records is accessed exclusively by using the value of one field. We describe
the use of hashing for internal f i les in Section 13.8.1; then we show how it is modi-
fied to store external f i les on disk in Section 13.8.2. In Section 13.8.3 we discuss
techniques for extending hashing to dynamically growing files.

13.8.1 Internal  Hashing
For internal files, hashing is typically implemented as a hash table through the use
of an array of records. Suppose that the array index range is from 0 to M - 1, as
shown in Figure 13.8(a); then we have M slots whose addresses correspond to the
array indexes. We choose a hash function that transforms the hash field value into
an integer between 0 and M- 1.  One common hash funct ion is the h$1 = y
mod M function, which returns the remainder of an integer hash field value K after
division by M; this value is then used for the record address.

Noninteger hash field values can be transformed into integers before the mod func-
tion is applied. For character strings, the numeric (ASCII) codes associated with
characters can be used in the transformation-for example, by multiplying those
code values. For a hash field whose data type is a string of 20 characters, Algorithm
13.2(a) can be used to calculate the hash address. We assume that the code functior.r
returns the numeric code of a character and that we are given a hash field value K of
type K array l l..20l of char (in PASCAL) or char K[20] (in C).

Algor i thm 13.2.  Two simple hashing algor i thms. (a) Apply ing the
mod hash function to a character string I(. (b) Coll ision resolution by open
addressing.
(a) temp <- l;

for I <- I to 20 do temp (- tenlp * code(Kli ] ) mod M ;
hash-address <- temp mod M;

(b) i <- hash-address(K); a <- i;
i f location I is occupied

then begin i <- (i + 1) mod M;
while (l * a) and location I is occupied

doi<-( i+ l )modM;
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if (i = a) then all positions are full
else new_hash_address <- i;
end;

Figure 13,8
lnternal hashing data structures. (a) Array of M positions for use in internal hashing
(b) Col l is ion resolut ion by chaining records,
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Other hashing functions can be used. One technique, called folding, involves apply-
ing an arithmetic function such as addition or a logical function such as exclusive or
to different portions of the hash field value to calculate the hash address. Another
technique involves picking some digits of the hash field value-for example, the
third, fifth, and eighth digits-to forrn the hash address.l0 The problem with most
hashing functions is that they do not guarantee that distinct values wil l hash to dis-
tinct addresses, because the hash field space-the number of possible values a hash
field can take-is usually much larger than the address space-the number of avail-
able addresses for records. The hashing function maps the hash field space to the
address space.

A collision occurs when the hash field value of a record that is being inserted hashes
to an address that already contains a different record. In this situation, we ntust
insert the new record in some other position, since its hash address is occupied. The
process of finding another position is called collision resolution. There are numer-
ous methods for coll ision resolution, including the following:

rr' Oper addressing. Proceeding from the occupied position specified by the
hash address, the program checks the subsequent positions in order unti l an
unused (empty) position is found. Algorithm 13.2(b) may be used for this
purpose.

,e Chaining. For this method, various overflow locations are kept, usually by
extending the array with a number of overflow positions. Additionally, a
pointer f ield is added to each record location. A coll ision is resolved by plac-
ing the new record in an unused overflow location and setting the pointer of
the occupied hash address location to the address of that overflow location.
A linked list of overflow records for each hash address is thus maintained. as
shown in Figure 13.8(b).

r,, Multiple hashing. The program applies a second hash function if the first
results in a coil ision. If another coll ision results, the program uses opet-l
addressing or applies a third hash function and then uses open addressing if
necessary.

Each col l is ion resoiut ion method requires i ts own algor i thms for insert ion,
retrieval, and deletion of records. The algorithms for chaining are the simplest.
Deletion algorithms for open addressing are rather tricky. Data structures textbooks
discuss internal hashing aigorithrns in more detail.

The goal of a good hashing function is to distribute the records uniformly over the
address space so as to minimize coll isions while not leaving many unused locations.
Simulation and analysis studies have shown that it is usually best to keep a hash
table between 70 and 90 percent full so that the number of coll isions remains low
and we do not waste too much space. Hence, if we expect to have r records to store
in the table, we should choose M locations for the address space such that (r/M) is
between 0.7 and 0.9. It may also be useful to choose a prime number for M, since it
has been demonstrated that this distributes the hash addresses better over the

i O, A deta led drscussion of  hashrng functrons is outs de the scope of  our presentat  on
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address space when the mod hashing function is used. Other hash functions may
require M to be a power of 2.

13.8.2 External Hashing for Disk Files
Hashing for disk files is called external hashing. To suit the characteristics of disk
storage, the target address space is made of buckets, each of which holds multiple
records. A bucket is either one disk block or a cluster of contiguous blocks. The
hashing function maps a key into a relative bucket number, rather than assigning an
absolute block address to the bucket. A table maintained in the file header converts
the bucket number into the corresponding disk block address, as i l lustrated in
Figure 13.9.

The collision problem is less severe with buckets, because as many records as will fit
in a bucket can hash to the same bucket without causing problems. However, we
must make provisions for the case where a bucket is filled to capacity and a new
record being inserted hashes to that bucket. We can use a variation of chaining in
which a pointer is maintained in each bucket to a linked list of overflow records for
the bucket, as shown in Figure 13.10. The pointers in the l inked list should be
record pointers, which include both a block address and a relative record position
within the block.

Hashing provides the fastest possible access for retrieving an arbitrary record given
the value of its hash field. Although most good hash functions do not maintain
records in order of hash field values, some functions-called order preserving-
do. A simple example of an order preserving hash function is to take the leftmost
three digits of an invoice number field as the hash address and keep the records
sorted by invoice number within each bucket. Another example is to use an integer
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hash key directly as an index to a relative file, if the hash key values fill up a particu-
lar interval; for example, if employee numbers in a company are assigned as l, 2, 3,
. . . up to the total number of employees, we can use the identity hash function that
maintains order. Unfortunately, this only works if keys are generated in order by
some application.

The hashing scheme described is called static hashing because a fixed number of
buckets M is allocated. This can be a serious drawback for dynamic files. Suppose
that we allocate M buckets for the address space and let m be the maximum number
of records that can fit in one bucket; then at most (rn x M) records will fit in the
allocated space. If the number of records turns out to be substantially fewer than (m
* M),we are Ieft with a lot of unused space. On the other hand, if the number of
records increases to substantially more than (m * M), numerous coll isions wil l
result and retrieval wil l be slowed down because of the long lists of overflow
records. In either case, we may have to change the number of blocks M allocated and
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then use a new hashing function (based on the new value of M) to redistribute the
records. These reorganizations can be quite time consuming for large files. Newer
dynamic fi le organizations based on hashing allow the number of buckets to vary
dvnamically with only localized reorganization (see Section 13.8.3).

When using external hashing, searching for a record given a value of some field
other than the hash field is as expensive as in the case of an unordered file. Record
deletion can be inplemented by removing the record from its bucket. If the bucket
has an overflow chain, we can move one of the overflow records into the bucket to
replace the deleted record. If the record to be deleted is already in overflow, we sim-
ply rernove it from the linked list. Notice that rernoving an overflow record implies
that rve should keep track of emprty positions in overflow. This is done easily by
maintainir-rg a l inked list of unused overflow locations.

Modiff ing a record's field value depends on two factors: the search condition to
locate the record and the field to be modified. If the search condition is an equality
comparison on the hash field, we can locate the record efficiently by using the hash-
ing function; otherwise, we must do a l inear search. A nonhash field can be modi-
fied by changing the record and rewriting it in the same bucket. Modifring the hash
field means that the record can move to another bucket, which requires deletion of
the old record followed bv insertion of the modified record.

13.8.3 Hashing Techniques That Allow Dynamic
File Expansion

A major drawback of  the srar lc hashing scheme just  d iscussed is that  the hash
address space is fixed. Hence, it is difficult to expand or shrink the file dynamically.
The schemes described in this section attempt to remedy this situation. The first
scheme-extendible hashing-stores an access structure in addition to the fiie, and
hence is somewhat sirnilar to indexing (Chapter 14). The main difference is that the
access structure is based on the values that result after application ofthe hash func-
tion to the search field. hr indexing, the access structure is based on the values ofthe
search freld itself. The second technique, called l inear hashing, does not require
additional access stmctures.

These hashing schemes take advantage of the f-act that the result of applying a hash-
ing function is a r.ronnegative integer and hence can be represented as a binary num-
ber. The access structure is built on the binary representation of the hashing
function result, which is a string of bits. We call this the hash value of a record.
Records are distributed amons buckets based on the values of the lendirry bits in
their hash values.

Extendible Hashing. In extendible hashing, a type of directory-an array of 2'r
bucket addresses-is maintained, where d is called the global depth of the direc-
tory. The integer value corresponding to the first (high-order) d bits of a hash value
is used as an index to the array to determine a directory entry, and the address in
that entry determines the bucket in which the corresponding records are stored.
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However, there does not have to be a distinct bucket for each of the 2,i directory
locations. Several directory locations rvith the same first d'bits tbr their hash values
may contain the same bucket address if all the records that hash to these locations fit
in a single bucket. A local depth d'-stored with each bucket-specifies the num-
ber of bits on lvhich the bucket contents irre based. Figure 13.13 shows a directory
with global depth ri = 3.

The value of d can be increased or c-lecreased by one at a time, thus doublir-rg or halv-
ing the number of entries ir-r the directory array. Doubling is needed if a bucket,
whose local depth d' is equal to the global depth d, overflows. Halving occurs if d >
d'for all the buckets after some deletions occur. Most record retrievals require two
block accesses-one to the directory and the other to the bucket.

To illustrate br.rcket splitting, suppose thirt a new inserted record causes overflow in
the bucket whose hash values start with 0l-the third bucket in Figure 13.13. The
records wil l be distributed between twcl bnckets: the first contains all records whose
hash values start with 010, ar-rd the second all those rvhose htrsl-r values start witl-r
011. Norv the two directory locations fbr 0t0 and 0l I point to the two new distinct
buckets. Before the split, they pointed to the sante bucket. The local depth d' of the
two new buckets is 3, which is one more than the local depth of the old bucket.

If a bucket that overflows and is split used to have a locai depth d' equal to the global
depth d of the directory, then the size of the directory must now be doubled so that
we can use au extra bit to distinguish the two new buckets. For example, if the
bucket for records rvhose hash values start with l l l  in Figure 1-3.11 overflows, the
two new buckets need a directory with global depth d = 4, because the two buckets
are now labeled I I l0 and 1 1 1 1, and hence their local depths are both 4. The direc-
tory size is l-rence doubled, and each of the other original locations in the directory
is also split into two locations, both of which have the same pointer value as did the
original location.

The rnain advantage of extendible hashing that makes it attractive is that the per-
formance of the fi le does not degrade as the fi le grows, as opposed to static external
hashing where coll isions increase and the corresponding chaining caLlses additional
accesses. Additionally, no space is allocated in extendible hashing tbr fttture growth,
but additional buckets can be allocated dynamically as needecl. The space overhead
for the directory tabie is negligible. The maximum directory size is 2t, where k is the
number of bits in the hash value. Another advantage is that splitt ing causes minor
reorganization in most cases, since only the records in one bucket are redistributed
to the two new buckets. The only time reorganization is more expensive is when the
directory has to be doubled (or halved). A disadvantage is that the directory must be
searched before accessing the buckets themselves, resulting in two block accesses
instead of one in static hashing. This perfbrmance penalty is considered minor and
hence the scheme is considered quite desirable tbr dynamic fi les.

Linear Hashing. The idea behind l inear hashing is to ailow a hash fi le to expand
and shrink its number of buckets dynar-r,ically without needing a directory. Suppose
that the f i le starts wi thMbuckets numbered0, 1, . . .  ,M- l  and uses the modhash
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Figure 13.1 1
Structure of the extendible hashinq scheme.

function h(X) = K mod M; this hash function is called the initial hash function ft'.
Overflow because of collisions is still needed and can be handled by maintaining
individual overflow chains for each bucket. However, when a collision leads to an
overflow record in any file bucket, the frsr bucket in the file-bucket 0-is split into
two buckets: the original bucket 0 and a new bucket M at the end of the file. The
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records originally in bucket 0 are distributed between the two buckets based on a
different hashing function hi*r(K) = K mod 2M. A key property of the two hash
functions h,andh,*, is that any records that hashed to bucket 0 based on /r; wil l hash
to either bucket 0 or bucket M based on ft;n1; this is necessary for l inear hashing
to work.

As further coll isions lead to overflorv records, additional buckets are split in the /lrr-
ear order 1,2,3, . . . .  I fenough overf lows occur,  a l l  the or ig inal  f i le buckets 0,  1, .  .  . ,
M - I wil l have been split, so the fi le now has 2M instead of M buckets, and all buck-
ets use the hash function l l,*,. Hence, the records in overflow are eventually redis-
t r ibuted into regular buckets,  using the funct ion h,* ,  v ia a delayed spi  l r  of  their
buckets. There is no directory; only a virlue n-which is init ially set to 0 and is incre-
mented by I whenever ir split occurs-is needed to determine which buckets have
been split. To retrieve a record with hash key value K, first apply the function h,to K;
if hi\) ( n, then apply the function h,*, on K because the bucket is already split.
Init ially, n = 0, indicating that the function lr, applies to all buckets; /r grows linearly
as buckets are split.

When n = M after being incremented, this signifies that all the original buckets
have been split and the hash function lr,*, applies to all records in the fi le. At this
point, n is reset to 0 (zero), and any nerv coll isions that cause overflow lead to the
use of a new hashing function hit2(K) = K mod 4M.ln general, a sequence of hash-
ing funct ions h,* , (K) = K mod (2iM) is used, wherey = 0,  1,  2,  .  .  . ;  a new hashing
function h;*;*, is needed whenever all the buckets 0, 1, . . . , (2/M) - I have been split
and n is reset to 0. The search for a record with hash key value K is given by
Algor i thm 13.3.

Splitt ing can be controlled by monitoring the fi le load factor instead of by splitt ing
whenever an overflow occurs. In general, the file load factor I can be defined as / =
rl(bfrr N), where r is the current number of f i le records,bfr is the maximum num-
ber of records that can fit in a bucket, and N is the current number of f i le buckets.
Buckets thart have been split can also be recombined if the load factor of the fi le falls
below a certain threshold. Blocks are combined linearly, and N is decremented
appropriately. The fi le load can be used to trigger both splits and combinations; in
this manner the fi le load can be kept within a desired range. Splits can be triggered
when the load exceeds a certain threshold-say,0.9-and combinations can be trig-
gered when the load falls below another threshold-s ay,0.7.

Algor i thm 13.3.  The Search Procedure for Linear Hashing
i fn=0

then nr <- hiK) (* rr is the hash value of record with hash key K *)
else begin

m <- h1(K);
tf m < n then nr <- ft;*, (K )
end;

search the bucket whose hash value is m (and its overflow, if any);
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13.9 Other Primary Fi le Organizations
13.9.1 Files of Mixed Records
The fi le organizations we have studied so far assume that all records of a particular
fi le are of the same record type. The records could be of EMPLOYEEs, PROJECTs,
STUDENTs, or DEPARTMENTs, but each fi le contains records of only one type. In
most database applications, we encounter situations in which numerous types of
ent i t ies are interrelated in var ious ways, as we saw in Chapter 3.  Relat ionships
among records in various files can be represented by connecting fields.tl For exam-
ple, a STUDENT record can have a connecting field Malor dept whose value gives the
name of the DEPARTMENT in which the student is majoring. This Major dept f ield
refers to a DEPARTMENT entity, which should be represented by a record of its own
in the DEPARTMENT file. If we want to retrieve tield values from two related records,
we must retrieve one of the records first. Then we can use its connecting field value
to retrieve the related record in the other fi le. Hence, relationships are implerrrented
by logical field references among the records in distinct tiles.

File organizations in object DBMSs, as well as legacy systems such as hierarchical
ar.rd network DBMSs, often implement relationships arlong records as physical
relationships realized by physical contiguity (or clustering) of related recorcls or by
physical pointers. These fi le organizations typically assign an area of the disk to
hold records of more than one type so that records of dif l 'erent types can be physi-
callyclustered on disk. Ifa particular relationship is expected to be used frequently,
implementing the relationship physically can increase the system's efficiency at
retrieving related records. For examprle, if the query to retrieve a DEPARTMENT
record and all records for STUDENTs majoring in that departrnent is f i 'equent, it
would be desirable to place each DEPARTMENT record and its cluster of STUDENT
records contiguously on disk in a mixed file. The concept of physical clustering of
object types is used in object DBMSs to store related objects together in a mixed fi ie.

To distinguish the records in a mixed file, each record has-in addition to its field
values-a record type field, which specifies the type of record. This is typically the
first field in each record and is used by the system software to determine the type of
record it is about to process. Using the catalog information, the DBMS can deter-
mine the fields of that record type and their sizes, in order to interpret the data val-
ues in the record.

13.9.2 B-Trees and Other Data Structures
as Primary Organization

Other data structures can be used for primary fi le organizations. For example, if
both the record size and the number of records in a fi le are small, sorne DBMSs offer
the opt ion of  a B-tree data structnre as the pr imary f i le organizat ion.  We wi l l
describe B-trees in Section 14.3.1, when we discuss the use of the B-tree data struc-

11. Tl-e Lorcept o ' foregr l ,eys i r  the relat .ona. model (Chapter 5) aro refe 'erces a 'no'rg oblects .
oblect-or iented models (Chapter 20) are examples of  connect lng f ie lds,
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ture for indexing. In general, any data structure that can be adapted to the charac-
teristics of disk devices can be used as a primary fi le organization for record place-
ment on disk.

13.10 Paral lel izing Disk Access
Using RAID Technology

With the exponential growth in the performance and capacity of semiconductor
devices and memories, faster microprocessors with larger and larger primary rxem-
ories are continually becoming available. To match this growth, it is natural to
expect that secondary storage technology must also take steps to keep up with
processor technology in performance and reliabil i ty.

A major advance in secondary storage technology is represented by the develop-
ment of RAID, which originally stood for RedundantArrays of Inexpensive Disks.
Lately, the l in RAID is said to stand for Independent. The RAID idea received a very
positive industry endorsement and has been developed into an elaborate set of
alternative RAID architectures (RAID levels 0 through 6). We highlight the main
features of the technology below

The main goal of RAID is to even out the widely different rates of performance
improvement of disks against those in memory and rnicroprocessors.l2 While RAM
capacities have quadrupled every two to three years, disk access times are improving
at less than l0 percent per year, and disk transfer rates are improving at roughly 20
percent per year. Drsk capacities are indeed improving at more than 50 percent per
year, but the speed and access time inrprovements are of a much smaller magnitude.
Thble 13.3 shows trends in disk technology in terms of 1993 parameter values and
rates of improvement, as well as where these parameters are in 2003.

A second qualitative disparity exists between the ability of special microprocessors
that cater to new applications involving video, audio, image, and spatial data pro-
cessing (see Chapters 24 and 29 for details of these applications), with correspond-
ing lack of fast access to large, shared data sets.

The natural solution is a large array of sn-rall independent disks acting as a single
higher-performance logical disk. A concept called data striping is used, which uti-
lizes parallellsnr to improve disk performance. Data striping distributes data trans-
parently over multiple disks to make them appear as a single large, fast disk. Figure
13.12 shows a fi le distriburedor striped over four disks. Striping improves overall
I/O performance by aliowing multiple I/Os to be serviced in parallel, thus providing
high overall transfer rates. Data striping also accomplishes load balancing among
disks. Moreover, by storing redundar-rt information on disks using parity or some
other error correct ion code, rel iabi l i ty  can be improved. In Sect ions 13.3.1 and
13.3.2, we discuss how RAID achieves the two important objectives of improved
reliabil ity and higher performance. Section 13.3.3 discusses RAID organizations.

'1 2.  This was predicted by Gordon Bel  to be about 40 percent every year between 1974 and 1 984 and
is now supposed to exceed 50 percent per year.
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Table 13.3
Trends in Disk Technology

Areal density
Linear density
Inter-track density
Capacity

(3.5-inch form factor)
Transfer rate
Seek time

1993 Parameter Values*
50-150 Mb/sq. inch
40,000-60,000 bits/inch
1500-3000 tracks/inch
100-2000 MB

3-4 MB/s
7-20 ms

Historical Rate of
lmprovement per

Year (o/o)*
27
t3
l0
27

22
8

2003 Values.-
36 Gb/sq. inch
570 Kb/inch
64,000 tracks/inch
146 GB

43-78 MB/sec
3.5-6 ms

*Source: Fronr Chen, Lee, Gibson, Katz, and Patterson (1994), ACM Computing Surveys, Vol. 26, No. 2 ( June 1994).
Reprinted by permission.
**Sorrrcc:  IBM Ultrastar 36XP and lSZX hard disk dr ives.

Disk 0 Disk 1 Disk 2 Disk 3

Figure 13.12
Data striping. File A is
ctr incd enrncc {n"r

d isks.

13.10.1 lmproving Rel iabi l i ty  wi th raid
For an array of n disks, the likelihood of failure is n times as much as that for one
disk. Hence, if the MTTF (Mean Time To Failure) of a disk drive is assumed ro be
200,000 hours or about 22.8 years (typical t imes range up to I mil l ion hours), that
of a bank of 100 disk drives becomes only 2000 hours or 83.3 days. Keeping a single
copy of data in such an array of disks will cause a significant loss of reliability. An
obvious solution is to employ redundancy of data so that disk failures can be toler-
ated. The disadvantages are many: additional I/o operations for write, extra com-
putation to maintain redundancy and to do recovery from errors, and additional
disk capacity to store redundant information.

one technique for introducing redundancy is called mirroring or shadowing. Data
is written redundantly to two identical physical disks that are treated as one logical
disk. \44-ren data is read, it can be retrieved from the disk with shorter queuing, seek,
and rotational delays. If a disk fails, the other disk is used until the first is repaired.
Suppose the mean time to repair is 24 hours, then the mean time to data klss of a
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mirrored disk system using 100 disks with MTTF of 200,000 hours each is
(200,000)r/(2 x 24) = 8.33 * 108 hours, which is 95,028 years.rs Disk mirroring also
doubles the rate at which read requests are handled, since a read can go to either disk.
The transfer rate of each read, however, remains the same as that for a single disk.

Another solution to the problem of reiiability is to store extra information that is not
normally needed but that can be used to reconstruct the lost information in case of
disk failure. The incorporation of redundancy must consider two problems: selecting
a technique for computing the redundant information, and selecting a method of
distributing the redundant information across the disk array. The first problen-r is
addressed by using error correcting codes involving parity bits, or specialized codes
such as Hamming codes. Under the parity scheme, a redundant disk may be consid-
ered as having the sum of all the data in the other disks. When a disk fails, the n-riss-
ing information can be constructed by a process similar to subtraction.

For the second problem, the two major approaches are either to store the redundant
information on a small number of disks or to distribute it uniformly across all disks.
The latter results in better load balancing. The different levels of RAID choose a
combination of these options to implement redundancy and improve reliabil i ty.

13.10.2 lmproving Performance with raid
The disk arrays employ the technique of data striping to achieve higher transfer
rates. Note that data can be read or written only one block at a time, so a typical
transfer contains 512 to 8\92 bytes. Disk striping may be applied at a finer granular-
ity by breaking up a byte of data into bits and spreading the bits to different disks.
Thus, bit-level data striping consists of splitting a byte of data and writing bit j to
the jth disk. With 8-bit bytes, eight physical disks may be considered as one logical
disk with an eightfold increase in the data transfer rate. Each disk participates in
each I/O request and the total amount of data read per request is eight t imes as
much. Bit-level striping can be generalized to a number of disks that is either a mul-
tiple or a factor of eight. Thus, in a four-disk array, bit n goes to the disk which is (ir
mod 4).

The granularity of data interleaving can be higher than a bit; for example, biocks of
a fi le can be striped across disks, giving rise to block-level striping. Figure 13.12
shows block-level data striping assuming the data fi le contained four blocks. With
block-level striping, multiple independent requests that access single blocks (smail
requests) can be serviced in parallel by separate disks, thus decreasing the queuing
time of I/O requests. Requests that access multiple blocks (large requests) can be
parallelized, thus reducing their response time. In general, the more the nuntber of
disks in an array, the larger the potential performance benefit. However, assuming
independent failures, the disk array of 100 disks collectively has a 1/100th the relia-
bil i ty of a single disk. Thus, redundancy via error-correcting codes and disk mirror-
ing is necessary to provide reliabil i ty along with high performance.
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13.10.3 RAID Organizations and Levels
Different RAID organizations were defined based on different combinations of the
two factors of granularity of data interleaving (striping) and pattern used to com-
pute redundant infbrmation. In the init ial proposal, levels I through 5 of RAID
were proposed, and two additional levels-O and 6-were added later.

RAID level 0 uses data striping, has no redundant data and hence has the best write
performance since updates do not have to be duplicated. IJowever, its read perfor-
mance is not as good as RAID level l, which uses mirrored disks. In the latter, per-
formance improvement is possible by scheduling a read request to the disk with
shortest expected seek and rotatior-ral delay. RAID level 2 uses memory-style redun-
dancy by using Hamming codes, which contain parity bits fbr distinct overlapping
subsets of components. Thus, in one particular version of this level, three redundant
disks suffice for four original disks whereas, with mirroring-as in level l-four
would be required. Level 2 includes both error detection and correction, although
detection is generally not required because broken disks identily themselves.

RAID level 3 uses a single parity disk relying on the disk controller to figure out
which disk has failed. Levels 4 ancl 5 use block-level data striping, with level 5 dis-
tributing data and parity information across all disks. Finally, RAID levei 6 applies
the so-cir l led P + Q redundancy scheme using Reed-Soloman codes to Protect
against up to two disk failures by using just trvo redundant disks. The seven RAID
levels (0 through 6) are i l lustrated in Figure 13.13 schematically.

Rebuilding in case of disk failure is eirsiest for RAID level l. Other levels require the
reconstruction of a failed disk bv reading multiple disks. Level I is used for crit ical
applications such as storing logs oftransactions. Levels 3 and 5 are preferred for large
volume storage, with level 3 providing higher transf'er rates. Most popular use of
RAID technology currently uses level 0 (with striping), level I (with mirroring) and
level 5 rvith an extra drive for parity. Designers of a RAID setup for a given applica-
tion mix have to confront many design decisions such as the level of ItAlD, the num-
ber of disks, the choice of parity schemes, and grouping of disks for block-level
striping. Detailed performance studies on srnall reads and writes (referring to I/O
requests for one striping unit) and large reads arnd writes (rel'erring to I/O requests for
one stripe unit from each disk in an error-correction grouP) have been performed.

13.11 New Storage Systems
In this section, we describe two recent developments in storage systems that are
becoming an integral part of most enterprise's information system architectures.

13.11.1 Storage Area Networks
With the rapid growth of electronic commerce, Enterprise Resource Planning
(ERP) systems that integrate application data across organizations, and data ware-
houses that keep historical aggregate information (see Chapter 27),the demand for
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OOOO
\r/ \ j \ / \ j
Nonredundant (RAID level 0)

Mirrored (RAID level  1)

Memory-style ECC (RAID level 2)

Bit-interleaved parity (RAID level 3)

OOOOO
\j\ / \ j \ / \ j
Block-interleaved parity (RAID level 4)

Block-interleaved distribution parity (RAID level 5)

P + O redundancy (RAID level 6) Figure 13.13
Multiple levels of RAID. From Chen, Lee, Gibson, Katz, and Patterson (1994),

ACM Comput ing Survey, Vol .26,  No,2 (June 1994).  Repr inted with permission,
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storage has gone up substantially. For today's Internet-driven organizations, it has
become necessary to move from a static fixed data center oriented operation to a
more flexible and dynamic infrastructure for their information processir-rg require-
ments.  The total  cost  of  managing al l  data is growing so rapidly that  in many
instances the cost of managing server-attached storage exceeds the cost ofthe server
itself. Furthermore, the procurement cost of storage is only a small fraction-typi-
cally, only l0 to l5 L)ercent of the overall cost of storage rnanagement. Many users of
RAID systems cannot use the capacity efTectively because it has to be attached in a
fixed manner to one or more servers. Therefbre, large organizations are moving to a
concept called Storage Area Networks (SANs). In a SAN, online storage peripherals
are configured as nodes on a high-speed network and can be attached and detached
from servers in a very flexible manner. Several companies have emerged as SAN
providers and supply their own proprietary topologies. They allow storage systems
to be placed at longer distances from the servers and provide different performance
and connectivity options. Existing storage management applications can be ported
into SAN configurations using Fiber Channel networks that encapsulate the legacy
SCSI protocol. As a result, the SAN-attached devices appear as SCSI devices.

Current architectural alternatives for SAN include the following: point-to-point
connections between servers and storage systems via fiber channel, use of a fiber-
channel-switch to connect multiple RAID systems, tape libraries, and so on to
servers, and the use of fiber channel hubs and switches to connect servers and stor-
age systems in different configurations. Organizations can slowly move up from
simpler topologies to more complex ones by adding servers and storage devices as
needed. We do not provide further details here because they vary among SAN ven-
dors. The main irdvantages claimed :rre the following:

m Flexible many-to-many connect iv i ty among servers and storage devices
using fiber channel hubs and switches

m Up to l0 km separation between a server and a storage system using appro-
priate fiber optic cables

* Better isolation capabil it ies allowing nondisruptive addition of new periph-
erals and servers

SANs are growing very rapidly but are sti l l  faced with many problems, such as com-
bining storage oprtions from multiple vendors and dealing with evolving standards
of storage management software and hardware, Most major companies are evaluat-
ing SAN as a viable option for database storage.

1 3.1 1.2 Network-Attached Storage
With the phenomenal growth in digital data, particularly generated from multi-
media and other enterprrise applications, the need for high performance storage
solutions at low cost has become extremely important. Network-Attached Storage
(NAS) devices are among the latest of storage devices being used tbr this purpose.
These devices are, in fact, servers that do not provide any of the comtnon server
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services, but simply allow the addition of storage for file sharing. NAS devices allow
vast amounts of hard disk storage space to be added to a network and can make that
space available to multiple servers without shutting them down for maintenance
and upgrades. NAS devices can reside anywhere on a Local Area Network (LAN)
and may be combined in different configurations. A single hardware device, often
called the NAS box or NAS head, acts as the interface between the NAS system and
network clients. These NAS devices require no monitor, keyboard or mouse. One or
more disk or tape drives can be attached to many NAS systems to increase total
capacity. Clients connect to the NAS head rather than to the individual storage
devices. A NAS can store any data that appears in the form of files, such as email
boxes, Web content, remote system backups, and so on. In that sense, NAS devices
are being deployed as a replacement for traditional file servers.

NAS systems strive for reliable operation and easy administration. They include
built-in features such as secure authentication, or the autornatic sending of email
alerts in case of error on the device. The NAS devices (or appliances, as some ven-
dors refer to them) are being offered with a high degree of scalability, reliability,
f lexibil i ty and performance. Such devices typically support RAID levels 0, 1,5.
Traditional Storage Area Networks (SANs) differ from NAS in several ways.
Specifically, SANs often utilize Fiber Channel rather than Ethernet, and a SAN often
incorporates multiple network devices or endpoints on a self-contained or private
LAN, whereas NAS relies on individual devices connected directly to the existing
public LAN. Whereas Windows, UNIX, and NetWare file servers each demand spe-
cific protocol support on the client side, NAS systems claim greater operating sys-
tem independence of  c l ients.

13.12 Summary
We began this chapter by discussing the characteristics of memory hierarchies and
then concentrated on secondary storage devices. In particular, we focused on mag-
netic disks because they are used most often to store online database files.

Data on disk is stored in blocks; accessing a disk block is expensive because of the
seek time, rotational delay, and block transfer t ime. To reduce the average block
access time, double buffering can be used when accessing consecutive disk blocks.
Other disk parameters are discussed in Appendix B. We presented different ways of
storing file records on disk. File records are grouped into disk blocks and can be
fixed length or variable length, spanned or unspanned, and of the same record type
or mixed types. We discussed the file header, which describes the record formats and
keeps track of the disk addresses of the file blocks. Information in the file header is
used by system software accessing the file records.

Then we presented a set of typical commands for accessing individual file records
and discussed the concept of the current record of a file. We discussed how complex
record search conditions are transformed into simple search conditions that are
used to locate records in the file.
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Three primary fi le organizations were then c-l iscussed: unordered, ordered, and
hashed. Unordered t ' i les require a l inear search to locate records, but record inser-
tion_ is very simple. We discussed the deletion problem and the use of deletion
marKers.

Ordered files shorten the tirne required to read records in order of the ordering field.
The time required to search fbr an arbitrary record, given the value oI its ordering
key field, is also reduced if a binary search is used. However, mair-rtaining the records
in order makes ir.rsertion very expensive; tl-rus the technique of using an unordered
overflow file to reduce the cost of record insertion was discussed. Overflow records
are merged with the rnaster file periodically during file reorganization.

Hashing provides very fast access to an arbitrar,v record of a file, given the value of
its hash key. The most suitable method for external hashing is the bucket technique,
with one or more contigr-rous blocks corresponding to each bucket. Coil isions caus-
ing bucket overflow are handled by chaining. Access on auy nonhash field is slorv,
and so is ordered access of the records on any field. We discussecl trvo hashing tech-
niques for t i les that  grorv and shr ink in the number of  records dvr-ramical ly:
extendible and linear hashing.

We briefly discussed other possibil i t ies for prirnary fi le organizations, such as B-
trees, and fi les of mixed records, which implement relationships among records of
different types physicaily as part of the storage structure. Finally, we reviewed the
recent advances in disk technology represented by RAID (Redundant Arr:rys of
Inexpensive Ilndependent] Disks).

Review Ouestions
i lL ;. What is the difference between primary arrd secondary storage?

i l"t Why are disks, not tapes, used to store online database fi les?

:;:,::. Define the following terms: disk, disk pock, track, block, cylinder, sector,
interblock gap, read/write head.

: : l .I . Discuss the process of disk init ialization.

1:;. i: i . Discuss the mechanism used to read data from or write data to the disk.

1;,{i. What are the components of a disk block address?
'!:t-1;. Why is accessing a disk block expensive? Discuss the time conlponents

involved in accessing a disk block.
' t: ;:1. How does double buffering improve block erccess time?

What are the reasons tbr having variable-length records? What types of sep-
arator charircters are needed for eacl-r?

r ,:r " ir Discuss the techniques for allocating fi le blocks on disk.


