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Disk Storage, Basic File
Structures, and Hashing

atabases are stored physically as files of records,
which are typically stored on magnetic disks.
This chapter and the next deal with the organization of databases in storage and the
techniques for accessing them efficiently using various algorithms, some of which
require auxiliary data structures called indexes. We start in Section 13.1 by intro-
ducing the concepts of computer storage hierarchies and how they are used in data-
base systems. Section 13.2 is devoted to a description of magnetic disk storage
devices and their characteristics, and we also briefly describe magnetic tape storage
devices. After discussing different storage technologies, we turn our attention to the
methods for organizing data on disks. Section 13.3 covers the technique of double
buffering, which is used to speed retrieval of multiple disk blocks. In Section 13.4
we discuss various ways of formatting and storing file records on disk. Section 13.5
discusses the various types of operations that are typically applied to file records. We
present three primary methods for organizing file records on disk: unordered
records, in Section 13.6; ordered records, in Section 13.7; and hashed records, in
Section 13.8.

Section 13.9 briefly discusses files of mixed records and other primary methods for
organizing records, such as B-trees. These are particularly relevant for storage of
object-oriented databases, which we discuss later in Chapters 20 and 21. Section
13.10 describes RAID (Redundant Arrays of Inexpensive (or Independent) Disks)—
a data storage system architecture that is commonly used in large organizations for
better reliability and performance. Finally, in Section 13.11 we describe two recent
developments in the storage systems area: storage area networks (SAN) and network
attached storage (NAS). In Chapter 14 we discuss techniques for creating auxiliary
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464 Chapter 13 Disk Storage, Basic File Structures, and Hashing

data structures, called indexes, which speed up the search tor and retrieval of records.
These techniques involve storage of auxiliary data, called index files, in addition to
the file records themselves.

Chapters 13 and 14 may be browsed through or even omitted by readers who
have already studied file organizations. The material covered here, in particular
Sections 13.1 through 13.8, is necessary for understanding Chapters 15 and 16,
which deal with query processing and query optimization.

13.1 Introduction

The collection of data that makes up a computerized database must be stored phys-
ically on some computer storage medium. The DBMS software can then retrieve,
update, and process this data as needed. Computer storage media form a storage
hierarchy that includes two main categories:

= Primary storage. This category includes storage media that can be operated
on directly by the computer central processing unit (CPU), such as the com-
puter main memory and smaller but faster cache memories. Primary storage
usually provides fast access to data but is of limited storage capacity.

# Secondary and tertiary storage. This category includes magnetic disks,
optical disks, and tapes. Hard disk drives are classified as secondary storage,
whereas removable media are considered tertiary storage. These devices usu-
ally have a larger capacity, cost less, and provide slower access to data than do
primary storage devices. Data in secondary or tertiary storage cannot be
processed directly by the CPU; first it must be copied into primary storage.

We will give an overview of the various storage devices used for primary and sec-
ondary storage in Section 13.1.1 and then we will discuss how databases are typi-
cally handled in the storage hierarchy in Section 13.1.2.

13.1.1 Memory Hierarchies and Storage Devices

In a modern computer system, data resides and is transported throughout a hierar-
chy of storage media. The highest-speed memory is the most expensive and is there-
fore available with the least capacity. The lowest-speed memory is oftline tape
storage, which is essentially available in indefinite storage capacity.

At the primary storage level, the memory hierarchy includes at the most expensive
end, cache memory, which is a static RAM (Random Access Memory). Cache mem-
ory is typically used by the CPU to speed up execution of programs. The next level
of primary storage is DRAM (Dynamic RAM), which provides the main work area
for the CPU for keeping programs and data. It is popularly called main memory.
The advantage of DRAM is its low cost, which continues to decrease; the drawback
is its volatility' and lower speed compared with static RAM. At the secondary and ter-

1. Volatile memaory typically loses its contents in case of a power outage, whereas nonvolatile memory
does not.
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13.1 Introduction

tiary storage level, the hierarchy includes magnetic disks, as well as mass storage in
the form of CD-ROM (Compact Disk—Read-Only Memory) and DVD devices, and
finally tapes at the least expensive end of the hierarchy. The storage capacity is
measured in kilobytes (Kbyte or 1000 bytes), megabytes (MB or 1 million bytes),
gigabytes (GB or 1 billion bytes), and even terabytes (1000 GB).

Programs reside and execute in DRAM. Generally, large permanent databases
reside on secondary storage, and portions of the database are read into and written
from buffers in main memory as needed. Now that personal computers and work-
stations have hundreds of megabytes of data in DRAM, it is becoming possible to
load a large part of the database into main memory. Eight to 16 GB of RAM on a
single server is becoming commonplace. In some cases, entire databases can be
kept in main memory (with a backup copy on magnetic disk), leading to main
memory databases; these are particularly useful in real-time applications that
require extremely fast response times. An example is telephone switching applica-
tions, which store databases that contain routing and line information in main
memory.

Between DRAM and magnetic disk storage, another form of memory, flash mem-
ory, is becoming common, particularly because it is nonvolatile. Flash memories are
high-density, high-performance memories using EEPROM (Electrically Erasable
Programmable Read-Only Memory) technology. The advantage of flash memory is
the fast access speed; the disadvantage is that an entire block must be erased and
written over simultaneously.” Flash memory cards are appearing as the data storage
medium in appliances with capacities ranging from a few megabytes to a few giga-
bytes. These are appearing in cameras, MP3 players, USB storage accessories, and
$0 on.

CD-ROM disks store data optically and are read by a laser. CD-ROMs contain prere-
corded data that cannot be overwritten. WORM (Write-Once-Read-Many) disks are
a form of optical storage used for archiving data; they allow data to be written once
and read any number of times without the possibility of erasing. They hold about
half a gigabyte of data per disk and last much longer than magnetic disks.> Optical
jukebox memories use an array of CD-ROM platters, which are loaded onto drives
on demand. Although optical jukeboxes have capacities in the hundreds of gigabytes,
their retrieval times are in the hundreds of milliseconds, quite a bit slower than mag-
netic disks. This type of storage is continuing to decline because of the rapid decrease
in cost and increase in capacities of magnetic disks. The DVD (Digital Video Disk) is
a recent standard for optical disks allowing 4.5 to 15 GB of storage per disk. Most
personal computer disk drives now read CD-ROM and DVD disks.

Finally, magnetic tapes are used for archiving and backup storage of data. Tape
jukeboxes—which contain a bank of tapes that are catalogued and can be automat-

2. For example, the INTEL DD28F032SA is a 32-megabit capacity flash memory with 70-nanosecond
access speed, and 430 KB/second write transfer rate.

3. Their rotational speeds are lower (around 400 rpm), giving higher latency delays and low transfer
rates (around 100 to 200 KB/second).
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466 Chapter 13 Disk Storage, Basic File Structures, and Hashing

ically loaded onto tape drives—are becoming popular as tertiary storage to hold
terabytes of data. For example, NASA’s EOS (Earth Observation Satellite) system
stores archived databases in this fashion.

Many large organizations are already finding it normal to have terabyte-sized data-
bases. The term very large database can no longer be precisely defined because disk
storage capacities are on the rise and costs are declining. Very soon the term may be
reserved for databases containing tens of terabytes.

13.1.2 Storage of Databases

Databases typically store large amounts of data that must persist over long periods
of time. The data is accessed and processed repeatedly during this period. This con-
trasts with the notion of transient data structures that persist for only a limited time
during program execution. Most databases are stored permanently (or persistently)
on magnetic disk secondary storage, for the following reasons:

# Generally, databases are too large to fit entirely in main memory.

# The circumstances that cause permanent loss of stored data arise less fre-
quently for disk secondary storage than for primary storage. Hence, we refer
to disk—and other secondary storage devices—as nonvolatile storage,
whereas main memory is often called volatile storage.

# The cost of storage per unit of data is an order of magnitude less for disk sec-
ondary storage than for primary storage.

Some of the newer technologies—such as optical disks, DVDs, and tape juke-
boxes—are likely to provide viable alternatives to the use of magnetic disks. In the
future, databases may therefore reside at different levels of the memory hierarchy
from those described in Section 13.1.1. However, it is anticipated that magnetic
disks will continue to be the primary medium of choice for large databases for years
to come. Hence, it is important to study and understand the properties and charac-
teristics of magnetic disks and the way data files can be organized on disk in order to
design effective databases with acceptable performance.

Magnetic tapes are frequently used as a storage medium for backing up databases
because storage on tape costs even less than storage on disk. However, access to data
on tape is quite slow. Data stored on tapes is offline; that is, some intervention by an
operator—or an automatic loading device—to load a tape is needed before the data
becomes available. In contrast, disks are online devices that can be accessed directly
at any time.

The techniques used to store large amounts of structured data on disk are impor-
tant for database designers, the DBA, and implementers of a DBMS. Database
designers and the DBA must know the advantages and disadvantages of each stor-
age technique when they design, implement, and operate a database on a specific
DBMS. Usually, the DBMS has several options available for organizing the data. The
process of physical database design involves choosing the particular data organiza-
tion techniques that best suit the given application requirements from among the
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options. DBMS system implementers must study data organization techniques so
that they can implement them efficiently and thus provide the DBA and users of the
DBMS with sufficient options.

Typical database applications need only a small portion of the database at a time for
processing. Whenever a certain portion of the data is needed, it must be located on
disk, copied to main memory for processing, and then rewritten to the disk if the
data is changed. The data stored on disk is organized as files of records. Each record
is a collection of data values that can be interpreted as facts about entities, their
attributes, and their relationships. Records should be stored on disk in a manner
that makes it possible to locate them efficiently when they are needed.

There are several primary file organizations, which determine how the file records
are physically placed on the disk, and hence how the records can be accessed. A heap file
(or unordered file) places the records on disk in no particular order by appending
new records at the end of the file, whereas a sorted file (or sequential file) keeps the
records ordered by the value of a particular field (called the sort key). A hashed file
uses a hash function applied to a particular field (called the hash key) to determine
a record’s placement on disk. Other primary file organizations, such as B-trees, use
tree structures. We discuss primary file organizations in Sections 13.6 through 13.9.
A secondary organization or auxiliary access structure allows efficient access to
file records based on alternate fields than those that have been used for the primary
file organization. Most of these exist as indexes and will be discussed in Chapter 14.

13.2 Secondary Storage Devices

In this section we describe some characteristics of magnetic disk and magnetic tape
storage devices. Readers who have already studied these devices may simply browse
through this section.

13.2.1 Hardware Description of Disk Devices

Magnetic disks are used for storing large amounts of data. The most basic unit of
data on the disk is a single bit of information. By magnetizing an area on disk in cer-
tain ways, one can make it represent a bit value of either 0 (zero) or 1 (one). To code
information, bits are grouped into bytes (or characters). Byte sizes are typically 4 to
8 bits, depending on the computer and the device. We assume that one character is
stored in a single byte, and we use the terms byte and character interchangeably. The
capacity of a disk is the number of bytes it can store, which is usually very large.
Small floppy disks used with microcomputers typically hold from 400 KB to 1.5
MB; hard disks for micros typically hold from several hundred MB up to tens of GB;
and large disk packs used with servers and mainframes have capacities of hundreds
of GB. Disk capacities continue to grow as technology improves.

Whatever their capacity, all disks are made of magnetic material shaped as a thin
circular disk, as shown in Figure 13.1(a), and protected by a plastic or acrylic cover.
A disk is single-sided if it stores information on one of its surfaces only and double-

13.2 Secondary Storage Devices
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468 Chapter 13 Disk Storage, Basic File Structures, and Hashing

sided if both surfaces are used. To increase storage capacity, disks are assembled into
a disk pack, as shown in Figure 13.1(b), which may include many disks and there-
fore many surfaces. Information is stored on a disk surface in concentric circles of
small width,* each having a distinct diameter. Each circle is called a track. In disk
packs, tracks with the same diameter on the various surfaces are called a cylinder
because of the shape they would form if connected in space. The concept of a cylin-
der is important because data stored on one cylinder can be retrieved much faster
than if it were distributed among different cylinders.

The number of tracks on a disk ranges from a few hundred to a few thousand, and
the capacity of each track typically ranges from tens ot Kbytes to 150 Kbytes.
Because a track usually contains a large amount of information, it is divided into
smaller blocks or sectors. The division of a track into sectors is hard-coded on the
disk surface and cannot be changed. One type of sector organization, as shown in

Figure 13.1
(a) A single-sided disk with read/write hardware. (b) A disk pack with read/write hardware.
Track
@ ] j—
Read/write
Actuator Arm head Spindle Disk rotation
(b) '

b |

A

Cylinder
— of tracks
(imaginary)

AN

Actuator movement

4. In some disks, the circles are now connected into a kind of continuous spiral.
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13.2 Secondary Storage Devices 469

Figure 13.2(a), calls a portion of a track that subtends a fixed angle at the center a
sector. Several other sector organizations are possible, one of which is to have the
sectors subtend smaller angles at the center as one moves away, thus maintaining a
uniform density of recording, as shown in Figure 13.2(b). A technique called ZBR
(Zone Bit Recording) allows a range of cylinders to have the same number of sectors
per arc. For example, cylinders 0-99 may have one sector per track, 100-199 may
have two per track, and so on. Not all disks have their tracks divided into sectors.

The division of a track into equal-sized disk blocks (or pages) is set by the operat-
ing system during disk formatting (or initialization). Block size is fixed during ini-
tialization and cannot be changed dynamically. Typical disk block sizes range from
512 to 8192 bytes. A disk with hard-coded sectors often has the sectors subdivided
into blocks during initialization. Blocks are separated by fixed-size interblock gaps,
which include specially coded control information written during disk initializa-
tion. This information is used to determine which block on the track follows each
interblock gap. Table 13.1 represents specifications of a typical disk.

There is continuous improvement in the storage capacity and transfer rates associ-
ated with disks; they are also progressively getting cheaper—currently costing only a
fraction of a dollar per megabyte of disk storage. Costs are going down so rapidly
that costs as low 0.1 cent/MB which translates to $1/GB and $1K/TB are not too far
away.

A disk is a random access addressable device. Transfer of data between main memory
and disk takes place in units of disk blocks. The hardware address of a block—a
combination of a cylinder number, track number (surface number within the cylin-
der on which the track is located), and block number (within the track) is supplied
to the disk I/O hardware. In many modern disk drives, a single number called LBA
(Logical Block Address), which is a number between 0 and # (assuming the total
capacity of the disk is n + 1 blocks), is mapped automatically to the right block by
the disk drive controller. The address of a buffer—a contiguous reserved area in
main storage that holds one block—is also provided. For a read command, the

(a) Track Sector (arc of track)

Figure 13.2
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470 Chapter 13 Disk Storage, Basic File Structures, and Hashing

Table 13.1

Specifications of Typical High-end Cheetah Disks from Seagate

Description

Model Number
Form Factor (width)
Form Factor (height)
Height

Width

Length

Weight

Capacity/Interface
Formatted Capacity
Interface Type

Configuration

Number of disks (physical)
Number of heads (physical)
Number of Cylinders

Total Tracks

Bytes per Sector

Areal Density

Track Density

Recording Density
Bytes/Track (avg)

Performance

Transfer Rates

Internal Transfer Rate (min)
Internal Transfer Rate (max)
Formated Int. Transfer Rate (min)
Formated Int. Transfer Rate (max)
External [/O Transfer Rate (max)
Average Formatted Transfer Rate

Seek Times

Avg. Seek Time (Read)
Avg. Seck Time (Write)
Track-to-track, Seek, Read
Track-to-track, Seek, Write
Full Disc Seek, Read

Full Disc Seek, Write
Average Latency

Other

Default Buffer (cache) size
Spindle Speed

Power-on to Ready Time

Cheetah 10K.6
ST31468071LC
3.5inch

1 inch

25.4 mm
101.6 mm
146.05 mm
0.73 Kg

146.8 Gbytes
80-pin

4
8
49,854

512

36,000 Mb/sq.inch
64,000 Tracks/inch
570,000 bits/inch

475 Mb/sec
840 Mb/sec
43 MB/sec
78 MB/sec
320 MB/sec
59.9 MB/sec

4.7 ms (typical)
5.2 ms (typical)
0.3 ms (typical)
0.5 ms (typical)

2.99 ms

8,000 KB
10000 RPM

Cheetah 10K.7
ST3300007L.W
3.5inch

1 inch

25.4 mm

101.6 mm
146.05 mm
0.726 kg

300 Gbytes
68-pin

4

8
90,774
726,192
512

105,000 Tracks/inch
658,000 bits/inch
556

472 Mb/sec
944 Mb/sec
59 MB/sec

118 MB/sec
320 MB/sec
59.5 MB/sec

4.7 ms (typical)
5.3 ms (typical)
0.2 ms (typical)
0.5 ms (typical)
9.5 ms (typical)
10.3 ms (typical)
3 msec

8,192 KB
10000 RPM
25 sec
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Table 13.1 (continued)
Specifications of Typical High-end Cheetah Disks from Seagate

Electrical Requirements Cheetah 10K.6 Cheetah 10K.7
Current

Typical Current (12VDC +/- 5%) 0.95 amps 1.09 amps

Typical Current (5VDC +/- 5%) 0.9 amps 0.68 amps

Idle Power (typ) 10.6 watts 10.14 watt
Reliability

Mean Time Between Failure (MTBF) 1,200,000 Hours 1,400,000 Hours
Recoverable Read Errors 10 per 1012 bits 10 per 1012 bits read
Nonrecoverable Read Errors 10 per 1015 bits 10 per 1015 bits read
Seek Errors 10 per 108 bits

Service Life 5 year(s) 5 year(s)

Limited Warranty Period 5 year(s) 5 year(s)

(Courtesy Seagate Technology)

block from disk is copied into the buffer; whereas for a write command, the con-
tents of the buffer are copied into the disk block. Sometimes several contiguous
blocks, called a cluster, may be transferred as a unit. In this case, the bufter size is
adjusted to match the number of bytes in the cluster.

The actual hardware mechanism that reads or writes a block is the disk read/write
head, which is part of a system called a disk drive. A disk or disk pack is mounted in
the disk drive, which includes a motor that rotates the disks. A read/write head
includes an electronic component attached to a mechanical arm. Disk packs with
multiple surfaces are controlled by several read/write heads—one for each surface,
as shown in Figure 13.1(b). All arms are connected to an actuator attached to
another electrical motor, which moves the read/write heads in unison and positions
them precisely over the cylinder of tracks specified in a block address.

Disk drives for hard disks rotate the disk pack continuously at a constant speed
(typically ranging between 5400 and 15,000 rpm). For a floppy disk, the disk drive
begins to rotate the disk whenever a particular read or write request is initiated and
ceases rotation soon after the data transfer is completed. Once the read/write head is
positioned on the right track and the block specified in the block address moves
under the read/write head, the electronic component of the read/write head is acti-
vated to transfer the data. Some disk units have fixed read/write heads, with as many
heads as there are tracks. These are called fixed-head disks, whereas disk units with
an actuator are called movable-head disks. For fixed-head disks, a track or cylinder
is selected by electronically switching to the appropriate read/write head rather than
by actual mechanical movement; consequently, it is much faster. However, the cost
of the additional read/write heads is quite high, so fixed-head disks are not com-
monly used.
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A disk controller, typically embedded in the disk drive, controls the disk drive and
interfaces it to the computer system. One of the standard interfaces used today for
disk drives on PCs and workstations is called SCSI (Small Computer Storage
Interface). The controller accepts high-level I/O commands and takes appropriate
action to position the arm and causes the read/write action to take place. To transfer
a disk block, given its address, the disk controller must first mechanically position
the read/write head on the correct track. The time required to do this is called the
seek time. Typical seek times are 7 to 10 msec on desktops and 3 to 8 msecs on
servers. Following that, there is another delay—called the rotational delay or
latency—while the beginning of the desired block rotates into position under the
read/write head. It depends on the rpm of the disk. For example, at 15,000 rpm, the
time per rotation is 4 msec and the average rotational delay is the time per half rev-
olution, or 2 msec. Finally, some additional time is needed to transfer the data; this
is called the block transfer time. Hence, the total time needed to locate and transfer
an arbitrary block, given its address, is the sum of the seek time, rotational delay.
and block transfer time. The seek time and rotational delay are usually much larger
than the block transfer time. To make the transfer of multiple blocks more efficient.
it is common to transfer several consecutive blocks on the same track or cylinder.
This eliminates the seek time and rotational delay for all but the first block and can
result in a substantial saving of time when numerous contiguous blocks are trans-
ferred. Usually, the disk manufacturer provides a bulk transfer rate for calculating
the time required to transfer consecutive blocks. Appendix B contains a discussion
of these and other disk parameters.

The time needed to locate and transfer a disk block is in the order of milliseconds.
usually ranging from 9 to 60 msec. For contiguous blocks, locating the first block
takes from 9 to 60 msec, but transferring subsequent blocks may take only 0.4 to 2
msec each. Many search techniques take advantage of consecutive retrieval of blocks
when searching for data on disk. In any case, a transfer time in the order of millisec-
onds is considered quite high compared with the time required to process data in
main memory by current CPUs. Hence, locating data on disk is a major bottleneck in
database applications. The file structures we discuss here and in Chapter 14 attempt
to minimize the number of block transfers needed to locate and transfer the required
data from disk to main memory.

13.2.2 Magnetic Tape Storage Devices

Disks are random access secondary storage devices because an arbitrary disk block
may be accessed at random once we specify its address. Magnetic tapes are sequen-
tial access devices; to access the nth block on tape, first we must scan the preceding
n — 1 blocks. Data is stored on reels of high-capacity magnetic tape, somewhat sim-
ilar to audiotapes or videotapes. A tape drive is required to read the data from or
write the data to a tape reel. Usually, each group of bits that forms a byte is stored
across the tape, and the bytes themselves are stored consecutively on the tape.

A read/write head is used to read or write data on tape. Data records on tape are also
stored in blocks—although the blocks may be substantially larger than those for
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13.3 Buffering of Blocks

disks, and interblock gaps are also quite large. With typical tape densities of 1600 to
6250 bytes per inch, a typical interblock gap® of 0.6 inches corresponds to 960 to
3750 bytes of wasted storage space. It is customary to group many records together
in one block for better space utilization.

The main characteristic of a tape is its requirement that we access the data blocks in
sequential order. To get to a block in the middle of a reel of tape, the tape is
mounted and then scanned until the required block gets under the read/write head.
For this reason, tape access can be slow and tapes are not used to store online data,
except for some specialized applications. However, tapes serve a very important
function—backing up the database. One reason for backup is to keep copies ot disk
files in case the data is lost due to a disk crash, which can happen if the disk
read/write head touches the disk surface because of mechanical malfunction. For
this reason, disk files are copied periodically to tape. For many online critical appli-
cations, such as airline reservation systems, to avoid any downtime, mirrored sys-
tems are used to keep three sets of identical disks—two in online operation and one
as backup. Here, offline disks become a backup device. The three are rotated so that
they can be switched in case there is a failure on one of the live disk drives. Tapes can
also be used to store excessively large database files. Database files that are seldom
used or are outdated but required for historical record keeping can be archived on
tape. Recently, smaller 8-mm magnetic tapes (similar to those used in camcorders)
that can store up to 50 GB, as well as 4-mm helical scan data cartridges and writable
CDs and DVDs, have become popular media for backing up data files from PCs and
workstations. They are also used for storing images and system libraries. Backing up
enterprise databases so that no transaction information is lost is a major undertak-
ing. Currently, tape libraries with slots for several hundred cartridges are used with
Digital and Superdigital Linear Tapes (DLTs and SDLTs) having capacities in hun-
dreds of gigabytes that record data on linear tracks. Robotic arms are used to write
on multiple cartridges in parallel using multiple tape drives with automatic labeling
software to identify the backup cartridges. An example of a giant library is the
L5500 model of Storage Technology that can store up to 13.2 petabytes (petabyte =
1000 TB) with a throughput rate of 55TB/hour. We defer the discussion of disk stor-
age technology called RAID, and of storage area networks and network-attached
storage, to the end of the chapter.

13.3 Buffering of Blocks

When several blocks need to be transferred from disk to main memory and all the
block addresses are known, several buffers can be reserved in main memory to
speed up the transfer. While one buffer is being read or written, the CPU can
process data in the other buffer because an independent disk I/O processor (con-
troller) exists that, once started, can proceed to transfer a data block between mem-
ory and disk independent of and in paralle] to CPU processing.

5. Called interrecord gaps in tape terminology.
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Figure 13.3 illustrates how two processes can proceed in parallel. Processes A and K
are running concurrently in an interleaved fashion, whereas processes C and D ar«
running concurrently in a parallel fashion. When a single CPU controls multiplc
processes, parallel execution is not possible. However, the processes can still rur.
concurrently in an interleaved way. Buffering is most useful when processes can rur:
concurrently in a parallel fashion, either because a separate disk I/O processor i~
available or because multiple CPU processors exist.

Figure 13.4 illustrates how reading and processing can proceed in parallel when the
time required to process a disk block in memory is less than the time required to
read the next block and fill a buffer. The CPU can start processing a block once its
transfer to main memory is completed; at the same time, the disk I/O processor can
be reading and transferring the next block into a different bufter. This technique is
called double buffering and can also be used to read a continuous stream of blocks

Figure 13.3 Interleaved concurrency Parallel execution of

Interleaved concurrency of operations A and B operations C and D

versus parallel execution.
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Aand B from disk to memory. Double buffering permits continuous reading or writing of
1d D are data on consecutive disk blocks, which eliminates the seek time and rotational delay
nultiple for all but the first block transfer. Moreover, data is kept ready for processing, thus
itill run reducing the waiting time in the programs.

can run
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sired to In this section, we define the concepts of records, record types, and files. Then we
e discuss techniques for placing file records on disk.
once its q p g

01 can
e 13.4.1 Records and Record Types
Data is usually stored in the form of records. Each record consists of a collection of
related data values or items, where each value is formed of one or more bytes and
corresponds to a particular field of the record. Records usually describe entities and
their attributes. For example, an EMPLOYEE record represents an employee entity,
and each field value in the record specifies some attribute of that employee, such as
Name, Birth_date, Salary, or Supervisor. A collection of field names and their corre-
sponding data types constitutes a record type or record format definition. A data
type, associated with each field, specifies the types of values a field can take.

The data type of a field is usually one of the standard data types used in program-
ming. These include numeric (integer, long integer, or floating point), string of
characters (fixed-length or varying), Boolean (having 0 and 1 or TRUE and FALSE
values only), and sometimes specially coded date and time data types. The number
of bytes required for each data type is fixed for a given computer system. An integer
may require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a Boolean 1 byte,
a date 10 bytes (assuming a format of YYYY-MM-DD), and a fixed-length string of
k characters k bytes. Variable-length strings may require as many bytes as there are
characters in each field value. For example, an EMPLOYEE record type may be
defined—using the C programming language notation—as the following structure:

"4

struct employee({

char name[30];

char ssn[9];

int salary;

int Jjob_code;

char department([20];
Yo

s A In recent database applications, the need may arise for storing data items that con-
— sist of large unstructured objects, which represent images, digitized video or audio
streams, or free text. These are referred to as BLOBS (Binary Large Objects). A
BLOB data item is typically stored separately from its record in a pool of disk blocks,
me and a pointer to the BLOB is included in the record.
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13.4.2 Files, Fixed-Length Records, and
Variable-Length Records

A file is a sequence of records. In many cases, all records in a file are of the same
record type. If every record in the file has exactly the same size (in bytes), the file is
said to be made up of fixed-length records. If different records in the file have dif-
ferent sizes, the file is said to be made up of variable-length records. A file may have
variable-length records for several reasons:

# The file records are of the same record type, but one or more of the fields are
of varying size (variable-length fields). For example, the Name field of
EMPLOYEE can be a variable-length field.

+ The file records are of the same record type, but one or more of the fields
may have multiple values for individual records; such a field is called a
repeating field and a group of values for the field is often called a repeating
group.

@ The file records are of the same record type, but one or more of the fields are
optional; that is, they may have values for some but not all of the file records
(optional fields).

= The file contains records of different record types and hence of varying size
(mixed file). This would occur if related records of different types were clus-
tered (placed together) on disk blocks; for example, the GRADE_REPORT
records of a particular student may be placed following that STUDENT’s
record.

The fixed-length EMPLOYEE records in Figure 13.5(a) have a record size of 71 bytes.
Every record has the same fields, and field lengths are fixed, so the system can iden-
tify the starting byte position of each field relative to the starting position of the
record. This facilitates locating field values by programs that access such files. Notice
that it is possible to represent a file that logically should have variable-length records
as a fixed-length records file. For example, in the case of optional fields, we could
have every field included in every file record but store a special NULL value if no value
exists for that field. For a repeating field, we could allocate as many spaces in each
record as the maximum number of values that the field can take. In either case, space
is wasted when certain records do not have values for all the physical spaces pro-
vided in each record. Now we consider other options for formatting records of a file
of variable-length records.

For variable-length fields, each record has a value for each field, but we do not know
the exact length of some field values. To determine the bytes within a particular
record that represent each field, we can use special separator characters (such as ? or
% or $)—which do not appear in any field value—to terminate variable-length
fields, as shown in Figure 13.5(b), or we can store the length in bytes of the field in
the record, preceding the field value.

A file of records with optional fields can be formatted in different ways. If the total
number of fields for the record type is large, but the number of fields that actually
appear in a typical record is small, we can include in each record a sequence of
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(@

&me Ssn Salary  Job_code Department Hire_date
i LA AN, A A
HNNnnnnnnnnnmnnnnnnmnnnnnmnmmm
1 31 40 44 48 68
(b)

Name Ssn Salary  Job_code Department
smith, John J| 123456789 | xxxX [ XXXX Computer | J separator Characters
1 12 21 25 29
(c)

\ﬁame = Smith, John I Ssn = 123456789 I DEPARTMENT = Computer M Separator Characters

= Separates field name
from field value

I Separates fields

N Terminates record

Figure 13.5

Three record storage formats. (a) A fixed-length record with six fields and size .
of 71 bytes. (b) A record with two variable-length fields and three fixed-length
fields. (c) A variable-field record with three types of separator characters.

<field-name, field-value> pairs rather than just the field values. Three types of sep-
arator characters are used in Figure 13.7(¢), although we could use the same separa-
tor character for the first two purposes—separating the field name from the field
value and separating one field from the next field. A more practical option is to
assign a short field type code—say, an integer number—to each field and include in
each record a sequence of <field-type, field-value> pairs rather than <field-name,
field-value> pairs.

A repeating field needs one separator character to separate the repeating values of
the field and another separator character to indicate termination of the field.
Finally, for a file that includes records of different types, each record is preceded by a
record type indicator. Understandably, programs that process files of variable-
length records—which are usually part of the file system and hence hidden from the
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typical programmers—need to be more complex than those for fixed-length
records, where the starting position and size of each field are known and fixed.®

13.4.3 Record Blocking and Spanned
versus Unspanned Records

The records of a file must be allocated to disk blocks because a block is the unit of
data transfer between disk and memory. When the block size is larger than the record
size, each block will contain numerous records, although some files may have unusu-
ally large records that cannot fit in one block. Suppose that the block size is
B bytes. For a file of fixed-length records of size R bytes, with B > R, we can fit
bfr = LB/R] records per block, where the L(x) (floor function) rounds down the num-
ber x to an integer. The value bfr is called the blocking factor for the file. In general,
R may not divide B exactly, so we have some unused space in each block equal to

B —(bfr + R) bytes

To utilize this unused space, we can store part of a record on one block and the rest
on another. A pointer at the end of the first block points to the block containing the
remainder of the record in case it is not the next consecutive block on disk. This
organization is called spanned because records can span more than one block.
Whenever a record is larger than a block, we must use a spanned organization. If
records are not allowed to cross block boundaries, the organization is called
unspanned. This is used with fixed-length records having B > R because it makes
each record start at a known location in the block, simplifying record processing. For
variable-length records, either a spanned or an unspanned organization can be used.
If the average record is large, it is advantageous to use spanning to reduce the lost
space in each block. Figure 13.6 illustrates spanned versus unspanned organization.

For variable-length records using spanned organization, each block may store a dif-
ferent number of records. In this case, the blocking factor bfr represents the average

Figure 13.6

Types of record organization. (a) Unspanned. (b) Spanned.

(a)

(b)

Block i | Record 1 i Record 2 | Record 3 | T
Blocki+1 |  Record 4 | Record5 | Recods | |
Block i | Record 1 | Record 2 I Record 3 I Record 4 ‘ P |—|

;

Block i + 1 | Record 4 (rest) [ Record 5 | Record 6 I Record 7 |P|

6. Other schemes are also possible for representing variable-length records.
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13.5 Operations on Files

number of records per block for the file. We can use bfr to calculate the number of
blocks b needed for a file of r records:

b= r(r/bfrﬂ blocks

where the |—(x)—| (ceiling function) rounds the value x up to the next integer.

13.4.4 Allocating File Blocks on Disk

There are several standard techniques for allocating the blocks of a file on disk. In
contiguous allocation, the file blocks are allocated to consecutive disk blocks. This
makes reading the whole file very fast using double buffering, but it makes expand-
ing the file difficult. In linked allocation, each file block contains a pointer to the
next file block. This makes it easy to expand the file but makes it slow to read the
whole file. A combination of the two allocates clusters of consecutive disk blocks,
and the clusters are linked. Clusters are sometimes called file segments or extents.
Another possibility is to use indexed allocation, where one or more index blocks
contain pointers to the actual file blocks. It is also common to use combinations of
these techniques.

13.4.5 File Headers

A file header or file descriptor contains information about a file that is needed by
the system programs that access the file records. The header includes information to
determine the disk addresses of the file blocks as well as to record format descrip-
tions, which may include field lengths and order of fields within a record for fixed-
length unspanned records and field type codes, separator characters, and record
type codes for variable-length records.

To search for a record on disk, one or more blocks are copied into main memory
buffers. Programs then search for the desired record or records within the buffers,
using the information in the file header. If the address of the block that contains the
desired record is not known, the search programs must do a linear search through
the file blocks. Each file block is copied into a buffer and searched until the record is
located or all the file blocks have been searched unsuccessfully. This can be very time
consuming for a large file. The goal of a good file organization is to locate the block
that contains a desired record with a minimal number of block transfers.

13.5 Operations on Files

Operations on files are usually grouped into retrieval operations and update oper-
ations. The former do not change any data in the file, but only locate certain records
so that their field values can be examined and processed. The latter change the file
by insertion or deletion of records or by modification of tield values. In either case,
we may have to select one or more records for retrieval, deletion, or modification
based on a selection condition (or filtering condition), which specifies criteria that
the desired record or records must satisfy.

479
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Consider an EMPLOYEE file with fields Name, Ssn, Salary, Job_code, and Department.
A simple selection condition may involve an equality comparison on some tield
value—for example, (Ssn = ‘123456789’) or (Department = ‘Research’). More com-
plex conditions can involve other types of comparison operators, such as > or 2; an
example is (Salary 2 30000). The general case is to have an arbitrary Boolean expres-
sion on the fields of the file as the selection condition.

Search operations on files are generally based on simple selection conditions. A
complex condition must be decomposed by the DBMS (or the programmer) to
extract a simple condition that can be used to locate the records on disk. Each
located record is then checked to determine whether it satisfies the full selection
condition. For example, we may extract the simple condition (Department =
‘Research’) from the complex condition ((Salary = 30000) AND (Department =
‘Research’)); each record satisfying (Department = ‘Research’) is located and then
tested to see if it also satisfies (Salary = 30000).

When several file records satisty a search condition, the first record—with respect to
the physical sequence of file records—is initially located and designated the current
record. Subsequent search operations commence from this record and locate the
next record in the file that satisfies the condition.

Actual operations for locating and accessing file records vary from system to system.
Below, we present a set of representative operations. Typically, high-level programs,
such as DBMS software programs, access records by using these commands, so we
sometimes refer to program variables in the following descriptions:

# QOpen. Prepares the file for reading or writing. Allocates appropriate buffers
(typically at least two) to hold file blocks from disk, and retrieves the file
header. Sets the file pointer to the beginning of the file.

& Reset. Sets the file pointer of an open file to the beginning of the file.

# Find (or Locate). Searches for the first record that satisfies a search condi-
tion. Transfers the block containing that record into a main memory buffer
(if it is not already there). The file pointer points to the record in the buffer
and it becomes the current record. Sometimes, different verbs are used to
indicate whether the located record is to be retrieved or updated.

Read (or Get). Copies the current record from the buffer to a program vari-
able in the user program. This command may also advance the current
record pointer to the next record in the file, which may necessitate reading
the next file block from disk.

FindNext. Searches for the next record in the file that satisfies the search
condition. Transfers the block containing that record into a main memory
buffer (if it is not already there). The record is located in the buffer and
becomes the current record.

Delete. Deletes the current record and (eventually) updates the file on disk
to reflect the deletion.

Modify. Modifies some field values for the current record and (eventually)
updates the file on disk to reflect the modification.
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anm‘ent. = Insert. Inserts a new record in the file by locating the block where the record
ne field is to be inserted, transferring that block into a main memory buffer (if it is
¢ com- not already there), writing the record into the buffer, and (eventually) writ-
or2; an ing the buffer to disk to reflect the insertion.

expres-

Close. Completes the file access by releasing the buffers and performing any
other needed cleanup operations.

ons. A The preceding (except for Open and Close) are called record-at-a-time operations
ner) to because each operation applies to a single record. It is possible to streamline the
N E?Ch operations Find, FindNext, and Read into a single operation, Scan, whose descrip-
lection tion is as follows:
ment =
ment = # Scan. If the file has just been opened or reset, Scan returns the first record;
id then otherwise it returns the next record. If a condition is specified with the oper-
ation, the returned record is the first or next record satisfying the condition.
pect to In database systems, additional set-at-a-time higher-level operations may be
‘urrent applied to a file. Examples of these are as follows:
ate the # FindAll. Locates all the records in the file that satisfy a search condition.
Find (or Locate) n. Searches for the first record that satisfies a search condi-
ystem. tion and then continues to locate the next # — 1 records satisfying the same
grams, condition. Transfers the blocks containing the n records to the main memory
» SO we buffer (if not already there).
» FindOrdered. Retrieves all the records in the file in some specified order.
iiffgfz : Reorganize. Starts the reorganization process. As we shall see, some file
organizations require periodic reorganization. An example is to reorder the
file records by sorting them on a specified field.
condi- At this point, it is worthwhile to note the difference between the terms file organiza-
buffer tion and access method. A file organization refers to the organization of the data of
buffer a file into records, blocks, and access structures; this includes the way records and
sed to blocks are placed on the storage medium and interlinked. An access method, on the
other hand, provides a group of operations—such as those listed earlier—that can
. be applied to a file. In general, it is possible to apply several access methods to a file
0 var- organization. Some access methods, though, can be applied only to files organized
urrent in certain ways. For example, we cannot apply an indexed access method to a file
sading without an index (see Chapter 14).
search Usually, we expect to use some search conditions more than others. Some files may
smory be static, meaning that update operations are rarely performed; other, more
sr and dynamic files may change frequently, so update operations are constantly applied to
them. A successful file organization should perform as efficiently as possible the
i disk operations we expect to apply frequently to the file. For example, consider the

EMPLOYEE file, as shown in Figure 13.5(a), which stores the records for current
employees in a company. We expect to insert records (when employees are hired),
‘ually) delete records (when employees leave the company), and modify records (for exam-
ple, when an employee’s salary or job is changed). Deleting or modifying a record
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requires a selection condition to identify a particular record or set of records.
Retrieving one or more records also requires a selection condition.

If users expect mainly to apply a search condition based on Ssn, the designer must
choose a file organization that facilitates locating a record given its Ssn value. This
may involve physically ordering the records by Ssn value or defining an index on
Ssn (see Chapter 14). Suppose that a second application uses the file to generate
employees’ paychecks and requires that paychecks are grouped by department. For
this application, it is best to store all employee records having the same department
value contiguously, clustering them into blocks and perhaps ordering them by name
within each department. However, this arrangement conflicts with ordering the
records by Ssn values. If both applications are important, the designer should
choose an organization that allows both operations to be done efficiently.
Unfortunately, in many cases there may not be an organization that allows all
needed operations on a file to be implemented efficiently. In such cases, a compro-
mise must be chosen that takes into account the expected importance and mix of
retrieval and update operations.

In the following sections and in Chapter 14, we discuss methods for organizing
records of a file on disk. Several general techniques, such as ordering, hashing, and
indexing, are used to create access methods. Additionally, various general tech-
niques for handling insertions and deletions work with many file organizations.

13.6 Files of Unordered Records
(Heap Files)

In this simplest and most basic type of organization, records are placed in the file in
the order in which they are inserted, so new records are inserted at the end of the
file. Such an organization is called a heap or pile file.” This organization is often
used with additional access paths, such as the secondary indexes discussed in
Chapter 14. It is also used to collect and store data records for future use.

Inserting a new record is very efficient. The last disk block of the file is copied into a
buffer, the new record is added, and the block is then rewritten back to disk. The
address of the last file block is kept in the file header. However, searching for a
record using any search condition involves a linear search through the file block by
block—an expensive procedure. If only one record satisfies the search condition,
then, on the average, a program will read into memory and search half the file
blocks before it finds the record. For a file of b blocks, this requires searching (b/2)
blocks, on average. If no records or several records satisfy the search condition, the
program must read and search all b blocks in the file.

To delete a record, a program must first find its block, copy the block into a buffer,
delete the record from the buffer, and finally rewrite the block back to the disk. This
leaves unused space in the disk block. Deleting a large number of records in this way

7. Sometimes this organization is called a sequential file.
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records. results in wasted storage space. Another technique used for record deletion is to
have an extra byte or bit, called a deletion marker, stored with each record. A record
. y . .
is deleted by setting the deletion marker to a certain value. A different value of the

ler must marker indicates a valid (not deleted) record. Search programs consider only valid
ue. This records in a block when conducting their search. Both of these deletion techniques
ndex on require periodic reorganization of the file to reclaim the unused space of deleted
ienerate records. During reorganization, the file blocks are accessed consecutively, and
ent. For records are packed by removing deleted records. After such a reorganization, the
artment blocks are filled to capacity once more. Another possibility is to use the space of
"y name deleted records when inserting new records, although this requires extra bookkeep-
-ing the ing to keep track of empty locations.

should

ciently. We can use either spanned or unspanned organization for an unordered file, and
lows all it may be used with either fixed-length or variable-length records. Modifying a
ompro- variable-length record may require deleting the old record and inserting a modified

mix of record because the modified record may not fit in its old space on disk.

To read all records in order of the values of some field, we create a sorted copy of the
anizing file. Sorting is an expensive operation for a large disk file, and special techniques for
ng, and external sorting are used (see Chapter 15).

il tech- For a file of unordered fixed-length records using unspanned blocks and contiguous

ons. allocation, it is straightforward to access any record by its position in the file. If the
file records are numbered 0, 1, 2, ..., r — 1 and the records in each block are num-
bered 0, 1,. .., bfr — 1, where bfr is the blocking factor, then the ith record of the file
is located in block L(i/bfr)J and is the (i mod bfr)th record in that block. Such a file
is often called a relative or direct file because records can easily be accessed directly

e file in by their relative positions. Acc.e§sing a record by its position does not help locate a

Lof the record based on a search condltloll; however, it facilitates the construction of access

s often paths on the file, such as the indexes discussed in Chapter 14.

ssed in

13.7 Files of Ordered Records (Sorted Files)
jl\m;(;jz ‘ We can physically order the records of a file on disk based on the values of one of
o for a ‘3 their fields—called the ordering field. This leads to an ordered or sequential file.*
E)ck by If the ordering field is also a key field of the file—a field guaranteed to have a
dition unique value in each record—then the field is called the ordering key for the file.
he ﬁ]e) ‘ Figure 13.7 shows an ordered file with Name as the ordering key field (assuming that
g (b/2) ! employees have distinct names).
on, the Ordered records have some advantages over unordered files. First, reading the records

in order of the ordering key values becomes extremely efficient because no sorting is
buffer, required. Second, finding the next record from the current one in order of the order-
k. This ing key usually requires no additional block accesses because the next record is in the
1is way same block as the current one (unless the current record is the last one in the block).

Third, using a search condition based on the value of an ordering key field results in

8. The term sequential file has also been used to refer to unordered files.
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Name Ssn Birth_date Job Salary Sex

Block 1 Aaron, Ed

Abbott, Diane

Acosta, Marc l | . | 1

Block 2 Adams, John

Adams, Robin

Akers, Jan ) | | ‘

Block 3 Alexander, Ed

Alfred, Bob

Allen, Sam | [ | )

Block 4 Allen, Troy

Anders, Keith

Anderson, Rob i | | i

Block 5 Anderson, Zach

Angeli, Joe

Archer, Sue | ‘ ' |

Block 6 Arnold, Mack

Arnold, Steven

Atkins, Timothy

Block n-1 | Wong, James

Wood, Donald

Woods, Manny

Block n Wright, Pam

Wyatt, Charles

Zimmer, Byron | ‘ { |

Figure 13.7
Some blocks of an ordered (sequential) file of EMPLOYEE
records with Name as the ordering key field.
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faster access when the binary search technique is used, which constitutes an improve-
ment over linear searches, although it is not often used for disk files.

A binary search for disk files can be done on the blocks rather than on the records.
Suppose that the file has b blocks numbered 1, 2, .. ., b; the records are ordered by
ascending value of their ordering key field; and we are searching for a record whose
ordering key field value is K. Assuming that disk addresses of the file blocks are avail-
able in the file header, the binary search can be described by Algorithm 13.1. A binary
search usually accesses log,(b) blocks, whether the record is found or not—an
improvement over linear searches, where, on the average, (b/2) blocks are accessed
when the record is found and b blocks are accessed when the record is not found.

Algorithm 13.1. Binary Search on an Ordering Key of a Disk File

I 1; u < by (* bis the number of file blocks *)
while (u>1) do
begin i « (! + ) div 2;
read block 1 of the file into the buffer;
if K < (ordering key field value of the first record in block i )
thennei-1
else if K > (ordering key field value of the last record in block 1 )
thenl e i+1
else if the record with ordering key field value = K is in the buffer
then goto tound
else goto notfound;
end;
goto notfound;

A search criterion involving the conditions >, <, 2, and <, on the ordering field is
quite efficient, since the physical ordering of records means that all records satisfy-
ing the condition are contiguous in the file. For example, referring to Figure 13.9, if
the search criterion is (Name < ‘G’)—where < means alphabetically before—the
records satisfying the search criterion are those from the beginning of the file up to
the first record that has a Name value starting with the letter ‘G’

Ordering does not provide any advantages for random or ordered access of the
records based on values of the other nonordering fields of the file. In these cases, we
do a linear search for random access. To access the records in order based on a
nonordering field, it is necessary to create another sorted copy—in a different
order—of the file.

Inserting and deleting records are expensive operations for an ordered file because
the records must remain physically ordered. To insert a record, we must find its cor-
rect position in the file, based on its ordering field value, and then make space in the
file to insert the record in that position. For a large file this can be very time con-
suming because, on the average, half the records of the file must be moved to make
space for the new record. This means that half the file blocks must be read and
rewritten after records are moved among them. For record deletion, the problem is
less severe if deletion markers and periodic reorganization are used.

485
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One option for making insertion more efficient is to keep some unused space in each
block for new records. However, once this space is used up, the original problem
resurfaces. Another frequently used method is to create a temporary unordered file
called an overflow or transaction file. With this technique, the actual ordered file is
called the main or master file. New records are inserted at the end of the overflow file
rather than in their correct position in the main file. Periodically, the overflow file is
sorted and merged with the master file during file reorganization. Insertion becomes
very efficient, but at the cost of increased complexity in the search algorithm. The
overflow file must be searched using a linear search if, after the binary search, the
record is not found in the main file. For applications that do not require the most up-
to-date information, overflow records can be ignored during a search.

Moditying a field value of a record depends on two factors: the search condition to
locate the record and the field to be modified. If the search condition involves the
ordering key field, we can locate the record using a binary search; otherwise we must
do a linear search. A nonordering field can be modified by changing the record and
rewriting it in the same physical location on disk—assuming fixed-length records.
Modifying the ordering field means that the record can change its position in the file.
This requires deletion of the old record followed by insertion of the modified record.

Reading the file records in order of the ordering field is quite efticient if we ignore
the records in overflow, since the blocks can be read consecutively using double
buffering. To include the records in overflow, we must merge them in their correct
positions; in this case, first we can reorganize the file, and then read its blocks
sequentially. To reorganize the file, first we sort the records in the overfiow file, and
then merge them with the master file. The records marked for deletion are removed
during the reorganization.

Table 13.2 summarizes the average access time in block accesses to find a specific
record in a file with b blocks.

Ordered files are rarely used in database applications unless an additional access path,
called a primary index, is used; this results in an indexed-sequential file. This further
improves the random access time on the ordering key field. We discuss indexes in
Chapter 14. If the ordering attribute is not a key, the file is called a clustered file.

13.8 Hashing Techniques

Another type of primary file organization is based on hashing, which provides very
fast access to records under certain search conditions. This organization is usually
called a hash file.? The search condition must be an equality condition on a single
field, called the hash field. In most cases, the hash field is also a key field of the file, in
which case 1t is called the hash key. The idea behind hashing is to provide a function
h, called a hash function or randomizing function, which is applied to the hash field
value of a record and yvields the address of the disk block in which the record is stored.
A search for the record within the block can be carried out in a main memaory buffer.
For most records, we need only a single-block access to retrieve that record.

9. A hash file has also been called a direct file.
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n each Table 13.2
oblem Average Access Times for a File of b Blocks under Basic File Organizations
ed file

file is Average Blocks to Access
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Hashing is also used as an internal search structure within a program whenever a
group of records is accessed exclusively by using the value of one field. We describe
the use of hashing for internal files in Section 13.8.1; then we show how it is modi-
rd and ‘ fied to store external files on disk in Section 13.8.2. In Section 13.8.3 we discuss

‘es the
> must

;0?}5- techniques for extending hashing to dynamically growing files.
e file.
ecord. | 13.8.1 Internal Hashing
ign?je For internal files, hashing is typically implemented as a hash table through the use
.ou € of an array of records. Suppose that the array index range is from 0 to M — 1, as
.olrrelit shown in Figure 13.8(a); then we have M slots whose addresses correspond to the
bloc 3 ! array indexes. We choose a hash function that transforms the hash field value into
le, and an integer between 0 and M — 1. One common hash function is the h(K) = K
move mod M function, which returns the remainder of an integer hash field value K after
division by M; this value is then used for the record address.
pecific Noninteger hash field values can be transformed into integers before the mod func-
tion is applied. For character strings, the numeric (ASCII) codes associated with
s path, characters can be used in the transformation—for example, by multiplying those
‘urther i code values. For a hash field whose data type is a string of 20 characters, Algorithm
oxes in 13.2(a) can be used to calculate the hash address. We assume that the code function
ile. returns the numeric code of a character and that we are given a hash field value K of
type K: array [1..20] of char (in PASCAL) or char K[20] (in C).

Algorithm 13.2. Two simple hashing algorithms. (a) Applying the
es very mod hash function to a character string K. (b) Collision resolution by open
usually i addressing.

: smg‘le % (a) temp<1;

'ﬁle', n for i < 1 to 20 do temp < temp * code(K|i] ) mod M ;
‘“Cftfolg hash_address < temp mod M;

*h e (b) i« hash_address(K); a « i;

stored. i

buffer if location i is occupied
) then begin i« (i + 1) mod M;
- while (i # a) and location 7 is occupied
doi¢« (i+1) mod M;
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if (i = a) then all positions are full
else new_hash_address <« i;
end;

Figure 13.8

Internal hashing data structures. (a) Array of M positions for use in internal hashing,
(b) Collision resolution by chaining records.

(a) Name | Ssn Job Salary
0
1
2
3
M-2
M-1
Data fields Overflow pointer
(b) 0 1 A

1 M

2 -1

3 -1

4 M+2

. Address space

M-2 M+ 1

M=1 1

M M+5

M+ 1 =1

M+ 2 M+ 4

. Overflow space

M+0-2
M+0-1

« null pointer = -1
« overflow pointer refers to position of next record in linked list
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Other hashing functions can be used. One technique, called folding, involves apply-
ing an arithmetic function such as addition or a logical function such as exclusive or
to different portions of the hash field value to calculate the hash address. Another
technique involves picking some digits of the hash field value—for example, the
third, fifth, and eighth digits—to form the hash address.!” The problem with most
hashing functions is that they do not guarantee that distinct values will hash to dis-
tinct addresses, because the hash field space—the number of possible values a hash
field can take—is usually much larger than the address space—the number of avail-
able addresses for records. The hashing function maps the hash field space to the
address space.

A collision occurs when the hash field value of a record that is being inserted hashes
to an address that already contains a different record. In this situation, we must
insert the new record in some other position, since its hash address is occupied. The
process of finding another position is called collision resolution. There are numer-
ous methods for collision resolution, including the following:

# Open addressing. Proceeding from the occupied position specified by the
hash address, the program checks the subsequent positions in order until an
unused (empty) position is found. Algorithm 13.2(b) may be used for this
purpose.

# Chaining. For this method, various overflow locations are kept, usually by
extending the array with a number of overflow positions. Additionally, a
pointer field is added to each record location. A collision is resolved by plac-
ing the new record in an unused overflow location and setting the pointer of
the occupied hash address location to the address of that overflow location.
A linked list of overflow records for each hash address is thus maintained, as
shown in Figure 13.8(b).

# Multiple hashing. The program applies a second hash function if the first
results in a collision. If another collision results, the program uses open
addressing or applies a third hash function and then uses open addressing if
necessary.

Each collision resolution method requires its own algorithms for insertion,
retrieval, and deletion of records. The algorithms for chaining are the simplest.
Deletion algorithms for open addressing are rather tricky. Data structures textbooks
discuss internal hashing algorithms in more detail.

The goal of a good hashing function is to distribute the records uniformly over the
address space so as to minimize collisions while not leaving many unused locations.
Simulation and analysis studies have shown that it is usually best to keep a hash
table between 70 and 90 percent full so that the number of collisions remains low
and we do not waste too much space. Hence, if we expect to have r records to store
in the table, we should choose M locations for the address space such that (r/M) is
between 0.7 and 0.9. It may also be useful to choose a prime number for M, since it
has been demonstrated that this distributes the hash addresses better over the

10. A detailed discussion of hashing functions is outside the scope of our presentation.
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address space when the mod hashing function is used. Other hash functions may
require M to be a power of 2.

13.8.2 External Hashing for Disk Files

Hashing for disk files is called external hashing. To suit the characteristics of disk
storage, the target address space is made of buckets, each of which holds multiple
records. A bucket is either one disk block or a cluster of contiguous blocks. The
hashing function maps a key into a relative bucket number, rather than assigning an
absolute block address to the bucket. A table maintained in the file header converts
the bucket number into the corresponding disk block address, as illustrated in
Figure 13.9.

The collision problem is less severe with buckets, because as many records as will fit
in a bucket can hash to the same bucket without causing problems. However, we
must make provisions for the case where a bucket is filled to capacity and a new
record being inserted hashes to that bucket. We can use a variation of chaining in
which a pointer is maintained in each bucket to a linked list of overflow records for
the bucket, as shown in Figure 13.10. The pointers in the linked list should be
record pointers, which include both a block address and a relative record position
within the block.

Hashing provides the fastest possible access for retrieving an arbitrary record given
the value of its hash field. Although most good hash functions do not maintain
records in order of hash field values, some functions—called order preserving—
do. A simple example of an order preserving hash function is to take the leftmost
three digits of an invoice number field as the hash address and keep the records
sorted by invoice number within each bucket. Another example is to use an integer

Figure 13.9
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Main buckets

Bucket 0 | 340
460
Record pointer
1 NULL
Overflow buckets

Bucket 1 | 321 981 Record pointer

761 Record pointer

91 —m(182 Record pointer

Record pointer

]

= NULL

—

Bucket 2 22

652 Record pointer

—

79 Record pointer = NULL
522 Record pointer
Record pointer |——
. (Pointers are to records within the overflow blocks)
Bucket9 | 399
89
: Figure 13.10
Record pointer ] Handling overflow for

= NULL

buckets by chaining.

hash key directly as an index to a relative file, if the hash key values fill up a particu-
lar interval; for example, if employee numbers in a company are assigned as 1, 2, 3,
... up to the total number of employees, we can use the identity hash function that
maintains order. Unfortunately, this only works if keys are generated in order by
some application.

The hashing scheme described is called static hashing because a fixed number of
buckets M is allocated. This can be a serious drawback for dynamic files. Suppose
that we allocate M buckets for the address space and let m be the maximum number
of records that can fit in one bucket; then at most (m * M) records will fit in the
allocated space. If the number of records turns out to be substantially fewer than (i
* M), we are left with a lot of unused space. On the other hand, if the number of
records increases to substantially more than (m * M), numerous collisions will
result and retrieval will be slowed down because of the long lists of overflow
records. In either case, we may have to change the number of blocks M allocated and
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then use a new hashing function (based on the new value of M) to redistribute the
records. These reorganizations can be quite time consuming for large files. Newer
dynamic file organizations based on hashing allow the number of buckets to vary
dynamically with only localized reorganization (see Section 13.8.3).

When using external hashing, searching for a record given a value of some field
other than the hash field is as expensive as in the case of an unordered file. Record
deletion can be implemented by removing the record from its bucket. If the bucket
has an overflow chain, we can move one of the overtlow records into the bucket to
replace the deleted record. If the record to be deleted is already in overflow, we sim-
ply remove it from the linked list. Notice that removing an overflow record implies
that we should keep track of empty positions in overflow. This is done easily by
maintaining a linked list of unused overflow locations.

Modifying a record’s field value depends on two factors: the search condition to
locate the record and the field to be modified. If the search condition is an equality
comparison on the hash field, we can locate the record efficiently by using the hash-
ing function; otherwise, we must do a linear search. A nonhash field can be modi-
fied by changing the record and rewriting it in the same bucket. Modifying the hash
field means that the record can move to another bucket, which requires deletion of
the old record followed by insertion of the modified record.

13.8.3 Hashing Techniques That Allow Dynamic
File Expansion

A major drawback of the staric hashing scheme just discussed is that the hash
address space is fixed. Hence, it is difficult to expand or shrink the file dynamically.
The schemes described in this section attempt to remedy this situation. The first
scheme—extendible hashing—stores an access structure in addition to the file, and
hence is somewhat similar to indexing (Chapter 14). The main difference is that the
access structure is based on the values that result after application of the hash func-
tion to the search field. In indexing, the access structure is based on the values of the
search field itself. The second technique, called linear hashing, does not require
additional access structures.

These hashing schemes take advantage of the fact that the result of applying a hash-
ing function is a nonnegative integer and hence can be represented as a binary num-
ber. The access structure is built on the binary representation of the hashing
function result, which is a string of bits. We call this the hash value of a record.
Records are distributed among buckets based on the values of the leading bits in
their hash values.

Extendible Hashing. In extendible hashing, a type of directory—an array of 24
bucket addresses—is maintained, where d is called the global depth of the direc-
tory. The integer value corresponding to the first (high-order) d bits of a hash value
is used as an index to the array to determine a directory entry, and the address in
that entry determines the bucket in which the corresponding records are stored.
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However, there does not have to be a distinct bucket for each of the 2¢ directory
locations. Several directory locations with the same first d” bits for their hash values
may contain the same bucket address if all the records that hash to these locations fit
in a single bucket. A local depth d’—stored with each bucket—specifies the num-
ber of bits on which the bucket contents are based. Figure 13.13 shows a directory
with global depth d = 3.

The value of d can be increased or decreased by one at a time, thus doubling or halv-
ing the number of entries in the directory array. Doubling is needed if a bucket,
whose local depth d” is equal to the global depth d, overflows. Halving occurs if d >
d’ for all the buckets after some deletions occur. Most record retrievals require two
block accesses—one to the directory and the other to the bucket.

To illustrate bucket splitting, suppose that a new inserted record causes overflow in
the bucket whose hash values start with 01—the third bucket in Figure 13.13. The
records will be distributed between two buckets: the first contains all records whose
hash values start with 010, and the second all those whose hash values start with
011. Now the two directory locations for 010 and 011 point to the two new distinct
buckets. Before the split, they pointed to the same bucket. The local depth d” of the
two new buckets is 3, which is one more than the local depth of the old bucket.

If a bucket that overflows and is split used to have a local depth d” equal to the global
depth d of the directory, then the size of the directory must now be doubled so that
we can use an extra bit to distinguish the two new buckets. For example, if the
bucket for records whose hash values start with 111 in Figure 13.11 overflows, the
two new buckets need a directory with global depth d = 4, because the two buckets
are now labeled 1110 and 1111, and hence their local depths are both 4. The direc-
tory size is hence doubled, and each of the other original locations in the directory
is also split into two locations, both of which have the same pointer value as did the
original location.

The main advantage of extendible hashing that makes it attractive is that the per-
formance of the file does not degrade as the file grows, as opposed to static external
hashing where collisions increase and the corresponding chaining causes additional
accesses. Additionally, no space is allocated in extendible hashing for future growth,
but additional buckets can be allocated dynamically as needed. The space overhead
for the directory table is negligible. The maximum directory size is 2%, where k is the
number of bits in the hash value. Another advantage is that splitting causes minor
reorganization in most cases, since only the records in one bucket are redistributed
to the two new buckets. The only time reorganization is more expensive is when the
directory has to be doubled (or halved). A disadvantage is that the directory must be
searched before accessing the buckets themselves, resulting in two block accesses
instead of one in static hashing. This performance penalty is considered minor and
hence the scheme is considered quite desirable for dynamic files.

Linear Hashing. The idea behind linear hashing is to allow a hash file to expand
and shrink its number of buckets dynamically without needing a directory. Suppose
that the file starts with M buckets numbered 0, 1, ..., M — [ and uses the mod hash
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function h(K) = K mod M; this hash function is called the initial hash function A,
Overflow because of collisions is still needed and can be handled by maintaining
individual overflow chains for each bucket. However, when a collision leads to an
overflow record in any file bucket, the first bucket in the file—bucket 0—is split into
two buckets: the original bucket 0 and a new bucket M at the end of the file. The
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13.9 Other Primary File Organizations

records originally in bucket 0 are distributed between the two buckets based on a
different hashing function A, ,(K) = K mod 2M. A key property of the two hash
functions /1; and h;, | is that any records that hashed to bucket 0 based on h; will hash
to either bucket 0 or bucket M based on h;,; this is necessary for linear hashing
to work.

As further collisions lead to overflow records, additional buckets are split in the lin-
ear order 1,2, 3, . ... If enough overflows occur, all the original file buckets 0, 1, ...,
M — 1 will have been split, so the file now has 2M instead of M buckets, and all buck-
ets use the hash function /1., ;. Hence, the records in overflow are eventually redis-
tributed into regular buckets, using the function h,,, via a delayed split of their
buckets. There is no directory; only a value n—which is initially set to 0 and is incre-
mented by 1 whenever a split occurs—is needed to determine which buckets have
been split. To retrieve a record with hash key value K, first apply the function k; to K;
if h(K) < n, then apply the function %;,, on K because the bucket is already split.
Initially, n = 0, indicating that the function h; applies to all buckets; 1 grows linearly
as buckets are split.

When n = M after being incremented, this signifies that all the original buckets
have been split and the hash function h;,, applies to all records in the file. At this
point, 7 1s reset to 0 (zero), and any new collisions that cause overflow lead to the
use of a new hashing function #;,,(K) = K mod 4M. In general, a sequence of hash-
ing functions h;,(K) = K mod (2’M) is used, where j = 0, 1, 2, ... ; a new hashing
function h,_, is needed whenever all the buckets 0, 1, ..., (2M) ~ 1 have been split
and n is reset to 0. The search for a record with hash key value K is given by
Algorithm 13.3.

Splitting can be controlled by monitoring the file load factor instead of by splitting
whenever an overflow occurs. In general, the file load factor / can be defined as / =
r/(bfr = N), where r is the current number of file records, bfr is the maximum num-
ber of records that can fit in a bucket, and N is the current number of file buckets.
Buckets that have been split can also be recombined if the load factor of the file falls
below a certain threshold. Blocks are combined linearly, and N is decremented
appropriately. The file load can be used to trigger both splits and combinations; in
this manner the file load can be kept within a desired range. Splits can be triggered
when the load exceeds a certain threshold—say, 0.9—and combinations can be trig-
gered when the load falls below another threshold—say, 0.7.

Algorithm 13.3. The Search Procedure for Linear Hashing
ifn=0
then 1 < h; (K) (* m is the hash value of record with hash key K *)

else begin
m « h; (K);
if m < nthen m & h;,, (K)
end;

search the bucket whose hash value is m (and its overflow, if any);
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13.9 Other Primary File Organizations
13.9.1 Files of Mixed Records

The file organizations we have studied so far assume that all records of a particular
file are of the same record type. The records could be of EMPLOYEESs, PROJECTS,
STUDENTSs, or DEPARTMENTs, but each file contains records of only one type. In
most database applications, we encounter situations in which numerous types of
entities are interrelated in various ways, as we saw in Chapter 3. Relationships
among records in various files can be represented by connecting fields.!! For exam-
ple, a STUDENT record can have a connecting field Major_dept whose value gives the
name of the DEPARTMENT in which the student is majoring. This Major_dept field
refers to a DEPARTMENT entity, which should be represented by a record of its own
in the DEPARTMENT file. If we want to retrieve field values from two related records,
we must retrieve one of the records first. Then we can use its connecting field value
to retrieve the related record in the other file. Hence, relationships are implemented
by logical field references among the records in distinct files.

File organizations in object DBMSs, as well as legacy systems such as hierarchical
and network DBMSs, often implement relationships among records as physical
relationships realized by physical contiguity (or clustering) of related records or by
physical pointers. These file organizations typically assign an area of the disk to
hold records of more than one type so that records of different types can be physi-
cally clustered on disk. If a particular relationship is expected to be used frequently,
implementing the relationship physically can increase the system’s efficiency at
retrieving related records. For example, if the query to retrieve a DEPARTMENT
record and all records for STUDENTs majoring in that department is frequent, it
would be desirable to place each DEPARTMENT record and its cluster of STUDENT
records contiguously on disk in a mixed file. The concept of physical clustering of
object types is used in object DBMSs to store related objects together in a mixed file.

To distinguish the records in a mixed file, each record has—in addition to its field
values—a record type field, which specifies the type of record. This is typically the
first field in each record and is used by the system software to determine the type of
record it is about to process. Using the catalog information, the DBMS can deter-
mine the fields of that record type and their sizes, in order to interpret the data val-
ues in the record.

13.9.2 B-Trees and Other Data Structures
as Primary Organization

Other data structures can be used for primary file organizations. For example, if
both the record size and the number of records in a file are small, some DBMSs offer
the option of a B-tree data structure as the primary file organization. We will
describe B-trees in Section 14.3.1, when we discuss the use of the B-tree data struc-

11. The concept of foreign keys in the relational model (Chapter 5) and references among objects in
object-oriented models (Chapter 20) are examples of connecting fields.
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13.10 Parallelizing Disk Access Using RAID Technology

ture for indexing. In general, any data structure that can be adapted to the charac-
teristics of disk devices can be used as a primary file organization for record place-
ment on disk.

13.10 Parallelizing Disk Access
Using RAID Technology

With the exponential growth in the performance and capacity of semiconductor
devices and memories, faster microprocessors with larger and larger primary mem-
ories are continually becoming available. To match this growth, it is natural to
expect that secondary storage technology must also take steps to keep up with
processor technology in performance and reliability.

A major advance in secondary storage technology is represented by the develop-
ment of RAID, which originally stood for Redundant Arrays of Inexpensive Disks.
Lately, the I in RAID is said to stand for Independent. The RAID idea received a very
positive industry endorsement and has been developed into an elaborate set of
alternative RAID architectures (RAID levels 0 through 6). We highlight the main
features of the technology below.

The main goal of RAID is to even out the widely different rates of performance
improvement of disks against those in memory and microprocessors.!? While RAM
capacities have quadrupled every two to three years, disk access times are improving
at less than 10 percent per vear, and disk transfer rates are improving at roughly 20
percent per year. Disk capacities are indeed improving at more than 50 percent per
year, but the speed and access time improvements are of a much smaller magnitude.
Table 13.3 shows trends in disk technology in terms of 1993 parameter values and
rates of improvement, as well as where these parameters are in 2003.

A second qualitative disparity exists between the ability of special microprocessors
that cater to new applications involving video, audio, image, and spatial data pro-
cessing (see Chapters 24 and 29 for details of these applications), with correspond-
ing lack of fast access to large, shared data sets.

The natural solution is a large array of small independent disks acting as a single
higher-performance logical disk. A concept called data striping is used, which uti-
lizes parallelism to improve disk performance. Data striping distributes data trans-
parently over multiple disks to make them appear as a single large, fast disk. Figure
13.12 shows a file distributed or striped over four disks. Striping improves overall
/O performance by allowing multiple I/Os to be serviced in parallel, thus providing
high overall transfer rates. Data striping also accomplishes load balancing among
disks. Moreover, by storing redundant information on disks using parity or some
other error correction code, reliability can be improved. In Sections 13.3.1 and
13.3.2, we discuss how RAID achieves the two important objectives of improved
reliability and higher performance. Section 13.3.3 discusses RAID organizations.

12. This was predicted by Gordon Bell to be about 40 percent every year between 1974 and 1984 and
is now supposed to exceed 50 percent per year.
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Table 13.3
Trends in Disk Technology

Historical Rate of
Improvement per

1993 Parameter Values* Year (%)* 2003 Values**

Areal density 50-150 Mb/sq. inch 27 36 Gb/sq. inch
Linear density 40,000-60,000 bits/inch 13 570 Kb/inch
Inter-track density 1500-3000 tracks/inch 10 64,000 tracks/inch
Capacity 100-2000 MB 27 146 GB

(3.5-inch form factor)
Transfer rate 3—-4 MB/s 22 43-78 MB/sec
Seek time 7-20 ms 8 3.5-6 ms

*Source: From Chen, Lee, Gibson, Katz, and Patterson (1994), ACM Computing Surveys, Vol. 26, No. 2 (June 1994).
Reprinted by permission.

**Source: IBM Ultrastar 36XP and 18ZX hard disk drives.

. Disk 0 Disk 1 Disk 2 Disk 3
Figure 13.12 >
Data striping. File A is
striped across four
disks.

13.10.1 Improving Reliability with raid

For an array of n disks, the likelihood of failure is # times as much as that for one
disk. Hence, if the MTTF (Mean Time To Failure) of a disk drive is assumed to be
200,000 hours or about 22.8 years (typical times range up to 1 million hours), that
of a bank of 100 disk drives becomes only 2000 hours or 83.3 days. Keeping a single
copy of data in such an array of disks will cause a significant loss of reliability. An
obvious solution is to employ redundancy of data so that disk failures can be toler-
ated. The disadvantages are many: additional I/O operations for write, extra com-
putation to maintain redundancy and to do recovery from errors, and additional
disk capacity to store redundant information.

One technique for introducing redundancy is called mirroring or shadowing. Data
is written redundantly to two identical physical disks that are treated as one logical
disk. When data is read, it can be retrieved from the disk with shorter queuing, seek,
and rotational delays. If a disk fails, the other disk is used until the first is repaired.
Suppose the mean time to repair is 24 hours, then the mean time to data loss of a
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mirrored disk system using 100 disks with MTTF of 200,000 hours each is
(200,000)%/(2 * 24) = 8.33 * 10® hours, which is 95,028 years.!* Disk mirroring also
doubles the rate at which read requests are handled, since a read can go to either disk.
The transfer rate of each read, however, remains the same as that for a single disk.

Another solution to the problem of reliability is to store extra information that is not
-h normally needed but that can be used to reconstruct the lost information in case of
disk failure. The incorporation of redundancy must consider two problems: selecting
a technique for computing the redundant information, and selecting a method of
distributing the redundant information across the disk array. The first problem is
addressed by using error correcting codes involving parity bits, or specialized codes
such as Hamming codes. Under the parity scheme, a redundant disk may be consid-
ered as having the sum of all the data in the other disks. When a disk fails, the miss-
ing information can be constructed by a process similar to subtraction.

For the second problem, the two major approaches are either to store the redundant
information on a small number of disks or to distribute it uniformly across all disks.
The latter results in better load balancing. The different levels of RAID choose a
combination of these options to implement redundancy and improve reliability.

.3 13.10.2 Improving Performance with raid

The disk arrays employ the technique of data striping to achieve higher transfer
rates. Note that data can be read or written only one block at a time, so a typical
! transfer contains 512 to 8192 bytes. Disk striping may be applied at a finer granular-
ity by breaking up a byte of data into bits and spreading the bits to different disks.
Thus, bit-level data striping consists of splitting a byte of data and writing bit j to
— the jth disk. With 8-bit bytes, eight physical disks may be considered as one logical
‘ disk with an eightfold increase in the data transfer rate. Each disk participates in
each /O request and the total amount of data read per request is eight times as
much. Bit-level striping can be generalized to a number of disks that is either a mul-
tiple or a factor of eight. Thus, in a four-disk array, bit n goes to the disk which is (n
mod 4).

or one
1 to be The granularity of data interleaving can be higher than a bit; for example, blocks of
s), that a file can be striped across disks, giving rise to block-level striping. Figure 13.12
.single : shows block-level data striping assuming the data file contained four blocks. With
ity. An ‘ block-level striping, multiple independent requests that access single blocks (small
> toler- } requests) can be serviced in parallel by separate disks, thus decreasing the queuing
1 com- time of I/O requests. Requests that access multiple blocks (large requests) can be
itional parallelized, thus reducing their response time. In general, the more the number of
disks in an array, the larger the potential performance benefit. However, assuming
independent failures, the disk array of 100 disks collectively has a 1/100th the relia-
bility of a single disk. Thus, redundancy via error-correcting codes and disk mirror-
ing is necessary to provide reliability along with high performance.

3. Data
logical
7, seek,
naired.
ssof a 13. The formulas for MTTF calculations appear in Chen et al. (1994).
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13.10.3 RAID Organizations and Levels

Different RAID organizations were defined based on different combinations of the
two factors of granularity of data interleaving (striping) and pattern used to com-
pute redundant information. In the initial proposal, levels 1 through 5 of RAID
were proposed, and two additional levels—0 and 6—were added later.

RAID level 0 uses data striping, has no redundant data and hence has the best write
performance since updates do not have to be duplicated. However, its read perfor-
mance is not as good as RAID level 1, which uses mirrored disks. In the latter, per-
formance improvement is possible by scheduling a read request to the disk with
shortest expected seek and rotational delay. RAID level 2 uses memory-style redun-
dancy by using Hamming codes, which contain parity bits for distinct overlapping
subsets of components. Thus, in one particular version of this level, three redundant
disks suffice for four original disks whereas, with mirroring—as in level 1—four
would be required. Level 2 includes both error detection and correction, although
detection is generally not required because broken disks identify themselves.

RAID level 3 uses a single parity disk relying on the disk controller to figure out
which disk has failed. Levels 4 and 5 use block-level data striping, with level 5 dis-
tributing data and parity information across all disks. Finally, RAID level 6 applies
the so-called P + Q redundancy scheme using Reed-Soloman codes to protect
against up to two disk failures by using just two redundant disks. The seven RAID
levels (0 through 6) are illustrated in Figure 13.13 schematically.

Rebuilding in case of disk failure is easiest for RAID level 1. Other levels require the
reconstruction of a failed disk by reading multiple disks. Level 1 is used for critical
applications such as storing logs of transactions. Levels 3 and 5 are preferred for large
volume storage, with level 3 providing higher transfer rates. Most popular use of
RAID technology currently uses level 0 (with striping), level 1 (with mirroring) and
level 5 with an extra drive for parity. Designers of a RAID setup for a given applica-
tion mix have to confront many design decisions such as the level of RAID, the num-
ber of disks, the choice of parity schemes, and grouping of disks for block-level
striping. Detailed performance studies on small reads and writes (referring to [/O
requests for one striping unit) and large reads and writes (referring to 1/O requests for
one stripe unit from each disk in an error-correction group) have been performed.

13.11 New Storage Systems

In this section, we describe two recent developments in storage systems that are
becoming an integral part of most enterprise’s information system architectures.

13.11.1 Storage Area Networks

With the rapid growth of electronic commerce, Enterprise Resource Planning
(ERP) systems that integrate application data across organizations, and data ware-
houses that keep historical aggregate information (see Chapter 27), the demand for
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S=E=

Nonredundant (RAID level 0)

==

Mirrored (RAID level 1)

CEHEEE

Memory-style ECC (RAID level 2)

—EE

Bit-interleaved parity (RAID level 3)

SSSSE

Block-interleaved parity (RAID level 4)

SSESE

Block-interleaved distribution parity (RAID level 5)

SS=E=SE

P + Q redundancy (RAID level 6)

Figure 13.13
Multiple levels of RAID. From Chen, Lee, Gibson, Katz, and Patterson (1994),
ACM Computing Survey, Vol. 26, No. 2 (June 1994). Reprinted with permission,
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storage has gone up substantially. For today’s Internet-driven organizations, it has
become necessary to move from a static fixed data center oriented operation to a
more flexible and dynamic infrastructure for their information processing require-
ments. The total cost of managing all data is growing so rapidly that in many
instances the cost of managing server-attached storage exceeds the cost of the server
itself. Furthermore, the procurement cost of storage is only a small fraction—typi-
cally, only 10 to 15 percent of the overall cost of storage management. Many users of
RAID systems cannot use the capacity effectively because it has to be attached in a
fixed manner to one or more servers. Therefore, large organizations are moving to a
concept called Storage Area Networks (SANs). In a SAN, online storage peripherals
are configured as nodes on a high-speed network and can be attached and detached
from servers in a very flexible manner. Several companies have emerged as SAN
providers and supply their own proprietary topologies. They allow storage systems
to be placed at longer distances from the servers and provide different performance
and connectivity options. Existing storage management applications can be ported
into SAN configurations using Fiber Channel networks that encapsulate the legacy
SCSI protocol. As a result, the SAN-attached devices appear as SCSI devices.

Current architectural alternatives for SAN include the following: point-to-point
connections between servers and storage systems via fiber channel, use of a fiber-
channel-switch to connect multiple RAID systems, tape libraries, and so on to
servers, and the use of fiber channel hubs and switches to connect servers and stor-
age systems in different configurations. Organizations can slowly move up from
simpler topologies to more complex ones by adding servers and storage devices as
needed. We do not provide further details here because they vary among SAN ven-
dors. The main advantages claimed are the following:

® Flexible many-to-many connectivity among servers and storage devices
using fiber channel hubs and switches

# Up to 10 km separation between a server and a storage system using appro-
priate fiber optic cables

® Better isolation capabilities allowing nondisruptive addition of new periph-
erals and servers

SANG s are growing very rapidly, but are still faced with many problems, such as com-
bining storage options from multiple vendors and dealing with evolving standards
of storage management software and hardware. Most major companies are evaluat-
ing SAN as a viable option for database storage.

13.11.2 Network-Attached Storage

With the phenomenal growth in digital data, particularly generated from multi-
media and other enterprise applications, the need for high performance storage
solutions at low cost has become extremely important. Network-Attached Storage
(NAS) devices are among the latest of storage devices being used for this purpose.
These devices are, in fact, servers that do not provide any of the common server
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services, but simply allow the addition of storage for file sharing. NAS devices allow
vast amounts of hard disk storage space to be added to a network and can make that
space available to multiple servers without shutting them down for maintenance
and upgrades. NAS devices can reside anywhere on a Local Area Network (LAN)
and may be combined in different configurations. A single hardware device, often
called the NAS box or NAS head, acts as the interface between the NAS system and
network clients. These NAS devices require no monitor, keyboard or mouse. One or
more disk or tape drives can be attached to many NAS systems to increase total
capacity. Clients connect to the NAS head rather than to the individual storage
devices. A NAS can store any data that appears in the form of files, such as email
boxes, Web content, remote system backups, and so on. In that sense, NAS devices
are being deployed as a replacement for traditional file servers.

NAS systems strive for reliable operation and easy administration. They include
built-in features such as secure authentication, or the automatic sending of email
alerts in case of error on the device. The NAS devices (or appliances, as some ven-
dors refer to them) are being offered with a high degree of scalability, reliability,
flexibility and performance. Such devices typically support RAID levels 0, 1, 5.
Traditional Storage Area Networks (SANs) differ from NAS in several ways.
Specifically, SANs often utilize Fiber Channel rather than Ethernet, and a SAN often
incorporates multiple network devices or endpoints on a self-contained or private
LAN, whereas NAS relies on individual devices connected directly to the existing
public LAN. Whereas Windows, UNIX, and NetWare file servers each demand spe-
cific protocol support on the client side, NAS systems claim greater operating sys-
tem independence of clients.

13.12 Summary

We began this chapter by discussing the characteristics of memory hierarchies and
then concentrated on secondary storage devices. In particular, we focused on mag-
netic disks because they are used most often to store online database files.

Data on disk is stored in blocks; accessing a disk block is expensive because of the
seek time, rotational delay, and block transfer time. To reduce the average block
access time, double buffering can be used when accessing consecutive disk blocks.
Other disk parameters are discussed in Appendix B. We presented different ways of
storing file records on disk. File records are grouped into disk blocks and can be
fixed length or variable length, spanned or unspanned, and of the same record type
or mixed types. We discussed the file header, which describes the record formats and
keeps track of the disk addresses of the file blocks. Information in the file header is
used by system software accessing the file records.

Then we presented a set of typical commands for accessing individual file records
and discussed the concept of the current record of a file. We discussed how complex
record search conditions are transformed into simple search conditions that are
used to locate records in the file.
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Three primary file organizations were then discussed: unordered, ordered, and
hashed. Unordered files require a linear search to locate records, but record inser-
tion is very simple. We discussed the deletion problem and the use of deletion
markers.

Ordered files shorten the time required to read records in order of the ordering field.
The time required to search for an arbitrary record, given the value of its ordering
key field, is also reduced if a binary search is used. However, maintaining the records
in order makes insertion very expensive; thus the technique of using an unordered
overflow file to reduce the cost of record insertion was discussed. Overflow records
are merged with the master file periodically during file reorganization.

Hashing provides very fast access to an arbitrary record of a file, given the value of
its hash key. The most suitable method for external hashing is the bucket technique,
with one or more contiguous blocks corresponding to each bucket. Collisions caus-
ing bucket overflow are handled by chaining. Access on any nonhash field is slow,
and so is ordered access of the records on any field. We discussed two hashing tech-
niques for files that grow and shrink in the number of records dynamically:
extendible and linear hashing.

We briefly discussed other possibilities for primary file organizations, such as B-
trees, and files of mixed records, which implement relationships among records of
different types physically as part of the storage structure. Finally, we reviewed the
recent advances in disk technology represented by RAID (Redundant Arrays of
Inexpensive [Independent] Disks).

Review Questions
1.1, What is the ditference between primary and secondary storage?
12.2. Why are disks, not tapes, used to store online database files?

13.3. Define the following terms: disk, disk pack, track, block, cylinder, sector,
interblock gap, read/write head.

1.4, Discuss the process of disk initialization.
13.5. Discuss the mechanism used to read data from or write data to the disk.
136 What are the components of a disk block address?

137 Why is accessing a disk block expensive? Discuss the time components
involved in accessing a disk block.

2.5, How does double buffering improve block access time?

What are the reasons for having variable-length records? What types of sep-
arator characters are needed for each?

& Discuss the techniques for allocating file blocks on disk.



