
.nupt.,. ti

The Relational Algebra
and Relational Galculus

n this chapter we discuss the two formal languages
for the relational model: the relationai algebra and

the relational calculus. As we discussed in Chapter 2, a data model must include a
set of operations to manipulate the database, in addition to the data model's con-
cepts for defining database structure and constraints. The basic set ofoperations for
the relational model is the relational algebra. These operations enable a user to
specifi ' basic retrieval requests. The result of a retrieval is a new relation, which rnay
have been formed from one or more relations. The algebra operations thus produce
new relat ions, which can be further marr ipulated using operat ions of the same
algebra. A sequence of relational ir lgebra operations forms a relational algebra
expression, whose result will also be a relation that represents the result of a data-
base query (or retrieval request).

The relational algebra is very important for several reasons. First, it provides a for-
mal foundation for relational model operations. Second, and perhaps more impor-
tant, it is used as a basis for implernenting and optimizing queries in relational
database management systems (RDBMSs), as we discuss in Part 4. Third, sorne of its
concepts are incorporated into the SQL stanclard query lnnguage for RDBMSs.
Although no commercial RDBMS in use today provides an interface for relational
algebra queries, the core operations and functions of any reiational system are based
on relational algebra operations. We will define these operations in detail in subse-
cuent sections.

173

174 Chaoter 6 The Relat ional Aloebra and Relat ional Calculus

Whereas the algcbra def lnes a sct of operat ions for the relat ional model, the
relational calculus provides a l-righcr-level declarativc r.rotation for specifying rela-
tional queries. A relational calculus expression creates a new reiation, which is spec-
if iecl in terrns of variables that range over rows of the stored database relations (in
tuple calculus) or over columns o[the stored relations (in domain calcuh.rs). In a
calculus expression, there is tro <trdcr o.f operatiorrs to specify how to retrieve the
qr.rcry resul t -a calculus expression speci f ies only what inforr .nat ion the resul t
should contain. This is the main distinguishing featr.rrc between relatior.ral algebra
ancl relatior.ral calculus. The relational calcr.rlus is ir.r.rportar.rt because it has a firm
basis in mirtheuraticirl logic and because the standard query language (SQL) for
RDBMSs hirs sonre of its foundations ir.r the tuple rclationirl calculus.r

The relational alg,ebra is often consiclered to be ar.r integral part of the relational data
model. Its operations cirn be divided into two groups. One group includes set oper-
ations from mathenratical set theory; these are applicable because each relation is
defined to be a sct of tuples in the fbrmal relational nrodel. Set operations include
UNION,INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT. The otheT
groupr consists of operations developed specifically for relational databases-these
include SELECT, PROJECT, and JOIN, aurong others. First, we describe the SELECT
and PROJECT operat ions in Sect ion 6.1 because thcy are unaryoperat ions that
operate on singlc rclations. Then wc cliscuss set operations in Section 6.2. In Section
6.3, rve discuss JOIN and other cor.r.rplex binary operations, whicl-r opcrate on two
tables. The COMPANY relat ionir l database shown in Figure 5.6 is used for our
exan.rples.

Some common database requests cannot be perfbrmed with the original relational
algebra operations, so additional clperations were created to express these requests.
These include aggregate functions, which are operations that can sumntarize data
from the tablcs, as rvell as additional types of JOIN and UNION operations. These
oprerations rvere aclcled to the original relational algebra becaruse of their importance
to many databasc applications, and are described ir-r Section 6.4. We give examples
of specif ing cir.reries that use relational operations irt Section 6.5. Some of these
queries are used ir.r subsequent chapters to i l lustrate various languages.

In Sections 6.6 and 6.7 we describc the other mair.r fcrrmal language for relational
databases, the relational calculus. ' l 'here are two variations of relational calculus.
The tuple relirt ionirl calculus is dcscribed in Section 6.6 and the domain relational
calculus is c lescr ibcd in Sect ion 6.7. Some of the SQL constructs discussed in
Chapter 8 are based on the tuple relational calculus.' l 'he relational calculus is a for-
mal language, bascd on the brirncl-r of nrathen-ratical logic called predicate calculus.2
In tuple relat ional calculus, var iables range over tuplcs, whereas in domain rela-
tional calculus, variables range over the don-rains (values) of attributes. In Appendix
I) u.e give an overvierv of the Query-By-Example (QBE) language, which is a graph-

L SOL is based on tuple relatronai calculus, but a so incorporates some of the operat ions f rom the rela-
t ional a gebra and i ts extensions, as we shal l see in Chapters B and 9,

2, In th is chapter no {ami l iar ty wrth f r rst-order predrcate calculus-which deals wl th quant i f ed varables
and values-rs assunrcd.

6.1 Unary Relational Operations: SELECT and PROJECT

ical user-friendly relational language based on domain relatior-ral calculus. Section
6.8 summarizes the chnpter.

For the reader rvho is interested in a less detailed introduction to formal relatior-ral
languages, Sect ions 6.4,6.6, and 6.7 may be skipped.

6.1 Unary Relat ional Operations:
SELECT and PROJECT

6.1.1 The SELECT Operat ion
The SELECT operation is used to select a subse r of the tuples from a relation that sat-
isfies a selection condition. One can consider the SELECT operation to be a fi l ter
that keeps only those tuples that satisfy n qualif ing condition. The SELECT opera-
tion can also be visualized as a lrcrizttntol portit ion of the relation into two sets of
tuples-those tuples that satis$' the cor-rdit ion and are selected, and those tuples
that do not satisfy the condition and are discarded. For example, to select the
EMPLOYEE tuples whose department is 4, or those whose salary is greater than
530,000, we can individually specifi, each of these two conditions with a SELECT
operation as follows:

oDno=4(EM PLOYEE)
Os"r"ryr:ooot,(E M PLOYE E)

In general, the SELECT operation is denoted by

O<s.' lcctio,r .un,l it iunt (R)

where the symbol o (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression specified on the attributes of relation R.
Notice that R is generally a relational algebra expressiott whose result is a relation-
the simplest such expression is just the name of a database relation. The relation
resulting from the SELECT operation has the same attribufes as R.

The Boolean expression specified in <selection condition> is made.up of a number
of clauses of the form

(attribute name> <compa1i561t op> <constant value),

or
(attribute nanle> <comparison op) (attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <) <, >, >, l}, and <constant vaiue> is a constant value
from the attribute domain. Clauses can be arbitrari ly connected by the Boolean
operators and, or, and not to tbrm a generai seiection condition. For exampie, to
select the tuples fbr all ernployees rvho either work in department 4 and make over

175

rodel , the
:r ir-rg rela-
-h is spec-
at ions (in
.r l t rs) . In a
trieve the
t l-re result
.rl algebra
ras a firm
SQL) for

ior-rtrl data
r Set Op€r-
relation is
irs include
l-he other

.cs-these
,c SELECT
tions that
ln Section
rtr- on two
cl for our

relational
-' requests.
'rdrize data
rns. These
nportance
'examples
e of these

relational
I calculus.
relational

;cussed in
us is a for-
' calculus.2
'lain rela-
.{ppendix
is a graph-

.- ine rera-

: . ar ables

174 Chapter 6 The Relat ional Algebra and Relatronal Calculus

Whereas the algebra def ines a set of operat iorrs for the relat ional model, the
relational calculus provides a higher-level declarative notatior.r for specifying rela-
tional queries. A relational calculus expression creates a new relation, which is spec-
if ied in terr.trs of variables that range over rows of thc stored database relations (in
tuple calculus) or ovcr columns of the stored relatior.rs (in don-rain calculus). In a
calculus expression, there is rrtt order o.l- operatiorts to specify how to retrieve the
query resul t -a calculus exprcssion speci f ies only what infbrmat ion the resul t
should contain. This is the n.rair.r distinguishing feature between relational algebra
and relational calculus. The relational calculus is ir.r 'rportant because it has a firm
basis in nrathematic i r l logic and because the standard query language (SQL) for
RDBMSs has some of its foundations in the tuple relational calculus.r

The relational algebra is often considered to be an integral part ol 'the relational data
model. Its operatior.rs cau be divicled into two groups. One group includes set oper-
ations fron-r matherratical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model. Set operations include
UNION,INTERSECTION, SET DIFFERENCE, ANd CARTESIAN PRODUCT. ThC OthCT
group consists of operations developed specifically for relatior.ral databases-these
include SELECT, PROJECT, and JOIN, antong others. First, we describe the SELECT
and PROJECT operat ions in Sect ion 6.1 because they are unaryoperat ions that
operate on single relations. Ther.r we discuss set operations in Section 6.2. In Section
6.3, we discuss JOIN and other complex binary operations, which operatc on two
tables. The COMPANY relat ior . ra l database shown in Fieure 5.6 is used for our
examples.

Some common datatrirse requests cannot be perforn.red with thc original relational
algebra operations, so additional operations were created to express these requests.
These include aggregate functions, which are operations that can sumnnrize data
from the tables, as well as additional types of JOIN and UNION operations. These
operations were added to the original relational algebra because of their importance
to many database applications, and are described in Section 6.4. We give examples
of specif,, ing queries that use relational operations in Section 6.5. Some of these
queries are used in subsequent chapters to i l lustrate various languages.

In Sectior.rs 6.6 and 6.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus.
The tuple relationarl calculus is described ir.r Section 6.6 and the domain relational
calculus is descr ibed in Sect ion 6.7. Some of the SQL constructs discussed in
Chapter 8 are based on the tuple relational calculus. The relational calculus is a for-
mal language, based on the branch of mathematical logic called predicate calculus.2
In tuple relational calculus, variables range over tuples, whercas in domain rela-
tional calcuh.rs, variirbles range over the dor.nains (values) of attributes. In Appendix
D rve give an overview of the Qucry-By-Exan-rple (QBE) language, which is a graph-

1. SOL is based on tuple relat onal calculus, but a lso incorporates some of the operat ions f rom the rela-
t ional a lgebra and i ts extensions, as we shal l see in Chapters B and 9,

2. In th is chapier no famrl iar ty wth f r rst-order predicate caLculus-which deals wi th quani i f ied varrables
and values- s assumed.

6.1 Unarv Relational Operations: SELECT and PROJECT

ical user-friendly relatior-ral languagc lrascd on domnin relationai calculus. Section
6.8 sumrnarizes the chapter.

For the reader rvho is ir.rterested ir.r a less cletailed introduction to formal relational
languages, Sections 6.4, 6.6, and 6.7 r.na1,be skipped.

6.1 Unary Relational Operations:
SELECT and PROJECT

6.1.1 The SELECT Operation
The SELECT operation is used to select a srrb-se t of the tuples fiom a relation that sat-
isfies a selection condition. One c:rn consider the SELECT operation to be a./r-lrer
that keeps only those tuples that satisf,v a qualiff ing condition. The SELECT opera-
tion can also be visualized as a horizotttol portit iott of the relation into two sets of
tuples-those tuples that satisfy the conclit ion and are selected, and those tuples
that do r-rot satisfu the cor-rdit ion and irre discarded. For example, to select the
EMPLOYEE tuples whose department is 4, or those whose salary is greater than
$30,000, we can indir.idually specil-v each of these two conditions with a SELECT
operation as follows:

oDno=1(EM PLOYEE)
OS"t",yr-,ogoo(EM PLOYEE)

In general, the SELECT operation is denoted by

O<sel. 'cti 'n .,rn.l it i ,,n t (1?)

where the symbol o (sigma) is used to clenote the SELECT operator and the seiec-
t ion condi t ion is a Boolean expression speci f ied on the at t r ibutes of re lat ion R.
Notice that R is generally arelational olgeltra expressiott whose result is a relation-
the simplest such expression is just the name of a database relation. The relation
resulting from the SELECT operation has the same nttribrrtes as R.

The Boolear-r expression specified in <selection condition> is made up of a nurnber
of clauses of the fornr

<attr ibute name> <cornpar ison op> <constant value),

or

<attribute nanre> <comparison op) (attribute name>

where <attribute nanre> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, <, >, >, l}, trnd <constant value> is a constant value
from the ert t r ibute domain. Clauses can be arbi t rar i ly connected by the Boolean
operirtors arrtl, or, and rrot to form a gcneral selection condition. For example, to
select the tuples for all emplovees rvho either rvork in department 4 and make over

't75

'clel, the
ing rela-
is spec-
ions (in
-rs) . In a
ie've the
c result
algebra

saf i rm
QL) for

nal data
et oper-
lat ion is
include
re other
-these
SELECT
rns that
Section
on two
tbr our

lational
-'quests.
ize data
.. These
ortance
.irmples
rf these

Lat ional
rlculus.
lat ional
ssed in
s a for-
lculus.2
n rela-
pendix
, ' r rnh-

176 Chaoter 6 The Relational Aloebra and Relational Calculus

$25,000 per year, or work in department 5 and make over $30,000, we can specifr
the fol lowing SELECT operat ion:

O tDno-4 AND Salary>2s000) oR (Dno=5 AND Salary>30{.r001(EMPLOYEE)

The result is shown in Figure 6.1(a).

Notice that the comparison operators in the set i=, (, (, >, >, l] apply to attributes
whose domains are ordered values, such as numeric or date domains. Domains of
strings of characters are considered ordered based on the collating sequence of the
characters. If the domain of an attribute is a set of unordered values, then only the
comparison operators in the set i=, l] can be used. An example of an unordered
domain is the domain Color = { ' red' , 'b lue' , 'greenl 'whi te ' , 'yel low' , . . . } where no
order is specified among the various colors. Some domains allow additional types of
comparison operators; for example, a domain of character strings may allow the
comparison operator SU BSTRI NG_OF.

In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each tuple r in R. This is done by
substituting each occurrence of an attribute A; in the selection condition with its
value in the tuple tlA).If the condition evaluates to TRUE, then tuple r is selected.
All the selected tuples appear in the result of the SELECT operation. The Boolean
conditions AND, OR, and NOT have their normal interpretation, as follows:

* (condl AND cond2) is TRUE i f both (condt) and (cond2) are TRUE; other-
wise, it is FALSE.

Figure 6.1
Results of SELECT and PROJECT operations. (a) o(Dno=4ANDSaary)25000) oR(Dno=SANDSaary)3oooo)(EN4PLOYEE).
(b) 7rrnr.". Fna.e suru,y(EMPLOYEE), (c) [s"", s"",y(EMPLOYEE),

(a)

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno
Frankl in T Wong 333445555 1 955-1 2-08 638 Voss, Houston, TX M 40000 888665555 q

Jenni fer a Wallace 987654321 1941-06-20291 Berry, Bellaire, TX F 43000 888665555 4
Ramesh K Narayan 666884444 1 962-09-1 5 975 Fire Oak. Humble. TX M 38000 333445555 R

(b)

Lname Fname Salary
Smith JOnn 30000
Wong Frankl in 40000
Zelaya Al ic ia 25000
Wallace Jenni fer 43000
Naravan Ramesh 38000
Enql ish Joyce 25000
Jabbar Ahmad 25000
Borg JAMCS 55000

(c)

Sex Salary
M 30000
M 40000
F 25000
F 43000
M 38000
M 25000
M 55000

6.1 Unarv Relational Operations: SELECT and PROJECT

': : (condl OR cond2) is TRUE i f e i ther (condl) or (cond2) or both are TRUE;
otherwise, it is FALSE.

; (NOT cond) is TRUE if cor-rd is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover,
the selection operation is applied to eoclr nryle individually;hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting frotn
a SELECT operation-its number of irttr ibutes-is the sarne as the degree of R. The
number of tuples ir-r the resulting relatior-r is ahvays less than or etlual to the number
of tuples in R. That is, lo. (R)l < lRl for any condition C. The fraction of tuples
selected by a selection condition is referred to as the selectivity ofthe condition.

Notice that the SELECT operation is commutative; that is,

o<..,ndl > (o<.,,na:r (R)) : o..,,,,,1., (o..nna r, (R))
Hence, a sequence of SELECTs can be applied in any order. In addition, we can
always combine a cascade of SgLECt operations ir-rto a single SELECT operation
with a conjunctive (AND) condition; that is,

o <.un. l r>(o<.,rn,r : : - , (. . . (o . , . , ,na, , , (R)) . . .))
= O<condl> AND . :concl l : AND . . .AND . . , ,n. i , , . (R)

6.1.2 The PROJECT Operation
If we think of a relation as a table, the SELECT operation selects some of the rows
from the table while discarding other rorvs. The PROJECT operation, on the other
hand, seiects certain colunnts from the tabie and discards the other columns. If we
are interested in only certain attributes of a reiation, lve use the PROJECT operation
to project the relation over these attributes only. Therefore, the result of the
PROJECT operation can be visualized as a vertical portit ion of the relation into two
relations: one has the needed columns (attributes) and contains the result of the
operation and the other contains the discarded columns. For example, to l ist each
employee's first and last name and salary, we can use the PROJECT operation as
follows:

ftLname, Fname, Surury(EM PLOYEE)

The resulting relatior.r is showr.r in Figure 6.1(b). The general form of the PROJECT
operation is

ft<attr ibute r i r t t (R)

where n (pi) is the symbol used to represent the PROJECT operation, and <attribute
list> is the desirecl l ist of attributes fiom the attributes of relation R. Again, notice
that R is, in general, a relotional ttlgebra expressiotl whose result is a relation, which in
the simplest case is just the name of a database relation. The result of the PROJECT
operation has only the attributes specified in <attribute l ist> in the sanrc order ss
they appear in the l ist. Hence, its degree is equal to the number of attributes in
<attribute l ist>.

' t77

r specify

tributes
nains of
:e of the
only the
ordered
here no
tvpes of
Ilow the

rvs. The
done by
rvith its

selected.
Boolean

:: other-

178 Chaoter 6 The Relational Aloebra and Relational Calculus

If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The PROJECT operation removes any duplicate tuples, so the result of the
PROJECT operation is a set of tuples, and hence a valid relation. This is known as
duplicate elimination. For example, consider the following PROJ ECT operation:

7Ig",, 5"1",r(EM PLOYEE)

The result is shown in Figure 6.1(c). Notice that the tuple <'F', 25000> appears only
once in Figure 6.1(c), even though this combination of values appears twice in the
EMPLOYEE relation. Duplicate elimination involves sorting to detect duplicates and
hence adds more processing. If duplicates are not eliminated, the result would be a
multiset or bag of tuples rather than a set. This was not permitted in the formal
relational model, but is allowed in practice. In Chapter 8 we rvil l see that the user
can control whetl-rer duplicates should be eliminated or not.

The number of tuples in a relation resulting fron-r a PROJECT operation is always
less than or equal to the nur.nber of tuples in R. If the projection l ist is a superkey of
R-that is, it includes some key of R-the resulting relation has the same number of
tuples as R. Moreover,

f i . l iur , , (f i . , t iu:r(R)) = f t . t i r , r . (R)

as long as <list2> contains the attributes in <listl>; otherwise, the left-hand side is
an incorrect expression. It is also noteworthy that cornmutativity does not hold on
PROJECT.

6.1.3 Sequences of Operations and
the RENAME Operat ion

The relations showr-t in Figure 6. I do not have any nalnes. In general, we may want
to apply several relational algebra operatiorls one after the other. Either we can write
the operations as a single relational algebra expression by r-resting the operations,
or we can apply one operation at a tir.ne and create intermediate result relations. In
the latter case, we must give names to the relations that hold the intermediate
results. For example, to retrieve the first natne, last name, and salary of all employ-
ees who work in departmer.rt number 5, we must apply a SELECT and a PROJECT
operation. We can write a single relational algebra expression as follows:

ft Fn".", Lname, Satary(6Dno=;(EM PLOYE E))

Figure 6.2(a) shows the result of this relational algebra expression. Alternatively, we
can explicit ly show the sequence of operations, giving a name to each intermediate
relation:

DEPS_EM PS<- oDno=5(EM PLOYEE)
RESU LT<-- ftFnur", Lna.e, Satary(DEP5-EM PS)

It is ofter-r sirnpler to break down a complex sequence of operations by specif ing
intermediate result relations thirn to write a single relational algebra expression. We
can also use this technicue to rename the attributes in the intermediate and result

e likely to
.rlt of the
known as
ration:

rears only
ice in the
Lcates and
ould be a
re formal
t the user

is always
perkey of
r tnnber of

nd side is
t hold on

(b)
TEMP

6.1 Unary Relational Operations: SELECT and PROJECT 179

Figure 6.2
Resul ts of a sequence of operat ions.

(a) 7Is., . , , , . . Lna,n". su..,(oD. =.(EMPLOYEE)).
rb) Using i r rerrrediate relat ions and 'e 'an rg oi at t r rbute: .

(a)

Fname Lname Salary
JOnn Smith 30000
Frankl in Wono 40000
Ramesh Naravan 38000
Joyce Enql ish 25000

Fname Mini t Lname Ssn Bdate Address Sex Salary Super ssn Dno
John B Smith 1 23456789 965-01-09 731 Fondren, Houston,TX M 30000 224//FFFF 5
Frankl in T Wono 333445555 955-1 2-08 638 Voss. Houston.TX M 40000 888665555 5
Ramesh K Narayan 666884444 962-09-1 5 975 Fire Oak, Humble,TX M 38000 333445555 5
Joyce Enol ish 453453453 972-O7-31 5631 Rice, Houston, TX F 25000 333445555 5

K

First name Last name Salary
JOnn Smith 30000
Frankl in Wonq 40000
Ramesh Narayan 38000
JOyCe Enol ish 25000

may want
can write

'f)erations,
at ions. In
rrmediate
lemploy-
PROJECT

itively, we
3rmediate

ipecirying
rssion. We
Jnd result

rclations. This can be useful in connection with more complex operations such as
UNION and JOIN, as we shall see. To ren.lr-ne the attributes in a relation, we simplv
list the r.rew attribr.rtc nilnles in parcntheses, as in the following exirmple:

TEM P <- oeno=;(EM PLOYEE)
R(First_name, Last_name, Salary) € ftFn".", Lname, sarary(TEMP)

These two operations are i l lustrated in Figure 6.2(b).

If no renaming is applied, the names of the attributes in the resulting rclation of a
SELECT operation are the same as those in the original relation and in tl-re same
ordcr. For a PROJECT operation with no renaming, the resulting relation has the
si.ure attribute nanles as those in the rrroiection l ist and in the same order in rvhich
they appear in the l ist.

We can also define a fbrrnarl RENAME operation-rvhich can rename eithcr the rela-
t ior . r n i rme or the t r t t r ibute names, or both-as a urt i ' l rv operator. ' l 'he general
RENAME operation rvhen applied to a relation R of degree n is denotecl b1' an1'of the
followin g three fbrn'rs:

O.srH,,s, , r , , r (R) or P.s(R) or PrH,.n, ,s, , r (R)
\\ 'here the symbol p (rho) is used to denote the RENAME operator, S is thc ltew rela-
t ion nirnte, and Br, lJ , , . . . ,8, , are the nerv at t r ibute names. The f i rst expression
relti lnes both the relation and its irttr ibutes, the second renames the relation onlr',

180 Chapter 6 The Relational Algebra and Relational Calculus

and the third renames the attributes only. If the attributes of R are (A 1, A2, . . . , A,)
in that order, then each A; is renamed as B;.

6.2 Relational Algebra Operations
from Set Theory

6.2.1 The UNION, INTERSECTION, and MINUS Operat ions
The next group of relational algebra operations are the standard mathematical
operations on sets. For example, to retrieve the Social Security Numbers of all
employees who either work in department 5 or directly supervise an employee who
works in department 5, we can use the UNION operation as follows:3

DEPS_EMPS (- oeno=5(EM PLOYEE)
RESU LTl <- nr"n(DEPs_EMPS)
RESU LT2(Ssn) € ftsupu,_"s"(DEPs_EM PS)
RESULT <- RESULT1 U RESULT2

The relation RESULTl has the Ssn of all employees who work in department 5,
whereas RESULT2 has the Ssn of all employees who directly supervise an employee
who works in department 5. The UNION operation produces the tuples that are in
ei ther RESULT1 or RESULT2 or both (see Figure 6.3). Thus, the Ssn value
'333445555'appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in vari-
ous ways, including UNION, INTERSECTION, and SET DIFFERENCE (also cal led
MINUS). These are binary operations; that is, each is applied to two sets (of tuples).
When these operations are adapted to relational databases, the two relations on
which any of these three operations are applied must have the same type of tuples;
this condition has been called union compatibil i ty. Two relations R(A,, A2, . . . , A,)
and S(-8,, 82, . . . ,8,,) are said to be union compatible if they have the same degree n

Figure 6.3
Resul t of the
UNION operat ion
RESULT <_ RESULTl
U RESULT2.

3, As a s ingle relat ional a lgebra expression, th is becomes
Resul t <- r5rn (opno=5 (EMPLOYEE)) , nruo", , .n (opno=5 (EMPLOYEE))

RESULT
Ssn

1 23456789
333445555
666884444
453453453
888665555

6.2 Relational Algebra Operations from Set Theory

and if dom(A;) = dom(B;) for I < i < n. This means that the two relations have the
same number of attributes and each corresponding pair of attributes has the same
domain.

We can def ine the three operat ions UNION,INTERSECTION, and SET DIFFERENCE
on two union-compatible relations R and S as follows:

r UNION: The result of this operation, denoted by R u S, is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate
tuples are eliminated.

m INTERSECTION: The result of this operation, denoted by R n S, is a relation
that includes all tuples that are in both R and S.

s SET DIFFERENCE (or MINUS): The resul t of th is operat ion, denoted by
R - S, is a relation that includes all tuples that are in R but not in S.

We will adopt the convention that the resulting relation has the same attribute
names as the frsr relation R. It is always possible to rename the attributes in the
result using the rename operator.

Figure 6.4 i l lustrates the three operations. The relations STUDENT and INSTRUCTOR
in Figure 6.4(a) are union compatible and their tuples represent the names of stu-
dents and instructors, respectively. Tl-re result of the UNION operation in Figure
6.4(b) shows the names of all students and instructors. Note that duplicate tuples
appear onlyonce in the result. The result of the INTERSECTION operation (Figure
6.a(c)) includes only those who are both students and instructors.

Notice that both UNION and INTERSECTION are cotttftuttotive operations; that is,

RUS=SuR and RnS=SnR

Both UNION and INTERSECTION can be treated as n-ary operations applicable to
any number of relations because both are associtrt ive operotiotts; that is,

Ru(SuT)=(RuS)uT and (RnS)nT=Rn(SnT)

The MINUS operation is not cotrrrtrutative; that is, in general,

R-S*S-R

Figure 6.4(d) shows the names of students who are not instructors, and Figure
6.4(e) shows the names of instructors who are not studer.rts.

Note that INTERSECTION can be expressed in terms of union and set difference as
follows:

RoS=RuS-(R-S)-(S-R)

6.2.2 The CARTESIAN PRODUCT
(CROSS PRODUCT) Operation

Next, we discuss the CARTESIAN PRODUCT operat ion-also known as CROSS
PRODUCT or CROSS JOIN-which is clcnoted by x. This is also a binary set opera-

181

, Ar)

.s
matical
s of all
'ee who

nent 5,
rployee
t are in
r value

in vari-
r called
tuples).
ions on
r tuples;

. . ,Ar)
['gree n

182 Chapter 6 The Relat ional Algebra and Relat ional Calculus

(A) STUDENT INSTRUCTOR

Fn Ln
Susan Yao
Ramesh Shah
JOnnny Kohler
Barbara Jones
Amy Ford
Jimmy Wang
Ernest Gi lbert

Fn LN

Susan Yao
Ramesh Shah

INSTRUCTOR
Fname Lname
John Smith
Ricardo Browne
Susan Yao
Francis Johnson
Ramesh Shah

(b)

Fn LN

Johnny Kohler
Barbara JONES

Amv Ford
Jimmy Wang
Ernesl Gi lber l

Figure 6.4
Tle set operatons UNION INTERSECTION, ar-d MINUS. ra) Two ln ior-compat ib,e relar ions,
(b) STUDENT U INSTRUCTOR (c) STUDENT. INSTRUCTOR. (d) STUDENT - INSTRUCTOR
(e) INSTRUCTOR - STUDENT.

(e)(d)(c)

Fn LN

Susan Yao
Ramesh Shah
JOnnny Kohler
Barbara Jones
Amy Ford
Jimmy Wang
Ernest Gi lbert
John Smith
Ricardo Browne
Francis JOnnson

Fname Lname
John Smith
Ricardo Browne
Francis Johnson

tion, but the relations on rvhich it is applied do not have to be union compatible. In
its binary forrn, this set operation produces a new element by cornbining everv
member (tuple) f iom one relation (set) with every member (tuple) from the other
relat ion (set) . ln general , the resul t of R(A,, A. , . . . ,A, ,) x S(Br, Br, . . . ,8, ,) is a reia-
t ionQivi thdegreen+nlat t r ibutesQ(A,,A., . . . ,A,r81,82,. . . ,8, , ,) , inthatorder.
The resr.rlt ing relation Q has one tuple for each combination of tuples-one from R
and one frorn S. Hence, if R has ir^ tuples (denoted as lRl = np), and S has n, tuples,
then R x S r,vill have rt* ':' rt. tuples.

The ru-ary CARTESIAN PRODUCT operation is an extension of t ire above concept,
r 'r4rich produces new tuples by concatenating all possible combinations of tuples
fi'or-r.r n underlying relations. The operation applied by itself is generally meaning-
less. It is useful rvhen follorved by a selection that matches values of attributes com-
ing frorn the component relations. For exarnple, suppose that we want to retrieve a
list of names of each female employee's dependents. We can do this as follows:

6.3 Binary Relat ional Operat ions: JOIN and DIVISION

FEMALE_EM PS <- o5",=.p,(EMPLOYEE)
EMPNAMES € [Fn".u. Lnu.". s.n(FEMALE_EMPS)
EMP_DEPEN DENTS E EMPNAMES X DEPEN DENT
ACTUAL_D E PE N D ENTS (- os"n-gssn (E M P_D EPE N D E NTS)
RESULT € [Fn".", Lname, Dependent nu."(ACTUAL DEPENDENTS)

The resulting relations from this sequence of operations are shorvn in Figure 6.5.
The EMP-DEPENDENTS relat ion is the resul t of apply ing the CARTESIAN
PRODUCT operation to EMPNAMES fionr Figure 6.5 rvith DEPENDENT from Figurc
5.6. In EMP_DEPENDENTS, every tuplc fiorr EMPNAMES is cor.r.rbined with every
tuple from DEPENDENT, giving a rcsult that is not very nrcar.ringful. We want to
combine a female enrployee tuple only with her particular clepender.rts-namely, the
DEPENDENT tuple s whose Essn valucs nratch the Ssn valuc of the EMPLOYEE tuple.
The ACTUAL DEPENDENTS reiat ion accompl ishes this. The EMP-DEPENDENTS
relation is a good exarnple of the case rvl 'rere relational algebra can be correctl.v
applied to yield results that make no sense at :rl l . Therefbre, it is the responsibil i tv of
the user to n-rake sure to apply only meaningfirl operatiolts to relations.

The CARTESIAN PRODUCT creates tuplcs with the con'rbined irttr ibutes of trvo rela-
tions. We car-r SELECT related tr.rples only fiorn the two relatious by specif,, ing an
appropriate selcctior.r condition as rvc did in the preceding example. Because this
sequence of CARTESIAN PRODUCT firl lorved by SELECT is r.rscd quite commonly to
identifr and select related tuples fion-r trvo relations, a special operation, called JOIN,
was created to specifv this sequence as a single operation. Wc discuss the JOIN oper-
ation next.

6.3 Binary Relational Operations:
JOIN and DIVISION

6.3.1 The JOIN Operation
The JOIN operation, denoted by x, is used to combine relutcd rlpies fiom trvo rcla-
tions into single tuples. This operation is very important fbr arry relational databirse
with more than a single relation because it allows us to process relationships .lr lrong
relations. To i l lustrate JOIN, suppose tl.rat we want to retrieve the name of the Ittart-
ager of each departrnent. To get the nrirnager's name, we need to combir.rc cach
department tuple rvith the employce tuple rvhose Ssn value rttatches the Mgr ssn
value in the departnrent tuple. We clo this by using the JOIN operation and thcr.r pro-
jecting the result over the necessary attributes, as fbllorvs:

DEPT_MGR e DEPARTMENT X Msr ssn=ssn EMPLOYEE
RESULT € ftDnur". Lnure. Fn"r"(DEPT MGR)

The first operation is i l lustrated in Figure 6.6. Note that MGR-SSN is a foreign key
and that the referential integrity constraint plays a role in having r-r-ratching tuples in
the referenced relation EMPLOYEE.

183

' . : t ib le. In
. : rq every
: : rc other
.\ .r rela-

r.:t r lrcler.
-. ll'onr /i
. tuplcs,

, () l lCePt,
: tuples

-!. l l t i l lg-

- ' - ' \ Col l l -

' - : ncve a

184 Chapter 6 The Relat ional Algebra and Relat ional Calculus

Figure 6.5
The CARTESIAN PRODUCTt CROSS PRODUC l) operat 'on

FEMALE EMPS
Fname Mini t Lname Ssn Bdate Address Sex Salarv Super_ssnDno
\ l ic ia Zelaya 999887777 1 968-07-1 9 3321 Cast le, Spr ing, TX F 25000 98765432 1 4

Jenni fer S Wal lace 98765432 1 r 941 -06-20 291Berry, Bel la i re, TX F 43000 888665555 4
Joyce Engl ish 453453453 1972-O7-315631 Rice, Houston, TX F 25000 QQQ A AAAqq 5

EMPNAMES
Fname Lname Ssn
Al ic ia Zelaya 999887777
Jen n i fer Wal lace 98765432 1
Joyce Engl ish 453453453

EMP DEPENDENTS
Fname Lname Ssn Essn Dependent name Sex Bdate
Al ic ia Zelaya 999887777 333445555 Al ice F 986-04-05
Al ic ia Zelaya 999887777 333445555 Theodore IV

F
983-1 0-25

Al ic ia Zelaya 999887777 333445555 Joy 958-05-03
Al ic ia Zelaya 999887777 987654321 Abner M 942-02-28
Al ic ia Zelaya 999887777 1 23456789 Michael M 98B-01-04
Al ic ia Zelaya 999887777 123456789 Al ice F 988-1 2-30
Al ic ia Zelaya 999887777 123456789 El izabeth F 1967-05-05
Jen n i fer Wal lace 98765432 1 333445555 Al ice F 1986-04-05
Jen ni fer Wal lace 98765432 1 333445555 Theodore M 1 983-1 0-25
Jenni fer Wallace 98765432 1 333445555 Joy F I 958-05-03
Jen n i fer Wallace 987654321 98765432 1 Abner M 1942-02-28
Jenni fer Wal lace 98765432 1 1 23456789 Michael l\/ 988-01-04
Jenni fer Wallace 98765432 1 1 23456789 Al ice F 988-12-30
Jenni fer Wallace 98765432 1 1 23456789 El izabeth F 967-05-05
JOyCe Engl ish 453453453 333445555 Al ice F 986-04-05
Joyce Engl ish 453453453 333445555 Theodore M 983-1 0-25
Joyce Engl ish 453453453 33344555s Joy F 958-05-03
loyce Engl ish 453453453 98765432 1 Abner M 942-02-28
JOyCe Engl ish 453453453 I 23456789 Michael M 988-01-04
.Joyce Engl ish 453453453 1 23456789 Al ice F 988-1 2-30
Joyce Engl ish 453453453 1 23456789 El izabeth F 967-05-05

ACTUAL DEPENDENTS
Fname Lname Ssn Essn Dependent_name Sex Bdate
Jen n i fer Wal lace 98765432 1 98765432 1 Abner M 1942-02-28

RESULT
Fname Lname Dependent_
Jen n i fer Wal lace Abner

6.3 Binary Relational Operations: JOIN and DIVISION 185

Figure 6.6
Resul t of the JOIN operat ion

DEpT_MGR <_ DEPARTMENTX Mq, , ,n=s,uEMpLOyEE.

DEPT MGR
Dname Dnumber Mgr_ssn Fname Mini t Lname Ssn

Research 333445555 Frankl in T Wong 333445555
Administration 4 98765432 1 Jennifer S Wallace 987654321
Headquarters 1 888665555 JAMES E Borq 888665555

The JOIN operation can be stated in terms of a CARTESIAN PRODUCT followed by a
SELECT operation. However, JOIN is very important because it is used very frequently
when specifring database queries. Consider the example we gave earlier to illustrate
CARTESIAN PRODUCT, which incluc.led the following sequence of operations:

EMP_DEPENDENTS <- EMPNAMES X DEPENDENT
ACTUAL_DEPE N D ENTS <- o53n_555n (E M P_DEPEN D E NTS)

These two operations can be replaced with a single JOIN operation as follows:

ACTUAL_D E PEN DE NTS e EM PNAM ES X s"n=s""nDE PE N DENT

The general form of a JOIN operation on two relationsa R(A1, A2, . . . , A,,) and S(8,,
82r. . . ,8, , ,) is

R X .jotn con.liti,rn>S

Theresul tof theJOINisarelat ionQwithrr+rrat t r ibutesQ(A,,Ar, . . . ,A, , ,8p82,
. . . ,8,,) in that order; Q has one tuple for each combination of tuples-one from R
and one from S-wlienever the conrbination satisfies the join condition. This is the
main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combina-
tions of tuples satisfying the join conditiott appear in the result, whereas in the
CARTESIAN PRODUCT a/l combinations of tuples are included in the result. The
join condition is specified on attributes from the two relations R and S and is evalu-
ated for each combination of tuples. Each tuple combination for which the join
condition evaluates to TRUE is included in the resulting relation Q as a single com-
bined tuple.

A general join condition is of the form

<condition> AND <condition> AND . . . AND <condition>

where each condition is of the form A; 0 Bi, Ai is an attribute of R, B, is an attribute
of S, A; and B, have the same domain, and 0 (theta) is one of the comparison opera-
tors {=, <, <, >, >, t}.A JOIN operation with such a general join condition is called a

4, Again, notice that R and S can be any relations that result from general relational algebra expresslons

186 Chapter 6 The Relat ional Algebra and Relat ional Calculus

THETA JOIN. Tuples whose join attributes are NULL or fbr which the join condition
is FALSE do not appear in the result. In that sense, the JOIN operation does not nec-
essarily preserve all of the information in the ptrrt icipating relations.

6.3.2 Variations of JOf N:
The EOUIJOIN and NATURAL JOIN

The r.r.rost coffl lon use of JOIN involves join conditions with equality comparisons
only. Such a JOIN, where the only comparison operator used is: , is cal led an
EOUIJOIN. Botl-r examples we have considered rvere EQUIJOINs. Notice that in the
result of ar.r EOUIJOIN we always have one or more pairs of attributes that have iden-
tical vahrcs in every tuple. For example, in Figure 6.6, the values of the attributes
Mgr_ssn and Ssn are identical in every tuple of DEPT MGR because of the equality
join condition specified on these two attributes. Because one of each pair of attrib-
utes with identical values is superfluous, a uew operation called NATURAL JOIN-
denoted by *-tu,,r created to get rid of the second (superfluous) attribute in an
EOUIJOIN conditior.r.5 The standard defir-rit ion of NATURAL JOIN requires that the
two join attributes (or each pair of join attributes) have the same name in both reia-
tions. If this is not the case, a renaming operation is applied first.

In the following exarnple, f irst we renarne the Dnumber attribute of DEPARTMENT to
pnLrrn-5s that it has the same name as the Dnum attribute in PROJECT-and then
we apply NATURAL JOIN:

PROJ_D E PT<- PROJ ECT'i. p r Dnur", Dnum. Msr_ssn, Msr start dater (D E PARTM ENT)

The same query c.rn be done in two steps by creating an intermediate table DEPT as
follows:

DEPT e- PiDn".", Dnum' Mgr ssn, Mgr-start-date(DEPARTMENT)
PROJ_DEPT <- PROJECT *. DEPT

The attribute Dnum is called the join attribute. The resulting relation is i l lustrated in
Figure 6.7(a). In the PROJ_DEPT relat ion, each tuple combines a PROJECT tuple
with the DEPARTMENT tuple for the department that controls the project, but only
one joirr aftribute is kept.

If the attributes on which the natural join is specified already have the same nalnes tn
both relttt iorts, renaming is unnecessary. For example, to apply a natural join on the
Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT-LOCS e_ DEPARTMENT I. DEPT-LOCATIONS

The resulting relation is shown in Figure 6.7(b), which combines each department
rvith its locations and has one tuple for each location. In general, NATURAL iOlN is
perfbrn-red by equating a/l attribute pairs that have the same name in the two
relatiot-ts. There can be a l ist of join attributes from each relation, and each cor-
responding pair r-r-rust have the safite name.

5, NATURAL JOIN is baslca y an EOUIJOIN fo owed by remova of the superf luous at t r rbutes,

6.3 Binary Relatrbnal Operations: JOIN and DIVISION

Figure 6.7
Resul ts of two NATURAL JOIN operat ions.

(a) PROJ-DEPT <- PROJECT': DEPT.
(b) DEPT_LOCS e DEPARTN/ENT,I . DEPT LOCATIONS.

147

ondition

' l () f nec-

par lsons
.r l led an
.it in the
te iden-
t tributes
cquality

ri attrib-
- JOtN-
l te ln an
that the

oth rela-

MENT to
rncl then

(a)

PROJ_DEPT

(b)
DEPT LOCS

Pname Pnumber Plocation Dnum Dname Mgr_ssn Mgr_start*date
ProductX 1 Bellaire 5 Research 333445555 1988-05-22
ProductY Sugarland Research 333445555 988-05-22
ProductZ Houston Research 333445555 988-05-22
Computerization 10 Stafford 4 Administrat ion 987654321 995-01-01
Reorganization 20 Houston Headquarters 888665555 981-06-19
Newbenefi ts 30 Stafford Administrat ion 98765432 1 995-01-01

Dname Dnumber Mgt ssn Mgr_start_date Location
Headquarters 1 888665555 r9B1-06 19 Houston
Administrat ion 4 987654321 1995-01-01 Stafford
Research 333445555 1988-05-22 Bellaire
Research 333445555 1988-05-22 Sugarland
Research 5 333445555 l9B8-05-22 Houston

DEPT as

trated in
_; I tuple
but only

Jrtnlent
- JOIN is
the trvo
.rch cor-

A more general, but nonstandard definit ion for NATURAL JOIN is

Q <- R x1<t ist t>r,1<l ist2>1S

In this case, <listl> specifies a l ist of i attributes from R, ar-rd <list2> specifies a l ist of
I attributes from S. The lists are used to form equality comparison conditions
between pairs of corresponding at t r ibutes, and the condi t io l ts are then ANDed
together. Only the l ist corresponding to attributes of the t ' irst relation R-<list I >-
is kept in the result Q.

Notice that if no combination of tuples satisfies the join condition, the result of a
JOIN is an empty relation with zero tuples. In general, if R has n,, tuples and S has n-5
tuples, the result of a JOIN operation R x.,i,, in con,l it i i ,,,>S wil l havc between zero and
t1p* /tstuples. The expected size of the join result divided by the maxinrum size rt* x
n5 leads to a ratio called join selectivity, which is a property of cach join condition.
If there is no join condition, all combinations of tuples quali ly and the JOIN degen-
erates into a CARTESIAN PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

As we can see, the JOIN operatior.r is uscd to combine data from multiple relations so
that related information can be preser.rted in a single table. These operations are

188 Chapter 6 The Relat ional Alqebra and Relat ional Calculus

also kn<'rwr.r as inner jo ins, to c l is t inguish them from a di f ferent j t r in var i i r t ion
cal leclot t ter jo i ls(seeSect ion6.4.4). Infornral ly, . rn i r t r rcr . io i r r isatypeof matchand
merr.c operation cleflned fbrr-nally as a contbination of CARTESIAN PRODUCT ancl
SELECTION. An t t r t ter jo in is another, more lenient version of the same. Note that
sonretir.nes a join nray be specil icd betrvecn a relation ancl itself, as wc shall i l lustrate
in Scct ion 6.4.3. ' l 'he NATURAL JOIN or EOUIJOIN operat ion c i rn alsc ' r be speci f icc l
anrons nrultiple tables, leading to an tr-v,a),. itt irr. For cxan.rple, consider the fbllorv-
ing three-rva,v join:

((PROJECTX Dnum=Dnumber DEPARTMENT) X H,1s, ssn Ssn EMPLOYEE)

This l inks each irroject to its controll inu dcpartment, and then rclates the depart-
ment to its manager ernployee. The net result is a consolidated rclation in rvhich
each tuple contains this projcct-departl-ncnt-nlanager infbrmatiou.

6.3.3 A Complete Set of Relational Algebra Operations
It has been shorvn that the set of relational ir lgebra clpcrations {o, n, u, -, xf is a
complete set; thirt is, any of thc otirer orisinal relaticlnal algebra clperatior-ts can be
expressed as a seqrtcnce of operotions.fi 'on this sef. For example, the INTERSECTION
operat ion can be expressed by using UNION and MINUS as fbl lows:

, l? n S = (R u S) - ((R - S) u (S- R))

Al though, str ict ly speaking, INTERSECTION is not recluired, i t is inconvenicnt t r r
specif,v this complcx expression *'en tirrrc rve rvish to speci$' irn intersection. As
another example, a JOIN operation can bc specified as a CARTESIAN PRODUCT fbl-
lo\ \ 'c(l l) \ ' a StLtul ()per0trol l , i lS \ve crsrLlsSCoi

1? J -.,,naiti,,,r .S = l.,.nn,ti, i ,,, ' (11 x 5)

Similarl l,, a NATURAL JOIN can tre specifiecl as a CARTESIAN PRODUCT prececlecl b1'
RENAME and fbl lorved by SELECT ancl PROJECT opcrat ions. Herrce, the var ious
JOIN crperations arc also i lol strictly ttcccssor)t for thc cxpressive power of t l-rc rcla-
t ional a lgebra. However, thcy are important to consic ler as sepi l rate opcrr l t i () r"rs
becausc the,v arc convenient to use ancl are verv conrrnonly appl ied in database
applications. Onc may inch"rclc the RENAME operatiorr as irn esscr.rt ial operation if
the r.rccd to renilmc the restrlt of a relational algebra expressiorr is considerecl as a
necessity. Other operations have been inclucled in thc rclational algcbra for corrvcn-
ience rather thar.r r.recessitv. Wc discuss one of these-the DIVISION operation-in
the next section.

6.3.4 The DIVISION Operation
Thc DIVISION operat ion, dcnoted by * , i , useful tbr a special k incl of query that
sorret i r res occLlrs i r . r database appl icat ions. An exanrple is Relr icve t l re t rnr t tes of
ertrployct:s who work on all i lrc proiects that 'Jolm Snrit l i works orr. To express this
querv using the DIVISION operat ion, proceed as fb l lorvs. First , retr ieve the l is t of

. :E-

. rn i i t lon
.r tch and
JUt ano
iotc that
i I I ustrate
.Pcci f red
. ' t i r l low-

r rlcpart-
in rvhich

- .xf isa
l\ Cir l l be
JECTION

'cccled by
-' r 'arious
the rela-

r c rat ions
datirbase
lr . r t ion i f
crcd as a
I col lven-
, . : . - . - : -
tt l (r l l - t l l

Lrcry that
t r0tnes ol '

pl 'css this
hc l is t of

6.3 Binary Relational Operations: JOIN and DIVISION 189

project numbers that
SMITH_PNOS:

Smith ' works on in the intermediate relat ion

SM ITH €- Opn26g=,.J6hn' AN D Lname=,smith ' (EM PLOYEE)

SMITH_PNOS <- npno(WORKS_ON x E""n=s"n SMITH)

Next, create a relation that includes a tuple (Pno, Essn) whenever the employee
whose Ssn is Essn works on the proiect whose number is Pno in the intermediate
relation SSN_PNOS:

ssN_PNOS € ftE""n, Pno (WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees' Social Security Numbers:

SSNS(SSN) C SSN_PNOS + SMITH-PNOS
RESULT € ftFnu.". 1nur"(SSNS * EMPLOYEE)

The previous operations are shown in Figure 6.8(a).

In general, the DIVISION operation is applied to two relations R(Z) + S(X), where X
c Z.Let Y = Z- X (and hence Z = X u Y); that is, let Ybe the set of attributes of R
that are not attributes of S. The result of DIVISION is a relation T(Y) that includes a
tuple rif tuples tR appear in R with IRIY): r, and with tR [X] = trfor every tuple /.t in
S. This means that, for a tuple f to appear in the result T of the DlvlSlON, the values
in f must appear in l i in combination with every tuple in S. Note that in the formu-
lation of the DIVISION operation, the tuples in the denominator relation restrict the
numerator relation by selecting those tuples in the result that match all values pres-
ent in the denominator. It is not necessary to know what those values are.

Figure 6.8(b) i l lustrates a DIVISION operation where X = 1Al, Y = {B}, and Z = 1A, Bl.
Notice that the tuples (values) b, and b., appear in R in combination with all three
tuples in S; that is why they appear in the resulting relation T. All other values of B
in R do not appear with all the tuples in S and are not selected: b, does not appear
with ar, and b, does not appear with a,.

The DIVISION operation can be expressed as a sequence of 7t, x, and - operations as
follows:

T1 <- nr(R)
T2 e- n,.((S x Tl) - R)
T<-Tt-72

The DIVISION operation is defined for convenience for dealing with queries that
involve universal quant i f icot ion (see Sect ion 6.6.7) or the al l condi t ion. Most
RDBMS implementations with SQL as the primary query language clo not dircctly
implement division. SQL has a roundabout way of dealing with the type of query
il lustrated above (see Section 8.5.4). Table 6.1 l ists the various basic relational alge-
bra operations we have discussed.

190 Chapter 6 The

(a)
SSN PNOS

Relational Aloebra and Relat ional Calculus

(b)
RSMITH PNOS

Essn Pno
1 23456789
1 23456789
666884444
453453453
453453453 2
333445555
333445555 3
333445555 10
333445555 20
999887777 30
999887777 10
987987987 10
987987987 30
987654321 30
98765432 1 20
888665555 20

Figure 6.8
The DIVISION operat ion, (a) Div id ng SSN PNOS by SMITH_PNOS. (b) f <- R+ S.

A B
a1 b1
a2 b1
a3 b1

bl

^l b2
a3 b2

b3
a3 b3
a4 b3
a1 b4

b4
a3 b4

6.3.5 Notation for Query Trees
In this section we clcscribe a notation typically used in relational systems to repre-
sent queries internalh'. The notation is called a quel'y tree or sometirnes it is knowr.t
as a query evaluation tree or quer), exrcution tree. It includes the relational algebra
operations beirrg executed trnd is useci as a possible data structure for the interr-ral
rei r resentat ion of the query in an RDBMS.

A query tree is a trec dtrta strurcture that corresponds to a rclationirl algebra expres-
sion. It represents thc input rclatior.rs of t l-re query asleaf trLtdes of the tree, and rep-
resents t l ' re relat ional a lgebra operat ic lns as inte rnal nodcs. An exccut ion of the
query tree consists of executing an internal node operaticln whenever its operar-rds
are available and tl.rer.r replacing that interr.ral node by the relation that results from
cxecuting the operation. The execution terminatcs when the root node is executed
and produces the rcsult relatior.r for thc quer,v.

Figure (r.9 shorvs a qllery tree for query 02: For every project locstetl in'StnJJitrd',
rctrievc tlte pro.icct rrturrlter, the controll irrg departntent rrtrntber, arrd the deport-
ntcnt nttutttgcrls /rr-s/ trttrrre , oddress, ttrrd lt irth datc. This query is specified on the

6.3 Binary Relational Operations: JOIN and DIVISION 191

Table 6.1
Operations of Relational Algebra

Operation

SELECT

PROJECT

THETA JOIN

EOUIJOIN

NATURAL JOIN

UNION

CARTESIAN
PRODUCT

DIVISION

or R , or both R, and R, l R, and R, nrust be union
compatible.

INTERSECTION Produces a relation that includes all the tuples in both
R, and R2; R, and R, must be union compat ib le.

DIFFERENCE Produces a relation that includes all thc turrles in
R, that are not in R,; R, and R, must be unior.r
compatible.

Produces a relatior.r that has the attributes of R, and
R, and includes as tuples all possible cor.r.rbir.rations
of tuples from R, and R,.

Produces a relation R(X) that includes all tuples r[X]
in R,(Z) that appear in R, in combinatior.r with every
tuple from R3(Y), where Z = Xv Y.

Purpose

Selects all tuples that satisfo the selection condition
from a relation R.

Produces a new relation with only some oI the
attributes of R, and renloves duplicate tuples.

Produces all combinations of tuples frorn R, and R,
that satisfy the join conditior-r.

Produces all the combinations of tuplc's frorn R, and
R, that satisfr a join condition with only equality
comparisons.

Same as EOUIJOIN except that the join attributes of R,
are not included in the resulting relation; if the join
attributes have the same names, they do not have to
be specified at all.

Produces a relation that includes all the tuples in R,

Notation

O.sclcct ion .nnai t innt(R)

f t<rr t r ibrr tc t i r , - (R)

Rt X.- j , , in c,rn, l i t ion> R2

Rr X. j , , in condi t ion> R2,

OR Rr X {<joinattr ibutes l>) ,

{ < jo in at t r ibutes l>) RJ

R 1t ' .1nin c,rndi t ion> Rl,

OR R, ' i (< jo inatrr ibutes l>r ,

1<join at t r ibutes l>1 RJ

OR R, x 11,
R, tr R,

R,nR,

I?r - R2

R,xR.

R,(Z) + R.(Y)

, Io rePre-
is knolvn

,.rl algebra
e internal

ra expres-
. and rep-
on of thc
operands

;ults from
' r '\ecuted

'Staflbrd',
: t 'depart-
r-cl on the

relational schema of Figure 5.5 and corresponds to the fbllowing relational algebra

fiPnumber.Dnum,Lname,Address,Baur" (((Oplo"ution='stat l i r*t ' (PROJECT))
x Dnum_Dnumbe,(D E PARTM ENT)) X Ms, ""n=Ssn(

EM pLOyEE))

In Figure 6.9 the three relat ions PROJECT, DEPARTMENT, and EMPLOYEE are repre-
sented by leaf nodes P, D, and E, whilc thc relat ional algebra operations of the expres-

Chapter 6 The Relational Algebra and Relational Calculus

r P. Pnumber,P.Dnum, E. Lname,E.Address, E. Bdate

x D.Mgr-ssn:E.Ssn

x P.Dnum:D,Dnumber

(3)

(2)

Figure 6.9
Ouery tree corresponding
to the relational algebra
expression for 02.

sion are represented by internal tree nodes. It signifies an order of execution in the
following sense. In order to execute 02, the node marked (l) in Figure 6.9 must
begin execution before node (2) because some resulting tuples of operation (1) must
be available before we can begin to execute operation (2). Similarly, node (2) must
begin to execute and produce results before node (3) can start execution, and so on.
In general, a query tree gives a good visual representation and understanding ofthe
query in terms of the relational operations it uses and is recommended as an addi-
tional means for expressing queries in relational algebra. We will revisit query trees
when we discuss query processing and optimization in Chapter 15.

6.4 Additional Relational Operations
Some common database requests-which are needed in commercial applications
for RDBMSs-cannot be performed with the original relational algebra operations
described in Sections 6.1 through 6.3. In this section we define additional opera-
tions to express these requests. These operations enhance the expressive power of
the original relational algebra.

6.4.1 Generalized Projection
The generalized projection operation extends the projection operation by allowing
functions of attributes to be included in the projection list. The generalized form
can be expressed as:

[r , , r r , . . . , r , (R)

6.4 Additional Relational Operations

where F1, F2, ..Fnare functions over the attributes in relation R and may involve con-
stants. This operation is devised as a helpful operation when developing reports
where computed values have to be produced in columns.
As an example, consider the relation

EM PLOYE E (Ssn, Salary, Deduction, Years_service)
A report maybe required to show

Net Salary = Salary - Deduction,
Bonus = 2000 * Years_service, and
Tax=0.25 * Salary.

Then a generalized projection combined with renaming may be used as:
REPORT € P(s"n, Net-satary, Bonug, Tax)

(fiS*, S"t"ry - oeduction,2000 + Ye€rs-service,0.25 - S"f*(eUetOYee;;.

6.4.2 Aggregate Functions and Grouping
Another type ofrequest that cannot be expressed in the basic relational algebra is to
specify mathematical_ aggregate functions on collections of values from the data-
base. Examples of such functions include retrieving the average or total salary of all
employees or the total number of employee tuples. These functions are used in sim-
ple statistical queries that summarize information from the database tuples.
Common functions applied to collections of numeric values include SUM, AVER-
AGE, MAXIMUM, and MINIMUM. The COUNT function is used for counting tuples or
values.
Another common type of request involves grouping the tuples in a relation by the
value of some of their attributes and then applylng an aggregate function indepen-
dently to each group. An example would be to group employee tuples by Dno, so that
each group includes the tuples for employees working in t}re same department. We
can then list each Dno value along with, say, the average salary of employees within
the department, or the number of employees who work in the department.
We can define an AGGREGATE FUNCTION operation, using the symbol 3 (pro-
nounced script F)6,to speciff these types of requests as follows:

<groupingattributat 3 .n r.tion tl.tt (R)

where <grouping attributes> is a list of attributes of the relation specified in R,
and <function lis> is a list of (<function> <attribute>) pairs. In each such pair,
<function> is one of the allowed functions-such as SUM, AVERAGE, MAXIMUM,
MINIMUM, COUNT-and <attribute> is an attribute of the relation specified by R.
The resulting relation has the grouping attributes plus one attribute for each
element in the function list. For example, to retrieve each department number, the

6. There is no single agreed-upon nolation for specifying aggregate functions. In some cases a'script lf
is used.

1S3

' l

rn in the
6.9 must
(l) must
(2) must
:rd so on.
ng of the

- an addi-
terlr trees

'lications
rerations
rl opera-
power of

allowing
zed form

194 Chapter 6 The Relational Algebra and Relational Calculus

number of employees in the department, and their average salary while renaming
the resulting attributes as indicated below, we write:

Pnlono, No-of-employees, Average-sal) (ono 3 couxr Ssn, AVEMGE s"r"ry (EMPLOYEE))

The result of this operation on the EMPLOYEE relation of Figure 5.6 is shown in
Figure 6.10(a).
In the above example, we specified a list of attribute names-between parentheses
in the RENAME operation-for the resulting relation R. If no renaming is applied,
then the attributes of the resulting relation that correspond to the function list will
each be the concatenation of the function name with the attribute name in the form
<function>-<attribute>.7 For example, Figure 6.10(b) shows the result of the fol-
lowing operation:

ono 3 cour1r ssn, AVEMGE s"r"o (euetoYee;

If no grouping attributes are specified, the functions are applied to all the tuples in
the relation, so the resulting relation has a single tuple only. For example, Figure
6.10(c) shows the result of the following operation:

5 cou*r ssn, AVEMGE s"r"o (EMetoYee)

It is important to note that, in general, duplicates are not eliminatedwhen an aggre-
gate function is applied; this way, the normal interpretation of functions such as
SUM and AVERAGE is computed.8 It is worth emphasizing that the result of apply-

Figure 6.10
The aggregate function operation.
(a) Pqo"q No-o{-emptoyees, Ave,"g"-r"t) (Dno 3 couNT ssn, AVERAGe sa"ry (E M PLOYE E))'
(b) o* 3 couNr Ssn, AVERAGe s"r",y (EM PLOYEE).
(c) 3 couNr srn, AVERAGE satary (EM PLOYEE).

R
Dno No*of*employees Average_sal

5 4 33250
4 3 31 000
1 1 55000

Courrt*ssn Average*salary
8 351 25

(b)(a)

7. Note that this is an arbitrary notation we are suggesting. There is no standard notation.
8. In SOL, the option of eliminating duplicates before applying the aggregate function is available by
including the kepvord DISTINCT (see Section 8.4.4).

Dno Count*ssn Average*salary
5 4 33250
4 3 31 000

1 55000

(c)

6.4 Additional Relational Ooeratrons

ing an aggregate function is a relation, not a scalar nurnber-evcn if i t has a single
value. This makes the relational alsebra a closed svstem.

6.4.3 Recursive Closure Operations
Another type of operation that, in general, cannot be specified in the basic original
relational algebra is recursive closure. -l'his operation is applied to a recursive rela-
tionship between tuples of the samc type, such as the relatior.rship between an
employee and a supervisor. This relat ionship is descr ibed by the foreign key
Super_ssn of the EMPLOYEE relat ion in Figures 5. ,5 and 5.6, and i t re lates each
employee tuple (in the role of supervisee) to ar.rother ernployee tuple (in the role of
supervisor). An examplc of a recursive operation is to retrieve all supervisees of an
employee e at all levels-that is, all enployees e' directly supervisecl by e, all er.nploy-
ees e" directly supervised by each enrployee e'; all enrployees c"'directly supervised
by each employee e"; and so or.r.

Although it is straighttbrward in the relational algebra to specify all erlployees
supervised by e at a speciJic level,it is diff icult to specify all supervisees at a// levels.
For example, to specify the Ssns of all err-rployees c'directly supervised-ot level
one-by the cmployee e whose name is 'Janres Borg' (see Figure 5.6), lve can apply
the following operation:

B O RG-SSN <- 7rg.n (opn"me=.lanrcs. AN D Lname=.B,,,*,(EM PLOYE E))
SUPERVISION(Ssn1, Ssn2) € f ts.n. Sup", ""n(EMPLOYEE)
RESULTl (SSN) <- 7rs.n1(SUPERVISION xSsn2 ssn BORG_SSN)

To retrieve all employees supervised by tsorg at level 2-that is, all employees e"
supervised by some employee e' who is directly supervised by Borg-we can apply
another JOIN to the result of the first query, as fbllows:

RESULT2(Ssn) <- 7ts.n, (SUPERVISION X srn2=s"n RESULTl)

To get both sets of employees supervised at levels I and 2 by'. l irmes Borg,' we can
apply the UNION operatior.r to the trvo results, as fbllows:

RESULT <- RESULT2 U RESULT1

The results of these queries are i l lustrated in Figure 6.11. Although it is possible to
retrieve employees at each level and then take their UNION, we cannot, ir.t gcnerirl,
specifo a query such as "re trieve the supervisees of 'James Borg' at all levels" n ithout
uti l izing a looping mechanism.e An operation called the trotrsit itc closure of rela-
tions has been proposed to compute the recursivc relationship as far as the recur-
sion proceeds.

195

rr-namlng

shclrvn in

rrr'ntheses
s applied,
'n l is t wi l l
: tl.re fbrr-n
rt ' the fo l -

' tuples in
l . ' , Figure

.ln aggre-
s such as
of apply-

9, The SOL3 standard includes svntax for recurs ve c losure

196 Chapter 6 The Relat ional Algebra and Relat ional Calculus

(Supervised by Borg)

SUPERVISION
(Borg's Ssn is 888665555)

(Ssn) (Super_ssn)

RESULT2

Ssn
1 23456789
999887777
666884444
453453453
98798798 7

(Supervised by
Borg's subordinates)

RESULT

Ssn
123456789
999887777
666884444
453453453
987987987
333445555
987654321

(RESULTI U RESULT2)Figure 6.11
A harn- larrai ranr rrc i r ro nrrar' - - - ' - ' ' - r ' - Y

Ssn l JSN2

1 23456789 333445555
333445555 888665555
999887777 98765432 1
987654321 888665555
666884444 333445555
453453453 333445555
987987987 98765432 1
888665555 nul l

6 .4.4 OUTER JOIN Operat ions
Next, we discuss some extensions to the JOIN operation that are necessary to specif,
certain types of queries. The JOIN operations described earlier match tupies that
satisfy the join condition. For example, for a NATURAL JOIN operation R ,! S, only
tuples from R that hnve matching tuples in s-and vice versa-appear in the result.
Hence, tuples without a nntching (or related) tuple are eliminated from the JOIN
resul t . Tuples wi th NULL values in the jo in at t r ibutes are also el iminated. This
amounts to loss of information, if the result of JOIN is supposed to be used to gen-
erate i l report based on all the information ir-r the component relations.

A set of operations, called outer joins, can be used when we want to keep all the
tuples in R, or all those in S, or all those in both relations in the result of the JOIN,
regardless of whether or not they have matching tuples in the other relation. This

6.4 Additional Relational Operations

satisfies the need of queries in which tuples from two tables are to be combined by
matching corresponding rows, but without losing any tuples for lack of matching
values. The join operations we described earlier in Section 6.3, where only matching
tuples are kept in the result, are called inner joins.

For example, suppose that we want a list of all employee names and also the name of
the departments they manage if they happen to manage a departmen4 if they do not
manage one, we can indicate it with a NULL value. We can apply an operation LEFT
OUTER JOIN, denoted by x, to retrieve the result as follows:

TEM P <- (eUplOyeexSsn=Msr_ssn DEPARTM ENT)
RESULT € fiFn"n,,", Minit, Lname, D."."(TEMP)

The LEFT OUTER JOIN operation keeps every tuple in thefrsf, or left, relation R in
R)'< S; if no matching tuple is found in S, then the attributes of S in the join result
are filled or padded with NULLvalues. The result of these operations is shown in
Figure 6.12.
A similar operation, RIGHT OUTER JOIN, denoted by D{, keeps every tuple in the
second, or right, relation S in the result of R>(S. A third operation, FULL OUTER
JOIN, denoted by X keeps all tuples in both the left and the right relations when no
matching tuples are found, padding them with NULL values as needed. The three
outer join operations are part of the SQL2 standard (see Chapter 8). These opera-
tions were provided later as an extension of relational algebra in response to the typ-
ical need in business applications to show related information from multiple tables
exhaustively. Sometimes a complete reporting of data from multiple tables is
required whether or not there are matching values.

6.4.5 The OUTER UNION Operation
The OUTERUNION operation was developed to take the union of tuples from two
relations if the relations are not union compatible. This operation will take the

197

LT2)

o specifr
ples that
* S, only
re result.
the JOIN
ed. This
I to gen-

p all the
he JOIN,
bn. This
i
I

RESULT
Fnarne Minit Lnarne Dname
John B Smith NULL
Franklin T Wong Research
Alicia J Zelaya NULL
Jennifer S Wallace Administration
Ramesh K Narayan NULL
Joyce A English NULL
Ahmad V Jabbar NULL
James E Borg Headquarters

Figure 6.12
The result of a

LEFT OUTER JOIN
operation.

' t98 Chaoter 6 The Relat ional Aloebra and Relat ional Calculus

UNION of tuples in two relations R(X, y) and S(X, Z) that are partially compatible,
meaning that onlv some of their attributes, say X, are union compatible. The attrib-
utes that irre union compatible are represented only once in the result, and those
attributes that are not union compatible from either relation are also kept in the
result relation T(X, Y, Z).

Two tuples r, in R and t. in S are said to match if t, [X]=r, [X] , and are considered to
represent the same ent i ty or relat ionship instance. These wi l l be combined
(unioned) into a single tuple in T. Tuples in either relation that have no matching
tuple in the other relation are padded with NULL values. For example, an OUTER
UNION can be appl ied to two relat ions whose schemas are STUDENT(Name, Ssn,
Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank). Tuples from
the two relations are rnatched based on having the same combination of values of
the shared at t r ibutes-Name, Ssn, Department. The resul t re lat ion,
STUDENT OR_INSTRUCTOR, wil l have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the same
(Name, Ssn, Department) combination wil l appear only once in the result. Tuples
appearing only ir-r STUDENT will have a NULL for the Rank attribute, whereas tuples
appearir-rg only in INSTRUCTOR will have a NULL fbr the Advisor attribute. A tuple
that exists in both relations, such as a student who is also an instructor, wil l have val-
ues for all i ts attributes.ro

Notice that the same person may sti l l appear twice in the result. For example, we
could have a gradunte student in the Mathematics department who is an instructor
in the Computer Science department. Although the two tuples representing that
person in STUDENT and INSTRUCTOR will have the same (Name, Ssn) values, they
rvil l r-rot agree on the Department value, and so wil l not be matched. This is because
Department has two separate meanings in STUDENT (the department where the per-
son studies) and INSTRUCTOR (the department where the person is employed as an
instructor). If rve r,vanted to union persons based on the same (Name, Ssn) combina-
tion only, we should rename the Department attribute in each table to reflect that
they have diffbrent meanings and designate them as not being part of the union-
compatible attributes.

Another capabil ity that exists in most commercial languages (but not in the basic
relational algebra) is that of specifying operations on values after they are extracted
from the database. For example, arithmetic operations such as +, -, and 'k can be
applied to numeric values that appear in the result of a query, as we discussed in
Sect ion 6.4. 1.

l0,Not lcethatOUTERUNlON sequivalenttoaFULLOUTERJOlN f thelonattr ibutesarea// the
common attr ibutes of the two relatrons.

6.5 Examples of Oueries in Relational Algebra t99

6.5 Examples of Queries in
Relational Algebra

Following, we give additional examples to illustrate the use of the relational algebra
operations. All examples refer to the database of Figure 5.6. In general, the same
query can be stated in numerous ways using the various operations. We will state
each query in one way and leave it to the reader to come up with equivalent formu-
lations.

Query 1. Retrieve the name and address of all employees who work for the
' Research" department.
RESEARCH_DEPT e oDname=.Resea,ch'(DEPARTMENT)
RESEARCH_EM PS e (R ES EARCH_DEPT X Dnumber=DnoEM PLOYE E)
R ES U LT €- fiFnanle, Lname, Address(R ES EARCH_EM PS)

As a single expression, this query becomes
fiFn"r", Lname, Address (ODname=.Research' (DEPARTM ENT

x DnumbeeDno(EMPLoYEE))

This query could be specified in other ways; for example, the order of the JOIN and
SELECT operations could be reversed, or the JOIN could be replaced by a NATURAL
JOIN after renaming one of the join attributes.

Ouery 2. For every project located in'Stafford', list the project number, the
controlling department number, and the department manager's last name,
address, and birth date.
STAFFO R D_PROJ S e opbcation=.Staffod, (PROJ ECT)

coNTR_DEPr <- (STAFFORD_PROJS X Dnum=Dnumber DEPARTMENT)

PROJ_D E Pf_M G R e (CO NTR_D E n x Ms,_""n=ssn EM PLOYE E)
RESULT € fipnumber, Dnum, Lname, Address, Bdate (PROJ_DEPT_MGR)

Ouery 3. Find the names of employees who work on all the projects con-
trolled by department number 5.
DEPTS_PROJS (Pno) e fi pnrn,'s",(oonu,.'',=r(pnOJ eOt))
EMP_PROJ(Ssn, Pno) € fiE"sn. pno(WORKS_ON)
RESULT_EMP_SSNS <- EMP_PROJ + DEPI-5_PROJS
RESULT ts [Ln"r", Fn"r" (RESULT_EMP_SSNS *, EMPLOYEE)

Ouery 4. Make a list of project numbers for projects that involve an employee
whose last name is'Smith', either as a worker or as a manager of the department
that controls the project.

200 Chaoter 6 The Relational Aloebra and Relational Calculus

S M ITHS (Essn) +- 1t5"n (olname=,snith, (EM PLOYE E))
SMITH_WORKER_PROJS € rpno (WORKS_ON x SMITHS)
MGRS € f iLnur", onrru",(EMPLOYEE X ssn=Msr_ssn DEPARTMENT)
SM ITH_MANAG E D_DEPTS (Dnum) € ft Dnurb", (olname=.smith, (MG RS))
SM ITH_MG R_PROJ S (Pno) € ftpnu,s", (S M ITH_MANAG E D_D EPTS'r' PROJ ECT)
RESU LT <_ (SM ITH-WORKER_PROJ S u SM ITH_MG R_PROJS)

As a single expression, this query becomes

fipno (WoRKS_oN x Essn=ssn (Itg.n (o1nur"=.5,,,1,5' (EMPLOYEE)))
U ftpno ((7ronu.u", (olname-'smrth' (7rln^r". Dnumber (EMPLOYEE)))
x s"n=Ms,_r.n DEPARTMENT)) x onr.u",=Dnum pRoJECT)

Ouery 5. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational
algebra.We have to use the AGGREGATE FUNCTION operation with the COUNT
aggregate function. We assume that dependents of the sante employee have dis-
flnct DEPEN DENT_NAM E values.

Tl (Ssn, No_of_dependents)<- E."n 3 couNT Dependent nu."(DEPENDENT)
12 <- opo_o1_a"p"na"nt">z(Tl)
RESULT € f iLnur". Fnur"(D * EMPLOYEE)

Ouery 6. Retrieve the names of employees who have no dependents.

This is an example of the type of querythat uses the MINUS (SET DIFFERENcE)
operation.

ALL_EMPS <- n5"n(EMPLOYEE)
EM PS_WITH_DEPS(Ssn) <- TrEssn(DEPEN DENT)
EM PS_WITH OUT-D EPS <_ (ALL_EM PS - EM PS-WITH_D E PS)
RESULT € ftLnu,", Fnu,"(EMPS_WITHOUT_DEPS x EMPLOYEE)

As a single expression, this query becomes

ft 1n",". rn","((irs"n (EM PLOYE E) - ps"n(ft r".n(DEPEN DENT))) x gV plOyr g)

Query 7. List the names of managers who have at least one dependent.

MG RS(Ssn) (- 7ryn,
""n(

DEPARTM ENT)
EM PS_WITH_DEPS(Ssn) <- 7tE""n(DEPEN DENT)
MGRS_WITH_DEPS <- (MGRS

^
EMPS_WITH,DEPS)

RESULT € ftLnu,". snu,"(MGRS_WITH_DEPS * EMPLOYEE)

As we mentioned earlier, in general, the same query can be specified in n.rany differ-
ent ways. For example, the operations can often be applied in various orders. In addi-
tion, some operations can be used to replace others; for example, the INTERSECTION

: :TI

#=

6.6 The Tuole Relational Calculus

operation in 07 can be replaced by tr NATURAL JOIN. As an exercise, try to do each of
the above example queries using different operations.rrWe showed how to write
queries as single relational algebra expressions for queries 01 , 04, and 06. Try to
write the remaining queries irs single expressions. In Chapter 8 and in Sections 6.6
and 6.7, we show how these queries are rvritten in other relational languages.

6.6 The Tuple Relat ional Calculus
In this and the next sectior-t, rve introduce another forrnal query language for the
relational model called relational calculus. In relational calculus, we rvrite one
declarative expression to specifi ' a retrieval request; hence, there is no descriptiort of
how to evaiuate a query. A calculus expression specifies what is to be retrieved rather
lhanhow to retrieve it. Therefore, the relational calculus is considered to be a non-
procedural language. This differs from relational algebra, where we must write a
sequence ofoperations to specify a retrieval request; hence, it can be considered as a
procedural way of stating a quer,y. It is possible to nest algebra operations to form a
single expression; however, a certain order among the operations is always expiicit ly
specified in a relational irlgebrn expression. This order also influer-rces the strategy
for evaluating the query. A calculus expression n-ray be written ir-r different ways, but
the way it is written has no bearing on horv a query should be evaluated.

It has been shown that any retrieval t l.rat can be specified in the basic relational alge-
bra can also be specified in relational calculus, and vice versa; in other words, the
expressive power of the trvo languages is identical This led to the definition of the
concept of a relationally corr-rplete language. A relational query language I is consid-
ered relationally complete if we can express in I ar-ry query that can be expressed in
relational calculus. Relatior-ral completeness has become an important basis for
comparing the expressive power of high-level query ianguages. However, as we saw
in Section 6.4, certain frequently required queries in database applications cannot
be expressed in basic relational algebra or calculus. Most reiational query languages
are relationally complete but have mlre expressive power than relational algebra or
relational calculus because of additional operations such as aggregate functions,
grouping, and ordering.

In this section and the next, all our examples ref'er to the database shown in Figures
5.6 and 5.7. We will use the same queries that r,vere used in Section 6.5. Sections
6.6.6,6.6.7 , and 6.6.8 discuss dealing r'vith ur-riversal quantif iers and safety of expres-
sion issues and may be skipped bv students interested in a general introduction to
tuple caiculus.

6.6.1 Tuple Variables and Range Relations
The tuple relational calculus is based on specifl ing a number of tuple variables.
Each tuple variable usually ranges over a particular database relation, meaning that

1 T, When quer es are opt mized (see Chapter 1 5), the system wi l l choose a part cular sequence of opet
at ons that corresponds to an execut ion strategy that can be executed ef f ic ient ly

' ta l

- \T
/i-s -

ts ' , lE)

Chapter 6 The Relat ional Alqebra and Relat ional Calculus

the variablc rnay take as its value any individual tuple from that relation. A simple
tuple relational calculus query is of the fbrm

{r I coND(r)}
r,vhere f is a tuple variable and COND(r) is a conditional expression involving r. The
result of such a qr.rery is the set of all tuples r that satisfy COND(r). For example, to
find all enrplovees whose salary is above $50,000, we can write the following tuple
calculus expressior.r :

{ r I rveloveE(r) AND r.Sarary>50000}

Thc condition EMPLOYEE(f) specifies that the range relation of tuple variable r is
EMPLOYEE. Each EMPLOYEE tuple f that satisfies the condition f.salary>50000 wil l
be retrievecl. Notice that l.salary references attribute Salary of tuple variable f; this
notation resembles how attribute names are qualif ied with relation names or aliases
in SQL, as we shall see in Chapter 8. In the not.rt ion of Chapter 5, f.Salary is the same
as rvr i t ing l lSalary] .

The above cluery retrieves all attribr.rte values for each selected EMPLOYEE tuple t. To
retrieve only -so1lle' of the attributes-say, the first and last names-rve write

{r .Fname, r .Lname I eVelOVef(r) AND f .Salary>50000}

Informal ly, ne need to speci fy the fb l lowing informat ion in a tuple calculus
expre'ssion:

For each tuple variable f, the range relation R of t. This value is specified by
a conclit ion of the fbrrn R(t).
A cortdit ion to select particular combinations of tuples. As tuple variables
range over their rcspective range relaticlns, the condition is evaluated for
everv possible combination of tupies to identify the selected combinations
fbr which the condition evaluates to TRUE.
A set of attributes to be retrieved, the requested attributes. The values of
these attributes are retrieved for each selected combination of tuples.

Befbre lve cliscuss the fornral syntax of tuple relational calculus, consider another
query.

Query 0. Retrieve thc birth clate ar.rcl address of the employee (or employees)
whose nitme is John B. Smith.

O0: {r .Bdate, / .Address I EMPLOYEE(r)AND t .Fname-'John'
AND f .Mini t= 'B' AND f .Lname='Snt i th ' i

In tuple relational calculus, we flrst specify thc requested attributes f.Bdate and
f.Address fbr each selected tuple t. Then we specifi ' the condition for selecting a
tuplc tbllorvir-rg the bar (l)-nanrely, that f be a tuplc of the EMPLOYEE relation
whose Fname, Minit, and Lname attribute values are'Johnl'Bl and'Smith', respectively.

A simple

ng f. The
rmple, to
ing tuple

,:iable f is
'}000 will
'rle 4 this

- or aliases
' the same

:,rple f. To

calculus

,'cified by

yariables
.rated for
binations

ralues of
-1.

another

ployees)

. late and
lccting a

, relation
pctively.

iI
I

6.6 The Tuple Relational Calculus

6.6.2 Expressions and Formulas in
Tuple Relational Calculus

A general expression of the tuple relational calculus is of the form

ItrAT t2A1r, . . ., tn.A* | coND(tl, t2, . . ., tn1 tnap tn+2, . . ., tr*^)l

where f1, t2, . . . , tn, tna1, . . . ; tn+m are tuple variables, each A; is an attribute of the rela-
tion on which rt ranges, and COND is a condition or formular2 of the tuple rela-
tional calculus. A formula is made up of predicate calculus atoms, which can be one
of the following:

1. An atom of the form R(4), where R is a relation name and fr is a tuple vari-
able. This atom identifies the range of the tuple variable { as the relation
whose name is R.

2. An atom of the form t;A op f;.8, where op is one of the comparison opera-
tors in the set {=, (, S, >, >, *}; q and t,are tuple variables, A is an attribute of
the relation on which fr ranges, and B is an attribute of the relation on which
t ranges.

3. An atom of the form tiA opc or c op 4.8, where op is one of the comparison
operators in the set {=, (, S,),), *}, t;and tiare tuple variables, A is an attrib-
ute of the relation on which f; rangesl B is an attribute of the relation on
which I ranges, and c is a constant value.

Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-
nation of tuples; this is called the truthvalue of an atom. In general, a tuple variable
t ranges over all possible tuples in the universe. For atoms of the form R(r), if r is
assigned to a tuple that is a member of the specified relation R, the atom is TRU E; oth-
erwise, it is FALSE. In atoms of types 2 and,3, if the tuple variables are assigned to
tuples such that the values of the specified attributes of the tuples satisft the condi-
tion, then the atom is TRUE.

A formula (condition) is made up of one or more atoms connected via the logical
operators AN D, OR, and HOt and is defined recursively by Rules I and 2 as follows:

t Rule 1: Every atom is a formula.
t Rule 2: If F, and F, are formulas, then so are (F, AND F2), (Fr oR F2), NOT

(F,), and NOT (F2). The truth values of these formulas are derived from their
component formulas F, and F, as follows:
a. (F, AND Fr) is TRUE if both Fr and F, are TRUE; otherwise, it is FALSE.
b. (Fr OR Fr) is FALSE if both Fr and F are FALSE; otherwise, it is TRUE.
c. NOT (F,) is TRUE if F, is FALSE; it is FALSE if Ft is TRUE.
d. NOT (F2) is TRUE if F, is FALSE; it is FALSE if F, is TRUE.

12. Also called a well-formed formula, or WFF, in mathematical logic.

Chapter 6 The Relat ional Algebra and Relat ional Calculus

6.6.3 The Existential and Universal Ouantif iers
In addition, two special symbols called quantifiers can appear in formulas; these are
the universal quantifier (V) and the existential quantifier (f). Truth values for
formulas with quantifiers are described in Rules 3 and 4 below; first, however, we
need to define the concepts of free and bound tuple variables in a formula.
Informally, a tuple variable t is bound if i t is quantif ied, meaning that it appears in
an (f r) or (Vt) clause; otherwise, it is free. Formally, we define a tuple variable in a
formula as free or bound according to the following rules:

* An occurrence of a tuple variable in a formula F that ls an atonl is free in F.
d, An occurrence of a tuple variable t is free or bound in a formula made up of

logical connect ives-(Fr AND F:) , (F, OR F2), NOT(Fr) , and HOT(Fr)-
depending on whether it is free or bound in F, or F, (if i t occurs in either).
Notice that in a formula of the form I = (Fr AND F,) or F= (F, oR F,), a tuple
variable may be free ir.r F, and bound in F,, or vice versa; in this case, onc
occurrence of the tuple variable is bound and the othcr is free in F.

a All free occurrences of a tuple variable r in F are bound in a formula F" of the
form F= (l r)(f) or.f l = (V r)(F). The tuple variable is bound to the quanti-
f ier specified in P. For example, consider the following formulas:
F, : d.Dname='Research'
F, : (1t) (d.Dnumbe=f.Dno)
F, : (Y d)(d.Mgr_ssn='3334 45555')

The tuple variable d is free in both F, and F2, whereas it is bound to the (V) quanti-
f ier in F,,. Variable r is bound to the (3) quantif ier in Fr.

We can now give Rules 3 and 4 for the definit ion of a formula we started earlier:
* Rule 3: If F is a formula, then so is (3r)(F), where r is a tuple variable. The

formula (lr) (F) is TRU E if the formula F evaluates to TRU E for sorne (at least
one) tuple assigned to free occurrences of r in F; otherwise, (l f)(F) is FALSE.

ta Rule 4: If F is a formula, then so is (V r) (F), where r is a tuple variable. The for-
mula (Vr)(F) is TRUE if the formula F evaluares ro TRUE for every tuple (inthe
universe) assigned to free occurrences of r in F; otherwise, (Vr)(F) is FALSE.

The (l) quantif ier is called an existential quantif ier because a forrnula (3r)(F) is
TRUE if there exists some tuple that makes FTRUE. For the universal quantif ier,
(Vr(F) is TRUE if every possible tuple that can be assigned to free occurrences of r
in F is substituted for f, and F is TRUE for every such substitution.lt is called the uni-
versal or /or n// quantifier because every tuple in the wiverse o/tuples must make F
TRUE to makc the quantif ied formula TRUE.

6.6.4 Example Oueries Using the Existential Quantif ier
We rvil l use some of the same queries from Section 6.5 to give a flavor of how the
same queries are specified in relational algebra and in relational calculus. Notice

6.6 The Tuple Relational Calculus

that some queries are easier to specifr in the relational algebra than in the relational
calculus, and vice versa.

Ouery 1. List the name and address of all employees who work for the
'Research' department.

01: {r.Fname, f.Lname, f.Address I EMPLOYEE(t) AND (3d)
(D EPARTM ENT(d) AN D d.Dname='Research' AN D d.Dnumber=t Dno) l

The only free tuple variables in a relational calculus expression should be those that
appear to the left of the bar (l). In Ol, f is the only free variable; it is then bound suc-
cessively to each tuple. If a tuple satisfies the conditions specified in 01 , the attributes
Fname, Lname, and ADDRESS are retrieved for each such tuple. The conditions
EMPLOYEE(fl and oepRntMENT(d) specifr the range relations for f and d. The con-
dition d.Dname ='Research is a selection condition and corresponds to a SELECT
operation in the relational algebra, whereas the condition d.Dnumber = f.Dno is a
join condition and serves a similar purpose to the JOIN operation (see Section 6.3).

Ouery 2. For every project located in'Stafford', list the project number, the
controlling department number, and the department manager's last name,
birth date, and address.

02: {p.Pnumber,p.Dnum, m.Lname, m.Bdate, m.Address I PROJECT(p)
AN D EM PLOY EE(m) AN D p. Plocation='Stafford'
AND ((=d) (DEPARTMENT(d)
AN D p.Dnum=d.Dnumber AN D d.Mgr-ssn=z.Ssn)) l

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the
existential quantifier. The query condition is evaluated for every combination of
tuples assigned to p and m; and out of all possible combinations of tuples to which
p and m are bound, only the combinations that satisfr the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to
specifr Q8-for each employee, retrieve the employee's first and last name and the
first and last name of his or her immediate supervisor-we specifr two tuple vari-
ables e and s that both range over the EMPLOYEE relation:

08: {e.Fname, e.Lname, s.Fname, s.Lname I euelOVee(e) ltto EMPLOYEE(s)
AN D e.Super-ssn=s.Ssn l

Ouery 3'. List the name of each employee who works on some project con-
trolled by department number 5. This is a variation of 03 in which all is
changed to some.In this case we need two join conditions and two existential
quantifiers.

O3': {e.Lname, e.Fname I EMPLOYEE(e)
AND ((3 rX3 wXPROJECT(x) AND WORKS-Ott(w) alo x.Dnum=5
AND ry.Essn=e.Ssn AND x.Pnumber:w.Pno))l

105

sln
ina

are
for
we

F.
rof
)-
er).

Chapter 6 The Relat ional Aloebra and Relat ional Calculus

Query 4. Ivlake a l ist of project numbers fbr projects that involve an employee
rvhose last name is 'Smithl either as a rvorker or as manaqer of the controll ing
r lcp111111s, '11 l i r r the project .

04: {p.Pnumber I PROJECT(p) AND (((l c)(l w)(EMPLOYEE(e)
AN D WORKS_ON (rv) AN D rv.Pno=P.Pnumber
AND e.Lname='Sn-rith' AND e.Ssn=w.Essn))
OR
((l r r) (f r /) (EMPLoYEE(nr) AND DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr ssn=rrr .Ssn
AND lr .Lname='Smith '))) l

Corrpare this with the relational algebra version of this query in Section 6.5. The
UNION operation in relational algebra can usually be substituted with an OR con-
nect ive in relat ional calculus. In the next sect ion we discuss the relat ionship
betrvecr.r the universal and existential quantif iers and show horv one can be trans-
forn-rcd ir.rto the otfrer.

6.6.5 Notation for Query Graphs
In this section we describe a notation that has bcen proposcd to represent relational
calculus queries internally. This n-rore neutral representation of a query is called a
query graph. Figure 6.13 shows the query graph for 02. Relations in the query are
represented by relation nodes, which are displayed as single circles. Constant val-
ues, typically frorl the query sclection conclit ions, are rcpresented by constant
nodes, rvhich are displayed as double circles or ovals. Selection and join conditions
are reprcsented by the graph edges, as shown in Figure 6.13. Finally, the attributes to
be retricved fron-r cach relation arc displayed in square brackets above each relation.

The querv graph representation cloes not include an order on which operations to
perforrn first. There is only ir single graph corresponding to each query. Although
some opt imizat ion techniques were based on query graphs, i t is now general ly
acceptecl that query trees are preferable because, in practice, the query optimizer
needs to show the order of operatior.ts fbr query execution, which is not possible in
query graphs.

Figure 6.13
Query graph for 02

IP,Pnumber,P.Dnum] IE.Lname,E.address,E.Bdate]

P. Plocation:'Stafford'

D.Mqr ssn:E.Ssn

.'mployee
,ntrolling

6.5. The
OR con-
tionship
)e trans-

:.elational
' called a
.luery are
.tant val-
constant
,,nditions
:ibutes to
r relation.
:ations to
rlthough
3enerally
rptimizer
,rssible in

s E.Bdatel

_-\=)

6.6 The Tuple Relational Calculus

6.6.6 Transforming the Universal
and Existential Quantifiers

Next, we introduce some well-known transformations from mathematical logic that
relate the universal and existential quantifiers. It is possible to transform a universal
quantifier into an existential quantifier, and vice versa, to get an equivalent expres-
sion. One general transformation can be described informally as follows: Tiansform
one type of quantifier into the other with negation (preceded by NOT); AND and OR
replace one another; a negated formula becomes unnegated; and an unnegated for-
mula becomes negated. Some special cases of this transformation can be stated as
follows, where the: symbol stands for equivalent to:

(Vx) (P(x)) = Nor (3 x) (Hor (P(x)))
(lx) (P(x)) = Nor (Vx) (Nor (P(x)))
(Vx) (P(x) AND Q(x)) = Nor (3 x) (Nor (P(x)) on nor (Q(r)))
(Vx) (P(x) on Q(x)) = Nor (f x) (nor (P(x)) nno Nor (Q(x)))
(l x) (P(r)) on Q(x)) = Nor (V x) (Nor (P(x)) atD Hor (Q(x)))
(3 x) (P(x) AND Q(x)) = Nor (Vx) (Nor (P(x)) on Hor (Q(x)))

Notice also that the following is TRUE, where the =+ symbol stands for implies:
(Vx) (P(r)) + (lr) (P(x))
Nor (f x) (P(x)) + Nor (V x) (P(x))

6.6.7 Using the Universal Ouantifier
Whenever we use a universal quantifier, it is quite judicious to follow a few rules to
ensure that our expression makes sense. We discuss these rules with respect to 03.

Ouery 3. List the names of employees who work on all the projects controlled
by department number 5. One way to specifr this query is to use the universal
quantifier as shown:

O3: {e.Lname, e.Fname I EMPLOYEE(e) AND ((V x)(NOT(PROJECT(I))
OR NOT (x.Dnum=5) OR ((l w)(WORKS-ON(w) AND w.Essn= e.Ssn
AND x.pnumber=u.Pno)))) l

We can break up 03 into its basic components as follows:

03: {e.Lname, e.Fname I EMPLOYEE(e) AND F'}
1''= ((V x)(Nor(pRoJEcr(x)) on F1))
Fr = NOT(rDnum=5) OR Fz
F, = ((3 w)(WORKS-ON(rry) AND w.Essn= e.Ssn
AND :c.Pnumber= try.Pno))

We want to make sure that a selected employee e works on all the projects controlled
by department 5, but the definition of universal quantifier says that to make the
quantified formula TRUE, the inner formula must be TRUE/or all tuples in the uni-

Chapter 6 The Relat ional Aloebra and Relat ional Calculus

verse.The trick is to exclude from the universal quantif ication all tuples that we are
not interested in by making the condition TRUElbr oll such trrples. This is necessar;,
because a universally quantif ied tuplc variable, such as r iu 03, must evaluate tcr
TRUEpT every possible ntple assigned to it to make the cluantif ied forrnula TRUE.
The f i rst tuples to exclude (by making them evaluate automat ical ly to TRUE)
are those that are not in the relat ion R of interest . In 03, using the expression
NOT(PROJECT(x)) inside the universally quantif ied formula evaluates to TRUE all
tuples x that are not in the PROJ ECT relation. Then we exclude the tuples we are not
interested in fiom R itself. In 03, using the expression NOT(x.Dnum=5) cvaluates to
TRUE all tuples x that are in the PROJECT relation but are not controlleci by depart-
ment 5. Finally, we specify a condition F, that nrust hold on all the remaining tuples
in R. Hence, we can explain 03 as follows:

For the formula F'= (Vx)(F) to be TRUE, we must have the formula Fbe
TRUE/or all tuples in the universe that cetl be ossigned to x. However, in 03 we
are only interested in Fbeing TRUE for all tuples of the PROJECT relation
that are controlled by departn-rent 5. Hence, the forrnula F is of the form
(NOT(PROJECT(x)) OR Fr) . The'NOT(PROJECT(x)) OR . . . 'concl i t ion is
TRUE for all tuples not in the PROJECT relatiort and has the effect of elimi-
nating these tr.rples fiom consideration in the truth value of F,. For every
tuple in the PROJECT relation, F, rnust be TRUE if F'is to be TRUE.

: Using the same line of reasoning, we do not want to consider tuples in the
PROJECT relation that are not controlled by department number 5, since we
irre only interested in PROJECT tuples whosc Dnum=5. Therefore, we can write:
lF (r .Dnum=5) THEN Fl
which is equivalent to
(NOT (x.Dnum=5) OR Fz)

;i Formula F,, hence, is of the fbrm NOT(x.Dnum=5) OR F,. In the context of
03, this means that, fbr a tuple x in the PROJECT relation, either its Dnuml5
or i t must sat isfu A.

: Finally, A gives the condition that rve want to hold for a selccted EMPLOYEE
tuple: that the employee works on every PROJECT tuple i lnt has not been
excluded yet Such employee tuples are selected by the query.

In English, 03 gives the following condition for selecting an EMPLOYEE tuple e: For
every tuple x in the PROJECT relation with x.Dnum = 5, there must exist a tuple w in
WORKS_ON such that w.Essn = s.Ssn and w.Pno = x.Pnumber. This is equivalent to
saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5.
(Whewl)

Using the general transformation from urliversal to existential quantif iers given in
Section 6.6.6, we can rephrase the query in 03 as shown in O3A:

O3A: {e.Lname, s.Fname I EMPLOYEE(e) AND (NOT (l x) (PROJECT(x)
AND (x.Dnum=5) AN D(NOT (f w)(WORKS_ON(w)
AND w.Essn= e.Ssn AND x.Pnumber=w.Pno)))) l

1: \ \ 'g are
i aessary
_ .l. l te to
. TRUE.
TRUE)

. :a5slon
:UE AII

. . ire not
... ltes to
. : .Part-
- ruples

. , r Fbe
13 we

--. . i t ion
' . t i r rm
j - i) l l iS

. l imi-
- .\ 'cry

6.6 The Tuple Relational Calculus

We now give some additional examples of queries that use quantif iers.

Ouery 6. List the names of emplovees who have no dependents.

Q6: {e.Fname, e.Lname I EMPLOYEE(e)AND (NOT (f d)(DEPENDENT(d)
AND e.Ssn=d.Essn))]

Using the general transformation rule, we can rephrase 06 as follows:

06A: {e.Fname, e.Lname I EMPLOYEE(c) AND ((V d)(NOT(DEPENDENT(r/))
OR NOT(e.Ssn=r/.Essn))) i

Query 7. List the names of managers who hirve at least one dependent.

07: {e.Fname, e.Lname I EMPLOYEE(e)AND ((l d)(l p)(DEPARTMENT(d)
AND DEPENDENT(p) AND e.Ssn:r / ,Mgr ssn AND p.Essn=e.Ssn)) l

This query is handled by interpreting ntonagers who have at least one dependent as
managers Jbr whom there exists sonrc dependent.

6.6.8 Safe Expressions
\\rhenever we use universal quantifiers, existential quantifiers, or negation of predi-
cates in a calculus expression, we l-nust make sure that the resulting expression
makes sense. A safe expression in relational calculus is one that is guaranteed to
yieldafinite nuntber of tuples as its result; otherwise, the expression is called unsafe.
For example, the expression

Ir I Nor (EMPLOYEE(1)) l

is unsafe because it yields all tuples in the r-rniverse that are not EMPLOYEE tuples,
which are infinitely numerous. If we fbllow the rules for Q3 discussed earlier, we wil l
get a safe expressiorr rvhen using universal quantifiers. We can define safe expres-
sions more precisely by introducing the concept of the domoin of a tttple relational
calailus expression: This is the set of all values that either appear as constant values
in the expression or exist in any tuple in the relations referenced in the expression.
The domain of { / I NOT(EMPLOYEE(r)) f is the set of a l l at t r ibute values appear ing in
some tuple of the EMPLOYEE relation (for any attribute). The domain of the expres-
sion O3A would include al l values appear ing in EMPLOYEE, PROJECT, and
WORKS ON (unioned with the value 5 appearing in the query itself).

An expression is said to be safe if all values ir-r its result are from the domain of the
expression. Notice rhat the result of {r I NoT(EMPLOYEE(r))} is unsafe, since it wil l,
in general, include tuples (and hence values) from outside the EMPLOYEE relation;
such values are not ir-r the domain of the expression. All of our other examples are
safe expressions.

l: - ,.t of
- t*5

F- -YEE
l, 'c'e/l

Iror
, in
: to
. :

ts
F.
t"
FL'

7

210 Chapter 6 The Relat ional Algebra and Relat ional Calculus

6.7 The Domain Relational Calculus
There is another type of relational calculus called the domain relational calculus, or
simply, domain calculus. While SQL (see Chapter 8), a language based on tuple
relational calculus, was being developed by IBM Research at San Jose, California,
another language called QBE (Query-By-Example), which is related to domain cal-
culus, was being developed almost concurrently at IBM T.|. Watson Research Center
at Yorktown Heights, New York. The formal specification of the domain calculus
was proposed after the development of the QBE system.

Domain calculus diffbrs fiorn tuple calculus ir^t the type of variables used in formu-
las: Rarther than having variables rirnge over tuplcs, the variables range over single
values from dor-r.rains of attributes. ' lb fbrm a relation of degree n for a query result,
we mLlst have tt of these domain variables-one for each attribute. An expression of
the dclrnair.r calculus is of the forrr

{ . r , , x, , . . . , , r , , I cot \o lx, , ts, , . . . , r r r , r r r+r, r r r+r, . . . , x, ,* , , ,) }
wherc x1 , Jr , , . {1 i , x1111, rrr+1, . . . , X, ,+, , , are domain var iables that range over
domains (of attributes), and COND is a condition or formula of the domain rela-
t ional calculus.

A forrnula is mirde up of atoms. The ator-r-rs of a formula are slightly different from
those fbr the tuple calculus and can be or.re of the fbllowing:

AIr atom of t l-re form I{(x,, x., . . . , x,), whcre R is thc r-rame of a relation of
degree.i and each .r,, I < l<,1, is ir t lomlin variable. This atorn states that a l ist
of vah.res of <x,, rr,, . . . , .{ i> must be a tuple in thc relation whose name is R,
rvhere r, is thc valuc oi the ith attribute value of the tuple. -lb make a domain
calculus expression nrore concisc, we can drop tlrc c()nnnos in a l ist of vari-
lb les; lhus, rvc can wri t r '

lxr , x: , . . , x, , I R(- t , x, , r \) AND . . . i

ir.rstcad of

{ . r1,r1, . . . , x, , l R(x, ,x, ,x.) AND. . . }

An atom of the form xi op xi, r,vhcre op is one of the comparison operators in
the set {=, <, <, >, >, +}, irnd -t, alld x, are dot.nain variables.

An atom of the form xi op c or c op J(;, where op is one of the compariscln
opcrators in the set {=, (, S, >, >, *}, x, and x, are domain variables, and c is a
constant value.

As in tuple calculus, atoms evaluate to either TRU E or FALSE for a specific set of val-
ues, cal led the t ruth values of the atonts. In case l , i f the domain var iables are
assigned values corresponding to a tuple of the specified relation R, then the atom is
TRUE. In cases 2 and 3, if the domain variablcs are assigned values that satis$/ the
condi t ion, then the atom is TRUE.

In a sir.r.ri lar way to the tuple relational calculus, formulas are made up of atoms,
variables, aud quantif iers, so we wil l not repeat the specifications for formulas here.

6.7 The Domain Relational Calculus

Some examples of queries specified in the domain calculus follow. We will use low-
ercase letters l, m, n, . . . , x, /, z for domain variables.

Query 0. List the birth date and address of the employee whose name is'fohn
B. Smith'.
Qo: luv | (ls) (lr) (ls) (10 (lw) (lx) (ly) (12)

(EM PLOYEE(qrstuvwxyz) AN D 4='|ohn AN D r='B' AN D ='Smith') |

We need ten variables for the EMPLOYEE relation, one to range over the domain of
each attribute in order. Of the ten variables e, r, S, . . . , z, only u and v are free. We
first speciff the requested attributes, Bdate and Address, by the free domain variables
u for BDATE and v for ADDRESS. Then we specifr the condition for selecting a tuple
following the bar (l)-nameh that the sequence of values assigned to the variables
qrstuvwryzbe a tuple of the EMPLOYEE relation and that the values for q (Fname), r
(Minit), and s (Lname) be'John','B', and'Smith', respectively. For convenience, we will
quantiff only those variables actually appearing in a condition (these would be q, r,
and s in Oo) in the rest of our examples.13
An alternative shorthand notation, used in QBE, for writing this query is to assign
the constants'John','B', and'Smith' directly as shown in O0A. Here, all variables not
appearing to the left of the bar are implicitly existentially quantified:ra

o0A: { nv I EM PLOYE E (' John','B','Sm ith',t,u,v,w g.ry,2) |

Ouery 1. Retrieve the name and address of all employees who work for the
'Research' department.
01: {4sv I (lz) (lr) (3rn) (EMPLOYEE(qrstuvwxyz) AND

DEPARTMENT (Imno) AND l='Research' AND m=z) l

A condition relating two domain variables that range over attributes from two rela-
tions, such as m = z in 01 , is a join condition; whereas a condition that relates a
domain variable to a constant, such as / ='Research', is a selection condition.

Ouery 2. For every project located in'Staffiord', list the project number, the
controlling department number, and the department manager's last name,
birth date, and address.

Q2: lilsuv | (lj) (lzXln) (lr) (PRoJ Ecr (hijk)
AN D E M PLOY EE(qr stuvwryz) AN D D E PARTM E NT(lrn no)
AND Fm AND n=f ANDi'Staffiord'))

13. Note that the notation of quantifying only the domain variables actually used in conditions and of
showing a predicate such as EMPLOYEE(qrstuvwxyz) without separating domain variables with commas
is an abbreviated notation used for convenience; it is not the correct Jormal notation.
14. Again, this is not formally accurate notation.

211

of
r list

R,

van-

$a

ral-
' are
nis
'the

212 Chapter 6 The Relational Algebra and Relational Calculus

Ouery 6. List the names of employees who have no dependents.
06: {4s | (lr(EMPLoyEE(qrstuvwxyz)

AN D (NOT(3/) (DEpEN DE Nr (tmnop) AN D,=/))) l
06 can be restated using universal quantifiers instead of the existential quanti-
fiers, as shown in 064:

064: {4s | (:r(EMPLOyEE(qrstuvwxyz)
AN D ((V/) (NOr(D E pE N D ENr (tmnop)) OR NOr(Ft))))]

ouery 7' List the names of managers who have at least one dependent.
07: {sq I (lr(l j)(l/)(EMpLoyEE(qrstuvwxyz) AND DEPARTMENT(hilk)

AND DEPENDENT(lmnop) AND t=j aND /=r)l

As we mentioned earlier, it can be shown that any query that can be expressed in the
relational algebra can also be expressed in the domain or tuple relational calculus.
Also, any safe expressiorz in the domain or tuple relational calculus can be expressed
in the relational algebra.

The QBE language was based on the domain relational calculus, althoueh this was
realized later, after the domain calculus was formalized. eBE was one Lf the first
graphical query languages with minimum syntax developed for database systems.
It was developed at IBM Research and is available as an IBM commercial product
as part of the Query Management Facil ity (eMF) interface oprion to nB). It has
been mimicked by several other commercial products. Because of its important
place in the field of relational languages, we have included an overview of eBE in
Appendix D.

6.8 Summary
In this chapter we presented two formal languages for the relational model of data.
They are used to manipulate relations and produce new relations as answers to
queries. we discussed the relational algebra and its operations, which are used to
speciS, a sequence of operations to speciS' a query. Then we introduced two types of
relational calculi called tuple calculus and domain calculus; they are declaratlve in
that-they specif, the result of a query without specifring how to produce the query
result.

In Sections 6.1 through 6.3, we introduced the basic reiational algebra operations
and i l lustrated the types o[quer ies for which each is used. First , i .ve discussed the
unary relational operators SELECT and pRoJECT, as well as the RENAME operation.
Then, we discussed binary set theoretic operations requiring that relations on which
they are applied be union compatible; these includ. ut'ttott, tNTERSECTION, and
sET DIFFERENCE. The CARTESIAN pRoDUCT operarion is a set operation that can
be used to combine tuples from two relations, producing all possibie combinations.

#,

Review Ouestions

It is rarely used in practice; however, we showed how CARTESIAN PRODUCT fol-
Iowed by SELECT can be used to define matching tuples from two relations and
leads to the JOIN operation. Different JOIN operations called THETA JOIN, EOUI-
JOIN, and NATURAL JOIN were introduced. Query trees were introduced as an inter-
nal representation of relational algebra queries.

We discussed some important types of queries thar cannot be stated with the basic
relational algebra operations but are important for practical situations. We intro-
duced GENERALIZED PROJECTION to use functions of attributes in the projection
list and the AGGREGATE FUNCTION operation to deal with aggregate types of
requests. We discussed recursive queries, for which there is no direct support in the
algebra but which can be approached in a step-by-step approach, as we demon-
strated. Then we presented the OUTER JOIN and OUTER UNION operations, which
extend JOIN and UNION and allow all information in source relations to be pre-
served in the result.

The last two sections described the basic concepts behind relational calculus, which
is based on the branch of mathematical logic called predicate calculus. There are
two types of relational calculi: (l) the tuple relational calculus, which uses tuple
variables that range over tuples (rows) of relations, and (2) the domain relational
calculus, which uses domain variables that range over domains (columns of rela-
tions). In relational calculus, a query is specified in a single declarative statement,
without specifring any order or method for retrieving the query result. Hence, rela-
tional calculus is often considered to be a higher-level language than the relational
algebra because a relational calculus expression stares what we want to retrieve
regardless of how the query may be executed.

We discussed the syntax of relational calculus queries using both tuple and domain
variables. We introduced query graphs as an internal representation for queries in
relational calculus. We also discussed the existential quantifier (3) and the universal
quantifier (V). We saw that relational calculus variables are bound by these quanti-
fiers. We described in detail how queries with universal quantification are written,
and we discussed the problem of specifring safe queries whose results are finite. We
also discussed rules for transforming universal into existential quantifiers, and vice
versa. It is the quantifiers that give expressive power to the relational calculus, mak-
ing it equivalent to relational algebra. There is no analog to grouping and aggrega-
tion functions in basic relational calculus, although some extensions have been
suggested.

Review Ouestions
ti. I List the operations of relational algebra and the purpose of each.

*.t, What is union compatibil i ty? Why do the UNION, INTERSECTION, and
DIFFERENCE operations require that the relations on which they are applied
be union compatible?

213

tl in the
.rlculus.
pressed

.his was
:he first
,\ 'stemS.
-rroduct
l . I t has
portant
QBE in

of data.
,\\'ers to
r.rsed to
tvpes of
'ative in
rc query

r.rations
ssed the
crirt ion.
n rvhich
JN, and
that can
nat ions.

