chapter

The Relational Algebra
and Relational Calculus

n this chapter we discuss the two formal languages

for the relational model: the relational algebra and
the relational calculus. As we discussed in Chapter 2, a data model must include a
set of operations to manipulate the database, in addition to the data model’s con-
cepts for defining database structure and constraints. The basic set of operations for
the relational model is the relational algebra. These operations enable a user to
specify basic retrieval requests. The result of a retrieval is a new relation, which may
have been formed from one or more relations. The algebra operations thus produce
new relations, which can be further manipulated using operations of the same
algebra. A sequence of relational algebra operations forms a relational algebra
expression, whose result will also be a relation that represents the result of a data-
base query (or retrieval request).

The relational algebra is very important for several reasons. First, it provides a for-
mal foundation for relational model operations. Second, and perhaps more impor-
tant, it is used as a basis for implementing and optimizing queries in relational
database management systems (RDBMSs), as we discuss in Part 4. Third, some of its
concepts are incorporated into the SQL standard query language for RDBMSs.
Although no commercial RDBMS in use today provides an interface for relational
algebra queries, the core operations and functions of any relational system are based
on relational algebra operations. We will define these operations in detail in subse-
quent sections.
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Whereas the algebra defines a set of operations for the relational model, the
relational calculus provides a higher-level declarative notation for specifying rela-
tional queries. A relational calculus expression creates a new relation, which is spec-
ified in terms of variables that range over rows of the stored database relations (in
tuple calculus) or over columns of the stored relations (in domain calculus). In a
calculus expression, there is no order of operations to specify how to retrieve the
query result—a calculus expression specifies only what information the result
should contain. This is the main distinguishing feature between relational algebra
and relational calculus. The relational calculus is important because it has a firm
basis in mathematical logic and because the standard query language (SQL) for
RDBMSs has some of its foundations in the tuple relational calculus.!

The relational algebra is often considered to be an integral part of the relational data
model. Its operations can be divided into two groups. One group includes set oper-
ations from mathematical set theory; these are applicable because each relation is
defined to be a set of tuples in the formal relational model. Set operations include
UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT. The other
group consists of operations developed specifically for relational databases—these
include SELECT, PROJECT, and JOIN, among others. First, we describe the SELECT
and PROJECT operations in Section 6.1 because they are unary operations that
operate on single relations. Then we discuss set operations in Section 6.2. In Section
6.3, we discuss JOIN and other complex binary operations, which operate on two
tables. The COMPANY relational database shown in Figure 5.6 is used for our
examples.

Some common database requests cannot be performed with the original relational
algebra operations, so additional operations were created to express these requests.
These include aggregate functions, which are operations that can summarize data
from the tables, as well as additional types of JOIN and UNION operations. These
operations were added to the original relational algebra because of their importance
to many database applications, and are described in Section 6.4. We give examples
of specifying queries that use relational operations in Section 6.5. Some of these
queries are used in subsequent chapters to illustrate various languages.

In Sections 6.6 and 6.7 we describe the other main formal language for relational
databases, the relational calculus. There are two variations of relational calculus.
The tuple relational calculus is described in Section 6.6 and the domain relational
calculus is described in Section 6.7. Some of the SQL constructs discussed in
Chapter 8 are based on the tuple relational calculus. The relational calculus is a for-
mal language, based on the branch of mathematical logic called predicate calculus.?
In tuple relational calculus, variables range over tuples, whereas in domain rela-
tional calculus, variables range over the domains (values) of attributes. In Appendix
D we give an overview of the Query-By-Example (QBE) language, which is a graph-

1. SQL is based on tuple relational calculus, but also incorporates some of the operations from the rela-
tional algebra and its extensions, as we shall see in Chapters 8 and 9.

2. In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables
and values—is assumed.
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6.1 Unary Relational Operations: SELECT and PROJECT

ical user-friendly relational language based on domain relational calculus. Section
6.8 summarizes the chapter.

For the reader who is interested in a less detailed introduction to formal relational
languages, Sections 6.4, 6.6, and 6.7 may be skipped.

6.1 Unary Relational Operations:
SELECT and PROJECT

6.1.1 The SELECT Operation

The SELECT operation is used to select a subset of the tuples from a relation that sat-
isfies a selection condition. One can consider the SELECT operation to be a filter
that keeps only those tuples that satisfy a qualifying condition. The SELECT opera-
tion can also be visualized as a horizontal partition of the relation into two sets of
tuples—those tuples that satisfy the condition and are selected, and those tuples
that do not satisfy the condition and are discarded. For example, to select the
EMPLOYEE tuples whose department is 4, or those whose salary is greater than
$30,000, we can individually specify each of these two conditions with a SELECT
operation as follows:

OSalary>30000( EMPLOYEE)

In general, the SELECT operation is denoted by

O selection condition>(R)

where the symbol G (sigma) is used to denote the SELECT operator and the selec-
tion condition is a Boolean expression specified on the attributes of relation R.
Notice that R is generally a relational algebra expression whose result is a relation—
the simplest such expression is just the name of a database relation. The relation
resulting from the SELECT operation has the same attributes as R.

The Boolean expression specified in <selection condition> is made-up of a number
of clauses of the form

<attribute name> <comparison op> <constant value>,
or
<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is nor-
mally one of the operators {=, <, <, >, 2, #}, and <constant value> is a constant value
from the attribute domain. Clauses can be arbitrarily connected by the Boolean
operators and, or, and not to form a general selection condition. For example, to
select the tuples for all employees who either work in department 4 and make over
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from the tables, as well as additional types of JOIN and UNION operations. These
operations were added to the original relational algebra because of their importance
to many database applications, and are described in Section 6.4. We give examples
of specifying queries that use relational operations in Section 6.5. Some of these
queries are used in subsequent chapters to illustrate various languages.

In Sections 6.6 and 6.7 we describe the other main formal language for relational
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The tuple relational calculus is described in Section 6.6 and the domain relational
calculus is described in Section 6.7. Some of the SQL constructs discussed in
Chapter 8 are based on the tuple relational calculus. The relational calculus is a for-
mal language, based on the branch of mathematical logic called predicate calculus.?
In tuple relational calculus, variables range over tuples, whereas in domain rela-
tional calculus, variables range over the domains (values) of attributes. In Appendix
D we give an overview of the Query-By-Example (QBE) language, which is a graph-

1. SQL is based on tuple relational calculus, but also incorporates some of the operations from the rela-
tional algebra and its extensions, as we shall see in Chapters 8 and 9.

2. In this chapter no familiarity with first-order predicate calculus—which deals with quantified variables
and values—is assumed.
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$25,000 per year, or work in department 5 and make over $30,000, we can specify
the following SELECT operation:

G (Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

The result is shown in Figure 6.1(a).

Notice that the comparison operators in the set {=, <, <, >, 2, #} apply to attributes
whose domains are ordered values, such as numeric or date domains. Domains of
strings of characters are considered ordered based on the collating sequence of the
characters. If the domain of an attribute is a set of unordered values, then only the
comparison operators in the set {=, #} can be used. An example of an unordered
domain is the domain Color = {‘red’, ‘blue}, ‘green’, ‘white’, ‘yellow’, . . .} where no
order is specified among the various colors. Some domains allow additional types of
comparison operators; for example, a domain of character strings may allow the
comparison operator SUBSTRING_OF.

In general, the result of a SELECT operation can be determined as follows. The
<selection condition> is applied independently to each tuple # in R. This is done by
substituting each occurrence of an attribute A; in the selection condition with its
value in the tuple #[A;]. If the condition evaluates to TRUE, then tuple  is selected.
All the selected tuples appear in the result of the SELECT operation. The Boolean
conditions AND, OR, and NOT have their normal interpretation, as follows:

# (condl AND cond2) is TRUE if both (cond1) and (cond2) are TRUE; other-
wise, it is FALSE.

Figure 6.1

Results of SELECT and PROJECT operations. (a) G/pno-s AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).
(D) T0marie: Frame. salary(EM PLOYEE). (c) Tts, Salary(EM PLOYEE).

(a)

Fname

Sen

Super_ssn

Franklin

Wong

333445555 | 1955-12-08 | 638 Voss, Houston, TX 40000 | 888665555

Jennifer

Wallace

987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 43000 | 888665555

Ramesh

Narayan

666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX 38000 | 333445555

(b)

~~
e

Fname

Smith

John

Wong

Franklin

Zelaya

Alicia

Wallace

Jennifer

Narayan

Ramesh

English

Joyce

Jabbar

Ahmad

zlz|z|n|nz|z|@

Borg

James
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6.1 Unary Relational Operations: SELECT and PROJECT

# (condl OR cond2) is TRUE if either (condl) or (cond2) or both are TRUE;
otherwise, it is FALSE.

# (NOT cond) is TRUE if cond is FALSE; otherwise, it is FALSE.

The SELECT operator is unary; that is, it is applied to a single relation. Moreover,
the selection operation is applied to each tuple individually; hence, selection condi-
tions cannot involve more than one tuple. The degree of the relation resulting from
a SELECT operation—its number of attributes—is the same as the degree of R. The
number of tuples in the resulting relation is always less than or equal to the number
of tuples in R. That is, |6, (R)| < |R| for any condition C. The fraction of tuples
selected by a selection condition is referred to as the selectivity of the condition.

Notice that the SELECT operation is commutative; that is,

G<cond1>(0<cond2>(R)) = 0<cond2>(6<cond1>(R))

Hence, a sequence of SELECTs can be applied in any order. In addition, we can
always combine a cascade of SELECT operations into a single SELECT operation
with a conjunctive (AND) condition; that is,

o <cond1>(0<cond2>(' . -(G <condn>(R)) L) ))
= GO<cond1> AND <cond2> AND ...AND <condn>(R)

6.1.2 The PROJECT Operation

If we think of a relation as a table, the SELECT operation selects some of the rows
from the table while discarding other rows. The PROJECT operation, on the other
hand, selects certain columns from the table and discards the other columns. If we
are interested in only certain attributes of a relation, we use the PROJECT operation
to project the relation over these attributes only. Therefore, the result of the
PROJECT operation can be visualized as a vertical partition of the relation into two
relations: one has the needed columns (attributes) and contains the result of the
operation and the other contains the discarded columns. For example, to list each
employee’s first and last name and salary, we can use the PROJECT operation as
follows:

T name, Fname, Salary( EM PLOYEE)

The resulting relation is shown in Figure 6.1(b). The general form of the PROJECT
operation is

n<attribute list> (R)

where 7 (pi) is the symbol used to represent the PROJECT operation, and <attribute
list> is the desired list of attributes from the attributes of relation R. Again, notice
that R is, in general, a relational algebra expression whose result is a relation, which in
the simplest case is just the name of a database relation. The result of the PROJECT
operation has only the attributes specified in <attribute list> in the same order as
they appear in the list. Hence, its degree is equal to the number of attributes in
<attribute list>.
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If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to
occur. The PROJECT operation removes any duplicate tuples, so the result of the
PROJECT operation is a set of tuples, and hence a valid relation. This is known as
duplicate elimination. For example, consider the following PROJECT operation:

Tsex, Sa|a,y(EM PLOYEE)

The result is shown in Figure 6.1(c). Notice that the tuple <°F}, 25000> appears only
once in Figure 6.1(c), even though this combination of values appears twice in the
EMPLOYEE relation. Duplicate elimination involves sorting to detect duplicates and
hence adds more processing. If duplicates are not eliminated, the result would be a
multiset or bag of tuples rather than a set. This was not permitted in the formal
relational model, but is allowed in practice. In Chapter 8 we will see that the user
can control whether duplicates should be eliminated or not.

The number of tuples in a relation resulting from a PROJECT operation is always
less than or equal to the number of tuples in R. If the projection list is a superkey of
R—that is, it includes some key of R—the resulting relation has the same number of
tuples as R. Moreover,

Tistis> (Magisias (R)) = gy (R)

as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is
an incorrect expression. It is also noteworthy that commutativity does not hold on
PROJECT.

6.1.3 Sequences of Operations and
the RENAME Operation

The relations shown in Figure 6.1 do not have any names. In general, we may want
to apply several relational algebra operations one after the other. Either we can write
the operations as a single relational algebra expression by nesting the operations,
or we can apply one operation at a time and create intermediate result relations. In
the latter case, we must give names to the relations that hold the intermediate
results. For example, to retrieve the first name, last name, and salary of all employ-
ees who work in department number 5, we must apply a SELECT and a PROJECT
operation. We can write a single relational algebra expression as follows:

TFname, Lname, Salary(GDno:S( EM PLOYEE) )

Figure 6.2(a) shows the result of this relational algebra expression. Alternatively, we
can explicitly show the sequence of operations, giving a name to each intermediate
relation:

DEP5_EMPS¢— Gpy,_s(EMPLOYEE)
RESULT¢ T pame, Lname, Salary(DEP5_EMPS)
It is often simpler to break down a complex sequence of operations by specifying

intermediate result relations than to write a single relational algebra expression. We
can also use this technique to rename the attributes in the intermediate and result
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6.1 Unary Relational Operations: SELECT and PROJECT 179
(a)
Fname | Lname | Salary
John Smith 30000
Franklin | Wong 40000
Ramesh | Narayan | 38000
Joyce English | 25000
(b)
TEMP
Fname | Minit | Lname Ssn Bdate Address Sex | Salary | Super_ssn |Dno
John B Smith 123456789 | 1965-01-09 | 731 Fondren, Houston,TX | M | 30000 | 333445555 | 5
Franklin i Wong 333445555 | 1955-12-08 | 638 Voss, Houston, TX M | 40000 | 888665555 | 5
Ramesh K Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble,TX | M | 38000 | 333445555 | 5
Joyce A English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX E 25000 | 333445555 | 5
R
First_name | Last_name | Salary
John Smith 30000 1
Franklin Wong 40000 Figure 6.2
S Narayan 38000 Results of a sequence of operations.
.loyce English 25000 (a) nFname, Lname, Salary(GDno=5(EMPLOYEE))-

(b) Using intermediate relations and renaming of attributes.

relations. This can be useful in connection with more complex operations such as
UNION and JOIN, as we shall see. To rename the attributes in a relation, we simply
list the new attribute names in parentheses, as in the following example:

TEMP ¢— Gpo—s(EMPLOYEE)
R(First_name, Last_name, Salary) ¢ Tg,ame, Lname, Salary(TEMP)

These two operations are illustrated in Figure 6.2(b).

If no renaming is applied, the names of the attributes in the resulting relation of a
SELECT operation are the same as those in the original relation and in the same
order. For a PROJECT operation with no renaming, the resulting relation has the
same attribute names as those in the projection list and in the same order in which
they appear in the list.

We can also define a formal RENAME operation—which can rename either the rela-
tion name or the attribute names, or both—as a unary operator. The general
RENAME operation when applied to a relation R of degree n is denoted by any of the
following three forms:

Pss, By .. 8)(R) or ps(R) or pwp 5, p)(R)

where the symbol p (rho) is used to denote the RENAME operator, S is the new rela-
tion name, and B, B,, . . ., B, are the new attribute names. The first expression
renames both the relation and its attributes, the second renames the relation only,
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and the third renames the attributes only. If the attributes of R are (A}, A,,...,A,)
in that order, then each A; is renamed as B,.

6.2 Relational Algebra Operations
from Set Theory

6.2.1 The UNION, INTERSECTION, and MINUS Operations

The next group of relational algebra operations are the standard mathematical
operations on sets. For example, to retrieve the Social Security Numbers of all
employees who either work in department 5 or directly supervise an employee who
works in department 5, we can use the UNION operation as follows:?

DEP5_EMPS ¢ Gp,,s(EMPLOYEE)
RESULT1 « Tg,,(DEP5_EMPS)
RESULT2(Ssn) ¢ Tig,pe; sen(DEP5_EMPS)
RESULT « RESULT1 U RESULT2

The relation RESULT1 has the Ssn of all employees who work in department 5,
whereas RESULT2 has the Ssn of all employees who directly supervise an employee
who works in department 5. The UNION operation produces the tuples that are in
either RESULT1 or RESULT2 or both (see Figure 6.3). Thus, the Ssn value
‘333445555 appears only once in the result.

Several set theoretic operations are used to merge the elements of two sets in vari-
ous ways, including UNION, INTERSECTION, and SET DIFFERENCE (also called
MINUS). These are binary operations; that is, each is applied to two sets (of tuples).
When these operations are adapted to relational databases, the two relations on
which any of these three operations are applied must have the same type of tuples;
this condition has been called union compatibility. Two relations R(A,, A,, ..., A,)
and S(B,, B,, ..., B,) are said to be union compatible if they have the same degree n

Figure 6.3
Result of the

UNION operation
RESULT < RESULT1

U RESULT2.

RESULT1 RESULT2 RESULT
Ssn. - - Sin Ssn
123456789 333445555 123456789
333445555 888665555 333445555
666884444 666884444
453453453 453453453

888665555

3. As a single relational algebra expression, this becomes
Result ¢ gy, (Opno=s (EMPLOYEE) ) U g 061 ssn (Opno=5 (EMPLOYEE))
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s A) and if dom(A;) = dom(B;) for 1 < i < n. This means that the two relations have the
same number of attributes and each corresponding pair of attributes has the same
domain.

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE
on two union-compatible relations R and S as follows:

® UNION: The result of this operation, denoted by R U §, is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate

n AT
¢ tuples are eliminated.
-matical ® INTERSECTION: The result of this operation, denoted by R N S, is a relation
s of ﬁll that includes all tuples that are in both R and S.
| i sig ® SET DIFFERENCE (or MINUS): The result of this operation, denoted by
R— S, is a relation that includes all tuples that are in R but not in S.
We will adopt the convention that the resulting relation has the same attribute
names as the first relation R. It is always possible to rename the attributes in the
result using the rename operator.
Figure 6.4 illustrates the three operations. The relations STUDENT and INSTRUCTOR
“ment 5, in Figure 6.4(a) are union compatible and their tuples represent the names of stu-
‘nployee dents and instructors, respectively. The result of the UNION operation in Figure
t are in 6.4(b) shows the names of all students and instructors. Note that duplicate tuples
-1 value appear only once in the result. The result of the INTERSECTION operation (Figure
6.4(c)) includes only those who are both students and instructors.
- in vari- Notice that both UNION and INTERSECTION are commutative operations; that is,
) called RUS=SUR and RNS=SNR
“ tuples). J :
-ions on Both UNION and INTERSECTION can be treated as n-ary operations applicable to
 tuples; any number of relations because both are associative operations; that is,
Ay RUBUTN=RUS)UT and (RNS)NT=RN(SNT)
degree n

The MINUS operation is not commutative; that is, in general,
R-S#S-R

Figure 6.4(d) shows the names of students who are not instructors, and Figure
6.4(e) shows the names of instructors who are not students.

Note that INTERSECTION can be expressed in terms of union and set difference as
follows:

RNS=RUS-(R-5)-(S-R)

6.2.2 The CARTESIAN PRODUCT
(CROSS PRODUCT) Operation

Next, we discuss the CARTESIAN PRODUCT operation—also known as CROSS
PRODUCT or CROSS JOIN—which is denoted by X. This is also a binary set opera-
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(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname Fn Ln

Susan Yao John Smith Susan Yao
Ramesh | Shah Ricardo | Browne Ramesh | Shah
Johnny Kohler Susan Yao Johnny Kohler

Barbara | Jones Francis | Johnson Barbara | Jones
Amy Ford Ramesh | Shah Amy Ford
Jimmy Wang Jimmy Wang
Ernest Gilbert Ernest Gilbert
John Smith
Ricardo | Browne

Francis Johnson

Fn Fn Ln Fname Lname

Susan Johnny Kohler John Smith

Ramesh Barbara | Jones Ricardo | Browne

Amy Ford Francis | Johnson

Jimmy Wang
Ernest Gilbert

Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.

(b) STUDENT U INSTRUCTOR. (c) STUDENT M INSTRUCTOR. (d) STUDENT — INSTRUCTOR.
(e) INSTRUCTOR — STUDENT.

tion, but the relations on which it is applied do not have to be union compatible. In
its binary form, this set operation produces a new element by combining every
member (tuple) from one relation (set) with every member (tuple) from the other
relation (set). In general, the result of R(A, A,,...,A,) XS(B;,B,, ..., B,,) is a rela-
tion Q with degree n + m attributes Q(A, A,,...,A,, B}, B,, ..., B,,), in that order.
The resulting relation Q has one tuple for each combination of tuples—one from R
and one from S. Hence, if R has 1 tuples (denoted as |R| = 1, ), and S has n; tuples,
then R x S will have np * ng tuples.

The n-ary CARTESIAN PRODUCT operation is an extension of the above concept,
which produces new tuples by concatenating all possible combinations of tuples
from n underlying relations. The operation applied by itself is generally meaning-
less. It is useful when followed by a selection that matches values of attributes com-
ing from the component relations. For example, suppose that we want to retrieve a
list of names of each female employee’s dependents. We can do this as follows:
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6.3 Binary Relational Operations: JOIN and DIVISION

FEMALE_EMPS ¢ Ggs,_+(EMPLOYEE)

EMPNAMES ¢ Tl ame. Lname, Ssn(FEMALE_EMPS)
EMP_DEPENDENTS ¢~ EMPNAMES X DEPENDENT
ACTUAL_DEPENDENTS ¢~ Ggq,_gssn(EMP_DEPENDENTS)
RESULT € Teame, Lname, Dependent name( ACTUAL_DEPENDENTS)

The resulting relations from this sequence of operations are shown in Figure 6.5.
The EMP_DEPENDENTS relation is the result of applying the CARTESIAN
PRODUCT operation to EMPNAMES from Figure 6.5 with DEPENDENT from Figure
5.6. In EMP_DEPENDENTS, every tuple from EMPNAMES is combined with every
tuple from DEPENDENT, giving a result that is not very meaningful. We want to
combine a female employee tuple only with her particular dependents—namely, the
DEPENDENT tuples whose Essn values match the Ssn value of the EMPLOYEE tuple.
The ACTUAL_DEPENDENTS relation accomplishes this. The EMP_DEPENDENTS
relation is a good example of the case where relational algebra can be correctly
applied to yield results that make no sense at all. Therefore, it is the responsibility of
the user to make sure to apply only meaningful operations to relations.

The CARTESIAN PRODUCT creates tuples with the combined attributes of two rela-
tions. We can SELECT related tuples only from the two relations by specifying an
appropriate selection condition as we did in the preceding example. Because this
sequence of CARTESIAN PRODUCT followed by SELECT is used quite commonly to
identify and select related tuples from two relations, a special operation, called JOIN,
was created to specify this sequence as a single operation. We discuss the JOIN oper-
ation next.

6.3 Binary Relational Operations:
JOIN and DIVISION

6.3.1 The JOIN Operation

The JOIN operation, denoted by ™, is used to combine related tuples from two rela-
tions into single tuples. This operation is very important for any relational database
with more than a single relation because it allows us to process relationships among
relations. To illustrate JOIN, suppose that we want to retrieve the name of the man-
ager of each department. To get the manager’s name, we need to combine each
department tuple with the employee tuple whose Ssn value matches the Mgr_ssn
value in the department tuple. We do this by using the JOIN operation and then pro-
jecting the result over the necessary attributes, as follows:

DEPT_MGR ¢ DEPARTMENT Mo, o _s., EMPLOYEE
RESULT ¢ Tpname, Lname, Frame(PEPT_MGR)
The first operation is illustrated in Figure 6.6. Note that MGR_SSN is a foreign key

and that the referential integrity constraint plays a role in having matching tuples in
the referenced relation EMPLOYEE.
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Figure 6.5
The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

FEMALE_EMPS
Fname |Minit
Alicia J

S
A

Ssn
999887777
987654321
453453453

Bdate
1968-07-19
1941-06-20
1972-07-31

Address
3321Castle, Spring, TX
291Berry, Bellaire, TX
5631 Rice, Houston, TX

Lname
Zelaya

Salary
25000
43000
25000

Super_ssn
987654321
888665555
333445555
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Abner

1942-02-28
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Jennifer
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Abner
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DEPT_MGR
~jf7,Dname Dnumber Mgr_ssn cee Fname Minit Lname Ssn
Research 5 333445555 | -+ | Franklin 1 Wong 333445555
Administration 4 987654321 *** | Jennifer S Wallace | 987654321
Headquarters 1 888665555 | - | James E Borg 888665555

Figure 6.6

Result of the JOIN operation
DEPT_MGR ¢— DEPARTMENT M, ... EMPLOYEE.

The JOIN operation can be stated in terms of a CARTESIAN PRODUCT followed by a
SELECT operation. However, JOIN is very important because it is used very frequently
when specifying database queries. Consider the example we gave earlier to illustrate
CARTESIAN PRODUCT, which included the following sequence of operations:

EMP_DEPENDENTS «— EMPNAMES x DEPENDENT
ACTUAL_DEPENDENTS ¢ Ggg,_g<sn(EMP_DEPENDENTS)

These two operations can be replaced with a single JOIN operation as follows:
ACTUAL_DEPENDENTS ¢~ EMPNAMES M g ., DEPENDENT

The general form of a JOIN operation on two relations* R(A,, A,,...,A,) and S(B,,
B BotitS

R

<join condition>s

The result of the JOIN is a relation Q with n + m attributes Q(A}, A,, ..., A,, B, B,
..., B,,) in that order; Q has one tuple for each combination of tuples—one from R
and one from S—whenever the combination satisfies the join condition. This is the
main difference between CARTESIAN PRODUCT and JOIN. In JOIN, only combina-
tions of tuples satisfying the join condition appear in the result, whereas in the
CARTESIAN PRODUCT all combinations of tuples are included in the result. The
join condition is specified on attributes from the two relations R and S and is evalu-
ated for each combination of tuples. Each tuple combination for which the join
condition evaluates to TRUE is included in the resulting relation Q as a single com-
bined tuple.

A general join condition is of the form
<condition> AND <condition> AND . .. AND <condition>

where each condition is of the form A; 8 B;, A; is an attribute of R, B; is an attribute
of S, A; and B; have the same domain, and 6 (theta) is one of the comparison opera-
tors {=, <, <, >, 2, #}. A JOIN operation with such a general join condition is called a

4. Again, notice that R and S can be any relations that result from general relational algebra expressions.
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THETA JOIN. Tuples whose join attributes are NULL or for which the join condition
is FALSE do not appear in the result. In that sense, the JOIN operation does not nec-
essarily preserve all of the information in the participating relations.

6.3.2 Variations of JOIN:
The EQUIJOIN and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons
only. Such a JOIN, where the only comparison operator used is =, is called an
EQUUOIN. Both examples we have considered were EQUIJOINs. Notice that in the
result of an EQUIJOIN we always have one or more pairs of attributes that have iden-
tical values in every tuple. For example, in Figure 6.6, the values of the attributes
Mgr_ssn and Ssn are identical in every tuple of DEPT_MGR because of the equality
join condition specified on these two attributes. Because one of each pair of attrib-
utes with identical values is superfluous, a new operation called NATURAL JOIN—
denoted by *—was created to get rid of the second (superfluous) attribute in an
EQUUOIN condition.” The standard definition of NATURAL JOIN requires that the
two join attributes (or each pair of join attributes) have the same name in both rela-
tions. If this is not the case, a renaming operation is applied first.

In the following example, first we rename the Dnumber attribute of DEPARTMENT to
Dnum—so that it has the same name as the Dnum attribute in PROJECT—and then
we apply NATURAL JOIN:

PROJ_DEPT¢PROJECT * P\pname, Drum, Mar_ssn, Mgr_start_date)(DEPARTMENT)

The same query can be done in two steps by creating an intermediate table DEPT as
follows:

DERISGS p(Dname, Dnum, Mgr_ssn, Mgr_start_date(DEPARTMENT)
PROJ_DEPT « PROJECT * DEPT

The attribute Dnum is called the join attribute. The resulting relation is illustrated in
Figure 6.7(a). In the PROJ_DEPT relation, each tuple combines a PROJECT tuple
with the DEPARTMENT tuple for the department that controls the project, but only
one join attribute is kept.

If the attributes on which the natural join is specified already have the same names in
both relations, renaming is unnecessary. For example, to apply a natural join on the
Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write

DEPT_LOCS <« DEPARTMENT * DEPT_LOCATIONS

The resulting relation is shown in Figure 6.7(b), which combines each department
with its locations and has one tuple for each location. In general, NATURAL JOIN is
performed by equating all attribute pairs that have the same name in the two
relations. There can be a list of join attributes from each relation, and each cor-
responding pair must have the same name.

5. NATURAL JOIN is basically an EQUIJOIN followed by removal of the superfluous attributes.




~ondition
- not nec-

‘parisons
called an
at in the
ave iden-
ttributes
- equality
»f attrib-
L. JOIN—
ite in an
- that the
oth rela-

"MENT to
ind then

“NT)
c DEPTEas

-trated in
-CT tuple
but only

names in
n on the
~ to write

‘artment
~_JOIN is
the two
ach cor-

6.3 Binary Relational Operations: JOIN and DIVISION 187

(@)
PROJ_DEPT
\ Pname \ Pnumber | Plocation ] Dnum \ Dname \ Mgr_ssn ‘| Mgr_start_date \
ProductX 1 Bellaire 5 Research 333445555 1988-05-22
ProductY 2 Sugarland 5 Research 333445555 1988-05-22
ProductZ 3 Houston 5 Research 333445555 1988-05-22
Computerization 10 Stafford 4 Administration | 987654321 1995-01-01
Reorganization 20 Houston 1 Headquarters | 888665555 1981-06-19
Newbenefits 30 Stafford 4 Administration | 987654321 1995-01-01
(b)
DEPT_LOCS
Dname Dnumber Mgr_ssn Mgr_start_date Location
Headquarters 1 888665555 1981-06-19 Houston
Administration 4 987654321 1995-01-01 Stafford
Research 5 333445555 1988-05-22 Bellaire
Research 5 333445555 1988-05-22 Sugarland
Research 5 333445555 1988-05-22 Houston
Figure 6.7

Results of two NATURAL JOIN operations.
(a) PROJ_DEPT < PROJECT * DEPT.

(b) DEPT_LOCS «— DEPARTMENT * DEPT_LOCATIONS.

A more general, but nonstandard definition for NATURAL JOIN is

Q < R *(ign>),(<list2>)S

In this case, <list1> specifies a list of 7 attributes from R, and <list2> specifies a list of
i attributes from S. The lists are used to form equality comparison conditions
between pairs of corresponding attributes, and the conditions are then ANDed
together. Only the list corresponding to attributes of the first relation R—<list1>—
is kept in the result Q.

Notice that if no combination of tuples satisfies the join condition, the result of a
JOIN is an empty relation with zero tuples. In general, if R has n, tuples and S has ng
tuples, the result of a JOIN operation R™ ;. ondiion>S Will have between zero and
ng * ng tuples. The expected size of the join result divided by the maximum size np *
ng leads to a ratio called join selectivity, which is a property of each join condition.
If there is no join condition, all combinations of tuples qualify and the JOIN degen-
erates into a CARTESIAN PRODUCT, also called CROSS PRODUCT or CROSS JOIN.

As we can see, the JOIN operation is used to combine data from multiple relations so
that related information can be presented in a single table. These operations are
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also known as inner joins, to distinguish them from a different join variation
called outer joins (see Section 6.4.4). Informally, an inner join is a type of match and
merge operation defined formally as a combination of CARTESIAN PRODUCT and
SELECTION. An outer join is another, more lenient version of the same. Note that
sometimes a join may be specified between a relation and itself, as we shall illustrate
in Section 6.4.3. The NATURAL JOIN or EQUIJOIN operation can also be specified
among multiple tables, leading to an n-way join. For example, consider the follow-
ing three-way join:

((PROJECT ™ b m-pnumber DEPARTMENT) Dy oo EMPLOYEE)

This links each project to its controlling department, and then relates the depart-
ment to its manager employee. The net result is a consolidated relation in which
each tuple contains this project-department-manager information.

6.3.3 A Complete Set of Relational Algebra Operations

It has been shown that the set of relational algebra operations {c, 7, U, —, X} is a
complete set; that is, any of the other original relational algebra operations can be
expressed as a sequence of operations from this set. For example, the INTERSECTION
operation can be expressed by using UNION and MINUS as follows:

RNS=(RUS)—((R-—S)V(S—R))

Although, strictly speaking, INTERSECTION is not required, it is inconvenient to
specify this complex expression every time we wish to specify an intersection. As
another example, a JOIN operation can be specified as a CARTESIAN PRODUCT fol-
lowed by a SELECT operation, as we discussed:

R <c0ndition>s = 0-<c0nditi0n>(R X S)

Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by
RENAME and followed by SELECT and PROJECT operations. Hence, the various
JOIN operations are also not strictly necessary for the expressive power of the rela-
tional algebra. However, they are important to consider as separate operations
because they are convenient to use and are very commonly applied in database
applications. One may include the RENAME operation as an essential operation if
the need to rename the result of a relational algebra expression is considered as a
necessity. Other operations have been included in the relational algebra for conven-
ience rather than necessity. We discuss one of these—the DIVISION operation—in
the next section.

6.3.4 The DIVISION Operation

The DIVISION operation, denoted by =+, is useful for a special kind of query that
sometimes occurs in database applications. An example is Retrieve the names of
employees who work on all the projects that ‘John Smith’ works on. To express this
query using the DIVISION operation, proceed as follows. First, retrieve the list of
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project numbers that John Smith® works on in the intermediate relation
SMITH_PNOS:

SMITH <= Gpame=-John’ AND Lname='Smith(EMPLOYEE)
SMITH_PNOS ¢ Ttp,o(WORKS_ON M gy, _sq, SMITH)

Next, create a relation that includes a tuple <Pno, Essn> whenever the employee
whose Ssn is Essn works on the project whose number is Pno in the intermediate
relation SSN_PNOS:

SSN_PNOS ¢ Tgyq, pno (WORKS_ON)

Finally, apply the DIVISION operation to the two relations, which gives the desired
employees’ Social Security Numbers:

SSNS(Ssn) < SSN_PNOS + SMITH_PNOS
RESULT < Trame, Lname(SSNS * EMPLOYEE)

The previous operations are shown in Figure 6.8(a).

In general, the DIVISION operation is applied to two relations R(Z) + S(X), where X
c Z.Let Y=Z— X (and hence Z = X U Y); that is, let Y be the set of attributes of R
that are not attributes of S. The result of DIVISION is a relation T(Y) that includes a
tuple ¢ if tuples t; appear in R with t, [Y] = t, and with t [X] = ¢ for every tuple t5in
S. This means that, for a tuple t to appear in the result T of the DIVISION, the values
in t must appear in R in combination with every tuple in S. Note that in the formu-
lation of the DIVISION operation, the tuples in the denominator relation restrict the
numerator relation by selecting those tuples in the result that match all values pres-
ent in the denominator. It is not necessary to know what those values are.

Figure 6.8(b) illustrates a DIVISION operation where X ={A}, Y= {B},and Z= {A, B}.
Notice that the tuples (values) b, and b, appear in R in combination with all three
tuples in S; that is why they appear in the resulting relation T. All other values of B
in R do not appear with all the tuples in S and are not selected: b, does not appear
with a,, and b; does not appear with a;.

The DIVISION operation can be expressed as a sequence of 7, X, and — operations as
follows:

T1 < my(R)
T2 « my((Sx T1) - R)
T« T1-T2

The DIVISION operation is defined for convenience for dealing with queries that
involve universal quantification (see Section 6.6.7) or the all condition. Most
RDBMS implementations with SQL as the primary query language do not directly
implement division. SQL has a roundabout way of dealing with the type of query
illustrated above (see Section 8.5.4). Table 6.1 lists the various basic relational alge-
bra operations we have discussed.

189
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(a)
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Figure 6.8
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T«— R+ S.

6.3.5 Notation for Query Trees

In this section we describe a notation typically used in relational systems to repre-
sent queries internally. The notation is called a query tree or sometimes it is known
as a query evaluation tree or query execution tree. It includes the relational algebra
operations being executed and is used as a possible data structure for the internal
representation of the query in an RDBMS.

A query tree is a tree data structure that corresponds to a relational algebra expres-
sion. It represents the input relations of the query as leaf nodes of the tree, and rep-
resents the relational algebra operations as internal nodes. An execution of the
query tree consists of executing an internal node operation whenever its operands
are available and then replacing that internal node by the relation that results from
executing the operation. The execution terminates when the root node is executed
and produces the result relation for the query.

Figure 6.9 shows a query tree for query Q2: For every project located in ‘Stafford,
retrieve the project number, the controlling department number, and the depart-
ment manager’s last name, address, and birth date. This query is specified on the
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Operations of Relational Algebra

Operation
SELECT

PROJECT

THETA JOIN

EQUIOIN

NATURAL JOIN

UNION

INTERSECTION

DIFFERENCE

CARTESIAN
PRODUCT

DIVISION

Purpose

Selects all tuples that satisfy the selection condition
from a relation R.

Produces a new relation with only some of the
attributes of R, and removes duplicate tuples.

Produces all combinations of tuples from R, and R,
that satisfy the join condition.

Produces all the combinations of tuples from R, and
R, that satisfy a join condition with only equality
comparisons.

Same as EQUIOIN except that the join attributes of R,
are not included in the resulting relation; if the join

attributes have the same names, they do not have to
be specified at all.

Produces a relation that includes all the tuples in R,
or R, or both R, and R,; R, and R, must be union
compatible.

Produces a relation that includes all the tuples in both
R, and R,; R, and R, must be union compatible.

Produces a relation that includes all the tuples in
R, that are not in R,; R, and R, must be union
compatible.

Produces a relation that has the attributes of R, and
R, and includes as tuples all possible combinations
of tuples from R, and R,.

Produces a relation R(X) that includes all tuples t[X]
in R,(Z) that appear in R, in combination with every
tuple from R,(Y), where Z=X U Y.

Notation

O <selection condition> (R)

7T’<attribute list> (R)

R, X

17 <join condition> RZ

Rl > <join condition> RZ’
OR Rl > (<join attributes 1>),

(<join attributes 2>) RZ

R1*<join condition> RZ’
OR Rl* (<join attributes 1>),

R, UR,

R, NR,

Ri-R,

R, XR,

(<join attributes 2>) R2

OR R, * R

2

Ri(Z) + Ry(Y)

relational schema of Figure 5.5 and corresponds to the following relational algebra

expression:

nPnumber, Dnum, Lname, Address, Bdate ( ( (GPIocation:‘Stafford'(PROJ ECT) )
> pnum=pnumber(DEPARTMENT)) Xy oo oo (EMPLOYEE))

In Figure 6.9 the three relations PROJECT, DEPARTMENT, and EMPLOYEE are repre-
sented by leaf nodes P, D, and E, while the relational algebra operations of the expres-
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® P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate

(3)
" D.Mgr_ssn=E.Ssn

(2
™ P.Dnum=D.Dnumber G EMPLOYEE

(1)/

S P.Plocation= ‘Stafford’ DEPARTMENT

Figure 6.9

Query tree corresponding

to the relational algebra

expression for Q2. it ol

sion are represented by internal tree nodes. It signifies an order of execution in the
following sense. In order to execute Q2, the node marked (1) in Figure 6.9 must
begin execution before node (2) because some resulting tuples of operation (1) must
be available before we can begin to execute operation (2). Similarly, node (2) must
begin to execute and produce results before node (3) can start execution, and so on.
In general, a query tree gives a good visual representation and understanding of the
query in terms of the relational operations it uses and is recommended as an addi-
tional means for expressing queries in relational algebra. We will revisit query trees
when we discuss query processing and optimization in Chapter 15.

6.4 Additional Relational Operations

Some common database requests—which are needed in commercial applications
for RDBMSs—cannot be performed with the original relational algebra operations
described in Sections 6.1 through 6.3. In this section we define additional opera-
tions to express these requests. These operations enhance the expressive power of
the original relational algebra.

6.4.1 Generalized Projection

The generalized projection operation extends the projection operation by allowing
functions of attributes to be included in the projection list. The generalized form
can be expressed as:

T, Fy . Fy (R)
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where F), F,, ..F, are functions over the attributes in relation R and may involve con-
stants. This operation is devised as a helpful operation when developing reports
where computed values have to be produced in columns.

As an example, consider the relation
EMPLOYEE (Ssn, Salary, Deduction, Years_service)
A report may be required to show

Net Salary = Salary — Deduction,

L

Bonus = 2000 * Years_service, and
Tax = 0.25 * Salary.

Then a generalized projection combined with renaming may be used as:

REPORT « P(ssn, Net_salary, Bonus, Tax)
(nSsn, Salary — Deduction, 2000 * Years_service, 0.25 * Salary(EMPLOYEE))'

6.4.2 Aggregate Functions and Grouping

Another type of request that cannot be expressed in the basic relational algebra is to
specify mathematical aggregate functions on collections of values from the data-
base. Examples of such functions include retrieving the average or total salary of all

;ngurlntlh; employees or the total number of employee tuples. These functions are used in sim-
Rt ple statistical c!ueries that summarize information from the database tuples.
B st Common functions applied to collections of numeric values include SUM, AVER-
B on AGE, MAXIMUM, and MINIMUM. The COUNT function is used for counting tuples or
ng of the values.
- an addi- Another common type of request involves grouping the tuples in a relation by the
lery trees value of some of their attributes and then applying an aggregate function indepen-
dently to each group. An example would be to group employee tuples by Dno, so that
each group includes the tuples for employees working in the same department. We
can then list each Dno value along with, say, the average salary of employees within
the department, or the number of employees who work in the department.
olications We can define an AGGREGATE FUNCTION operation, using the symbol 3 (pro-
serations nounced script F)®, to specify these types of requests as follows:
;loalpeir(a)f <grouping attributes> 3 <function list> (R)
where <grouping attributes> is a list of attributes of the relation specified in R,
and <function list> is a list of (<function> <attribute>) pairs. In each such pair,
<function> is one of the allowed functions—such as SUM, AVERAGE, MAXIMUM,
MINIMUM, COUNT—and <attribute> is an attribute of the relation specified by R.
allowing The resulting relation has the grouping attributes plus one attribute for each
zed form element in the function list. For example, to retrieve each department number, the

6. There is no single agreed-upon notation for specifying aggregate functions. In some cases a “script A"
is used.
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number of employees in the department, and their average salary, while renaming
the resulting attributes as indicated below, we write:

pR(Dno, No_of_employees, Average_sal) (Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE))

The result of this operation on the EMPLOYEE relation of Figure 5.6 is shown in
Figure 6.10(a).

In the above example, we specified a list of attribute names—between parentheses
in the RENAME operation—for the resulting relation R. If no renaming is applied,
then the attributes of the resulting relation that correspond to the function list will
each be the concatenation of the function name with the attribute name in the form
<function>_<attribute>.” For example, Figure 6.10(b) shows the result of the fol-
lowing operation:

Dro S COUNT Ssn, AVERAGE Salary (EMPLOYEE)

If no grouping attributes are specified, the functions are applied to all the tuples in
the relation, so the resulting relation has a single tuple only. For example, Figure
6.10(c) shows the result of the following operation: ;

3 COUNT Ssn, AVERAGE Salary (EMPLOYEE)

It is important to note that, in general, duplicates are not eliminated when an aggre-
gate function is applied; this way, the normal interpretation of functions such as
SUM and AVERAGE is computed.® It is worth emphasizing that the result of apply-

Figure 6.10
The aggregate function operation.

(a) pR(Dno, No_of_employees, Average_sal) (Dno S COUNT Ssn, AVERAGE Salary (EM PLOYE E»

(b) Dno S COUNT Ssn, AVERAGE Salary (EMPLOYEE)
() 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE).

R
@ | pno No_of_employees Average_sal Count_ssn | Average_salary
5 4 33250 4 33250
4 3 31000 3 31000
1 1 55000 1 55000

Average_salary
35125

7. Note that this is an arbitrary notation we are suggesting. There is no standard notation.

8. In SQAL, the option of eliminating duplicates before applying the aggregate function is available by
including the keyword DISTINCT (see Section 8.4.4).
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6.4 Additional Relational Operations

ing an aggregate function is a relation, not a scalar number—even if it has a single
value. This makes the relational algebra a closed system.

6.4.3 Recursive Closure Operations

Another type of operation that, in general, cannot be specified in the basic original
relational algebra is recursive closure. This operation is applied to a recursive rela-
tionship between tuples of the same type, such as the relationship between an
employee and a supervisor. This relationship is described by the foreign key
Super_ssn of the EMPLOYEE relation in Figures 5.5 and 5.6, and it relates each
employee tuple (in the role of supervisee) to another employee tuple (in the role of
supervisor). An example of a recursive operation is to retrieve all supervisees of an
employee e at all levels—that is, all employees ¢’ directly supervised by e, all employ-
ees ¢” directly supervised by each employee ¢’; all employees ¢” directly supervised
by each employee ¢”; and so on.

Although it is straightforward in the relational algebra to specify all employees
supervised by e at a specific level, it is difficult to specify all supervisees at all levels.
For example, to specify the Ssns of all employees ¢’ directly supervised—at level
one—by the employee ¢ whose name is ‘James Borg’ (see Figure 5.6), we can apply
the following operation:

BORG_SSN « nSsn(aname=‘Iames’ AND Lname:‘Borg‘(EMPLOYEE) )
SUPERVISION(Ssn1, Ssn2) ¢ g, super ssn(EMPLOYEE)
RESULT1(SSN) ¢~ Tig, (SUPERVISION M g5 s., BORG_SSN)

To retrieve all employees supervised by Borg at level 2—that is, all employees ¢”

supervised by some employee ¢’ who is directly supervised by Borg—we can apply
another JOIN to the result of the first query, as follows:

RESULT2(Ssn) ¢ Tgq,;(SUPERVISION X g »_s., RESULT1)

To get both sets of employees supervised at levels 1 and 2 by ‘James Borg, we can
apply the UNION operation to the two results, as follows:

RESULT <~ RESULT2 U RESULT1

The results of these queries are illustrated in Figure 6.11. Although it is possible to
retrieve employees at each level and then take their UNION, we cannot, in general,
specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” without
utilizing a looping mechanism.” An operation called the transitive closure of rela-
tions has been proposed to compute the recursive relationship as far as the recur-
sion proceeds.

9. The SQL3 standard includes syntax for recursive closure.
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SUPERVISION
(Borg's Ssn is 888665555)
(Ssn) (Super_ssn)
Ssn1 Ssn2
123456789 | 333445555
333445555 | 888665555
999887777 | 987654321
987654321 | 888665555
666884444 | 333445555
453453453 | 333445555
987987987 | 987654321
888665555 | null

RESULT1 RESULT2 RESULT

Ssn Ssn Ssn
333445555 123456789 123456789
987654321 999887777 999887777

(Supervised by Borg) 666884444 666884444
453453453 453453453
987987987 987987987

(Supervised by 333445555
Borg's subordinates) 987654321

(RESULT1 U RESULT?2)

Figure 6.11
A two-level recursive query.

6.4.4 OUTER JOIN Operations

Next, we discuss some extensions to the JOIN operation that are necessary to specify
certain types of queries. The JOIN operations described earlier match tuples that
satisfy the join condition. For example, for a NATURAL JOIN operation R * S, only
tuples from R that have matching tuples in S—and vice versa—appear in the result.
Hence, tuples without a matching (or related) tuple are eliminated from the JOIN
result. Tuples with NULL values in the join attributes are also eliminated. This
amounts to loss of information, if the result of JOIN is supposed to be used to gen-
erate a report based on all the information in the component relations.

A set of operations, called outer joins, can be used when we want to keep all the
tuples in R, or all those in S, or all those in both relations in the result of the JOIN,
regardless of whether or not they have matching tuples in the other relation. This
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satisfies the need of queries in which tuples from two tables are to be combined by
matching corresponding rows, but without losing any tuples for lack of matching
values. The join operations we described earlier in Section 6.3, where only matching
tuples are kept in the result, are called inner joins.

For example, suppose that we want a list of all employee names and also the name of
the departments they manage if they happen to manage a department; if they do not
manage one, we can indicate it with a NULL value. We can apply an operation LEFT
OUTER JOIN, denoted by 29, to retrieve the result as follows:

TEMP « (EMPLOYEE X5 g ssn DEPARTMENT)
RESULT « nFname, Minit, Lname, Dname(TEMP)

The LEFT OUTER JOIN operation keeps every tuple in the first, or left, relation R in
R 2} S; if no matching tuple is found in S, then the attributes of S in the join result
are filled or padded with NULL values. The result of these operations is shown in
Figure 6.12.

A similar operation, RIGHT OUTER JOIN, denoted by ™, keeps every tuple in the
second, or right, relation S in the result of RP<S. A third operation, FULL OUTER
JOIN, denoted by < keeps all tuples in both the left and the right relations when no
matching tuples are found, padding them with NULL values as needed. The three
outer join operations are part of the SQL2 standard (see Chapter 8). These opera-
tions were provided later as an extension of relational algebra in response to the typ-
ical need in business applications to show related information from multiple tables
exhaustively. Sometimes a complete reporting of data from multiple tables is
required whether or not there are matching values.

6.4.5 The OUTER UNION Operation

The OUTER UNION operation was developed to take the union of tuples from two
relations if the relations are not union compatible. This operation will take the

RESULT
Fname Minit | Lname Dname
John B Smith NULL
Franklin 1 Wong Research
Alicia J Zelaya NULL
Jennifer S Wallace | Administration
Ramesh K Narayan | NULL
Joyce A English | NULL
Ahmad \ Jabbar NULL
James E Borg Headquarters

Figure 6.12

The result of a
LEFT OUTER JOIN
operation.
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UNION of tuples in two relations R(X, Y) and S(X, Z) that are partially compatible,
meaning that only some of their attributes, say X, are union compatible. The attrib-
utes that are union compatible are represented only once in the result, and those
attributes that are not union compatible from either relation are also kept in the
result relation T(X, Y, Z).

Two tuples ¢, in R and 1, in S are said to match if ¢,[X]=t,[X], and are considered to
represent the same entity or relationship instance. These will be combined
(unioned) into a single tuple in T. Tuples in either relation that have no matching
tuple in the other relation are padded with NULL values. For example, an OUTER
UNION can be applied to two relations whose schemas are STUDENT(Name, Ssn,
Department, Advisor) and INSTRUCTOR(Name, Ssn, Department, Rank). Tuples from
the two relations are matched based on having the same combination of values of
the shared attributes—Name, Ssn, Department. The result relation,
STUDENT_OR_INSTRUCTOR, will have the following attributes:

STUDENT_OR_INSTRUCTOR(Name, Ssn, Department, Advisor, Rank)

All the tuples from both relations are included in the result, but tuples with the same
(Name, Ssn, Department) combination will appear only once in the result. Tuples
appearing only in STUDENT will have a NULL for the Rank attribute, whereas tuples
appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. A tuple
that exists in both relations, such as a student who is also an instructor, will have val-
ues for all its attributes.!”

Notice that the same person may still appear twice in the result. For example, we
could have a graduate student in the Mathematics department who is an instructor
in the Computer Science department. Although the two tuples representing that
person in STUDENT and INSTRUCTOR will have the same (Name, Ssn) values, they
will not agree on the Department value, and so will not be matched. This is because
Department has two separate meanings in STUDENT (the department where the per-
son studies) and INSTRUCTOR (the department where the person is employed as an
instructor). If we wanted to union persons based on the same (Name, Ssn) combina-
tion only, we should rename the Department attribute in each table to reflect that
they have different meanings and designate them as not being part of the union-
compatible attributes.

Another capability that exists in most commercial languages (but not in the basic
relational algebra) is that of specifying operations on values after they are extracted
from the database. For example, arithmetic operations such as +, —, and * can be
applied to numeric values that appear in the result of a query, as we discussed in
Section 6.4.1.

10. Notice that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the
common attributes of the two relations.
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6.5 Examples of Queries in
Relational Algebra

Following, we give additional examples to illustrate the use of the relational algebra
operations. All examples refer to the database of Figure 5.6. In general, the same
query can be stated in numerous ways using the various operations. We will state
each query in one way and leave it to the reader to come up with equivalent formu-
lations.

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

RESEARCH_DEPT ¢ Gpame—escarcy (DEPARTMENT)

RESEARCH_EMPS « (RESEARCH_DEPT X o EMPLOYEE)

RESULT ¢ T ame. Lname. Address(RESEARCH_EMPS)

As a single expression, this query becomes

TlFname, Lname, Address (GDnamez “Research’ (DEPARTMENT
P prumber=bno(EMPLOYEE))

This query could be specified in other ways; for example, the order of the JOIN and
SELECT operations could be reversed, or the JOIN could be replaced by a NATURAL
JOIN after renaming one of the join attributes.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
address, and birth date.

STAFFORD_PROJS ¢« Opioationsiafiors (PROJECT)

CONTR_DEPT « (STAFFORD_PROJSM .~ o DEPARTMENT)
PROJ_DEPT_MGR ¢ (CONTR_DEPT ™ g, <o-sen EMPLOYEE)

RESULT « TlPnumber, Dnum, Lname, Address, Bdate (PROJ—DEPT—MGR)

Query 3. Find the names of employees who work on all the projects con-
trolled by department number 5.

DEPT5_PROJS(Pno) < Ttpnumber(Opmumes(PROJECT))

EMP_PROJ(Ssn, Pno) ¢ Tea, pno( WORKS_ON)

RESULT_EMP_SSNS «- EMP_PROJ + DEPT5_PROIJS

RESULT ¢ T e, Frame (RESULT_EMP_SSNS * EMPLOYEE)

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith’, either as a worker or as a manager of the department
that controls the project.
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SMITHS(Essn) < Tisg, (G nameessmit (EMPLOYEE))

SMITH_WORKER_PROJS ¢ Tp,, (WORKS_ON * SMITHS)

MGRS < T\ ame. Drumber(EMPLOYEE X g vor oo DEPARTMENT)
SMITH_MANAGED_DEPTS(Dnum) < Tpumber (Ciname=smits (MGRS))
SMITH_MGR_PROJS(Pno) «~ T (SMITH_MANAGED_DEPTS * PROJECT)

Pnumber
RESULT « (SMITH_WORKER_PROJS U SMITH_MGR_PROIJS)

As a single expression, this query becomes

Tpno (WO RKS_ON ™ Essn=Ssn (nSsn (oLname=‘Smith’ (EM PLOYEE) ) )

U Tlppo ((nDnumber (GLname=‘Smith’ (nLname, Dnumber (EM PLOYEE)))
e Ssn=Mgr_ssn DEPARTM ENT)) M Dnumber=Dnum PROJ ECT)

Query 5. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational
algebra. We have to use the AGGREGATE FUNCTION operation with the COUNT
aggregate function. We assume that dependents of the same employee have dis-
tinct DEPENDENT_NAME values.

T1 (Ssn’ No_of_dependents)(— Essn S COUNT Dependent.name( DEPEND ENT)

T2 « GNo_of_dependentsZZ ( 1 )
RESULT <= T, e, Frame( T2 * EMPLOYEE)

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE)
operation.

ALL_EMPS « Tig,,(EMPLOYEE)

EMPS_WITH_DEPS(Ssn) ¢ Tig.,,(DEPENDENT)

EMPS_WITHOUT_DEPS « (ALL_EMPS — EMPS_WITH_DEPS)

RESULT = T a6, Frame(EMPS_WITHOUT_DEPS * EMPLOYEE)

As a single expression, this query becomes

T name, Fname ((Ttssn(EMPLOYEE) — pgg(Tiessn(DEPENDENT))) * EMPLOYEE)

Query 7. List the names of managers who have at least one dependent.

MGRS(Ssn) ¢ Ty, osn(DEPARTMENT)
EMPS_WITH_DEPS(Ssn) ¢ Tg,,,(DEPENDENT)
MGRS_WITH_DEPS « (MGRS N EMPS_WITH_DEPS)
RESULT €= Tt rame. Frame(MGRS_WITH_DEPS * EMPLOYEE)

- As we mentioned earlier, in general, the same query can be specified in many differ-
ent ways. For example, the operations can often be applied in various orders. In addi-
tion, some operations can be used to replace others; for example, the INTERSECTION
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operation in Q7 can be replaced by a NATURAL JOIN. As an exercise, try to do each of
the above example queries using different operations.!! We showed how to write
queries as single relational algebra expressions for queries Q1, Q4, and Q6. Try to
write the remaining queries as single expressions. In Chapter 8 and in Sections 6.6
and 6.7, we show how these queries are written in other relational languages.

6.6 The Tuple Relational Calculus

In this and the next section, we introduce another formal query language for the
relational model called relational calculus. In relational calculus, we write one
declarative expression to specify a retrieval request; hence, there is no description of
how to evaluate a query. A calculus expression specifies what is to be retrieved rather
than how to retrieve it. Therefore, the relational calculus is considered to be a non-
procedural language. This differs from relational algebra, where we must write a
sequence of operations to specify a retrieval request; hence, it can be considered as a
procedural way of stating a query. It is possible to nest algebra operations to form a
single expression; however, a certain order among the operations is always explicitly
specified in a relational algebra expression. This order also influences the strategy
for evaluating the query. A calculus expression may be written in different ways, but
the way it is written has no bearing on how a query should be evaluated.

It has been shown that any retrieval that can be specified in the basic relational alge-
bra can also be specified in relational calculus, and vice versa; in other words, the
expressive power of the two languages is identical. This led to the definition of the
concept of a relationally complete language. A relational query language L is consid-
ered relationally complete if we can express in L any query that can be expressed in
relational calculus. Relational completeness has become an important basis for
comparing the expressive power of high-level query languages. However, as we saw
in Section 6.4, certain frequently required queries in database applications cannot
be expressed in basic relational algebra or calculus. Most relational query languages
are relationally complete but have more expressive power than relational algebra or
relational calculus because of additional operations such as aggregate functions,
grouping, and ordering.

In this section and the next, all our examples refer to the database shown in Figures
5.6 and 5.7. We will use the same queries that were used in Section 6.5. Sections
6.6.6,6.6.7, and 6.6.8 discuss dealing with universal quantifiers and safety of expres-
sion issues and may be skipped by students interested in a general introduction to
tuple calculus.

6.6.1 Tuple Variables and Range Relations

The tuple relational calculus is based on specifying a number of tuple variables.
Each tuple variable usually ranges over a particular database relation, meaning that

11. When queries are optimized (see Chapter 15), the system will choose a particular sequence of oper-
ations that corresponds to an execution strategy that can be executed efficiently.
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the variable may take as its value any individual tuple from that relation. A simple
tuple relational calculus query is of the form

{t | COND(1)}

where ¢ is a tuple variable and COND(1) is a conditional expression involving t. The
result of such a query is the set of all tuples ¢ that satisfy COND(#). For example, to
find all employees whose salary is above $50,000, we can write the following tuple
calculus expression:

{t | EMPLOYEE(t) AND t.Salary>50000}

The condition EMPLOYEE(t) specifies that the range relation of tuple variable ¢ is
EMPLOYEE. Each EMPLOYEE tuple ¢ that satisfies the condition t.Salary>50000 will
be retrieved. Notice that t.Salary references attribute Salary of tuple variable #; this
notation resembles how attribute names are qualified with relation names or aliases
in SQL, as we shall see in Chapter 8. In the notation of Chapter 5, £.Salary is the same
as writing ¢[Salary].

The above query retrieves all attribute values for each selected EMPLOYEE tuple . To
retrieve only some of the attributes—say, the first and last names—we write

{t.Fname, t.Lname | EMPLOYEE(t) AND t.Salary>50000}

Informally, we need to specify the following information in a tuple calculus
expression:

® For each tuple variable t, the range relation R of t. This value is specified by
a condition of the form R().

® A condition to select particular combinations of tuples. As tuple variables
range over their respective range relations, the condition is evaluated for
every possible combination of tuples to identify the selected combinations
for which the condition evaluates to TRUE.

A set of attributes to be retrieved, the requested attributes. The values of
these attributes are retrieved for each selected combination of tuples.

Before we discuss the formal syntax of tuple relational calculus, consider another
query.

Query 0. Retrieve the birth date and address of the employee (or employees)
whose name is John B. Smith.

QO: {t.Bdate, t.Address | EMPLOYEE() AND t.Fname="John’
AND £.Minit="B’ AND t.Lname="Smith’}

In tuple relational calculus, we first specify the requested attributes ¢.Bdate and
t.Address for each selected tuple . Then we specify the condition for selecting a
tuple following the bar (|)—namely, that ¢ be a tuple of the EMPLOYEE relation
whose Fname, Minit, and Lname attribute values are ‘John’, ‘B, and ‘Smith’, respectively.
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- Asimple 6.6.2 Expressions and Formulas in

Tuple Relational Calculus
3 A general expression of the tuple relational calculus is of the form

-'ng t. The

.mﬁple, o (i Ap Bl o o5 byl g | COND(R1s 13, - o5 bo psasitnss o« o0 Enamd) }

-ing tuple where t),t5, . .., ty by - - - » By are tuple variables, each A; is an attribute of the rela-
tion on which ¢, ranges, and COND is a condition or formula'? of the tuple rela-
tional calculus. A formula is made up of predicate calculus atoms, which can be one
of the following:

riable t is : . : : ;

-3000 will 1. An atom of the form R(#;), where R is a relation name and t; is a tuple vari-

e £ this able. This atom identifies the range of the tuple variable t; as the relation

) DY whose name is R.

- the same 2. An atom of the form ¢,.A op t.B, where op is one of the comparison opera-
tors in the set {=, <, <,>,2>, #}, ;and ¢, are tuple variables, A is an attribute of
the relation on which 7, ranges, and B is an attribute of the relation on which

aple t. To £ ranges.

] 3. Anatom of the form #,.A op c or c op #,.B, where op is one of the comparison

operators in the set {=, <, <,>, 2, #}, t; and t;are tuple variables, A is an attrib-

. B ute of the relation on which t; ranges, B is an attribute of the relation on
which t; ranges, and c is a constant value.

bified b Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-

¢ ¥ : Ak :
nation of tuples; this is called the truth value of an atom. In general, a tuple variable

. t ranges over all possible tuples in the universe. For atoms of the form R(t), if t is
variables assigned to a tuple that is a member of the specified relation R, the atom is TRUE; oth-

.1.ated‘ for erwise, it is FALSE. In atoms of types 2 and 3, if the tuple variables are assigned to

binations tuples such that the values of the specified attributes of the tuples satisfy the condi-

tion, then the atom is TRUE.

ralues of ] L . .

4 A formula (condition) is made up of one or more atoms connected via the logical

" operators AND, OR, and NOT and is defined recursively by Rules 1 and 2 as follows:
another

# Rule I: Every atom is a formula.

’ ® Rule 2: If F, and F, are formulas, then so are (F, AND F,), (F, OR F,), NOT
‘ployees) (F,), and NOT (F,). The truth values of these formulas are derived from their
component formulas F, and F, as follows:

a. (F, AND F,) is TRUE if both F, and F, are TRUE; otherwise, it is FALSE.
b. (F, OR F,) is FALSE if both F, and F, are FALSE; otherwise, it is TRUE.
c. NOT (F,) is TRUE if F, is FALSE; it is FALSE if F, is TRUE.

date and d. NOT (F,) is TRUE if F, is FALSE; it is FALSE if F, is TRUE.
ecting a

- relation
Kectively. 12, Also called a well-formed formula, or WFF, in mathematical logic.
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6.6.3 The Existential and Universal Quantifiers

In addition, two special symbols called quantifiers can appear in formulas; these are
the universal quantifier (V) and the existential quantifier (3). Truth values for
formulas with quantifiers are described in Rules 3 and 4 below; first, however, we
need to define the concepts of free and bound tuple variables in a formula.
Informally, a tuple variable ¢ is bound if it is quantified, meaning that it appears in
an (3t) or (V1) clause; otherwise, it is free. Formally, we define a tuple variable in a
formula as free or bound according to the following rules:

® An occurrence of a tuple variable in a formula F that is an atom is free in F.

® An occurrence of a tuple variable ¢ is free or bound in a formula made up of
logical connectives—(F, AND F,), (F, OR F,), NOT(F,), and NOT(F,)—
depending on whether it is free or bound in F, or F, (if it occurs in either).
Notice that in a formula of the form F= (F) AND F,) or F=(F, OR F,), a tuple
variable may be free in F, and bound in F,, or vice versa; in this case, one
occurrence of the tuple variable is bound and the other is free in F.

All free occurrences of a tuple variable  in F are bound in a formula F’ of the
form F'= (3 t)(F) or F' = (V t)(F). The tuple variable is bound to the quanti-
fier specified in F'. For example, consider the following formulas:

F, : d.Dname="Research’
F, : (3t)(d.Dnumber=t.Dno)
F; : (Vd)(d.Mgr_ssn="333445555")

The tuple variable d is free in both F, and F,, whereas it is bound to the (V) quanti-
fier in F;. Variable ¢ is bound to the (3) quantifier in F,.

We can now give Rules 3 and 4 for the definition of a formula we started earlier:

® Rule 3: If F is a formula, then so is (3t)(F), where ¢ is a tuple variable. The
formula (3¢)(F) is TRUE if the formula F evaluates to TRUE for some (at least
one) tuple assigned to free occurrences of t in F; otherwise, (3 t)(F) is FALSE.

® Rule 4: If Fis a formula, then so is (V )(F), where t is a tuple variable. The for-
mula (Vt)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in the
universe) assigned to free occurrences of t in F; otherwise, (V¢)(F) is FALSE.

The (3) quantifier is called an existential quantifier because a formula (3t)(F) is
TRUE if there exists some tuple that makes F TRUE. For the universal quantifier,
(Vt)(F) is TRUE if every possible tuple that can be assigned to free occurrences of
in F is substituted for ¢, and F is TRUE for every such substitution. It is called the uni-
versal or for all quantifier because every tuple in the universe of tuples must make F
TRUE to make the quantified formula TRUE.

6.6.4 Example Queries Using the Existential Quantifier

We will use some of the same queries from Section 6.5 to give a flavor of how the
same queries are specified in relational algebra and in relational calculus. Notice
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that some queries are easier to specify in the relational algebra than in the relational
calculus, and vice versa.

Query 1. List the name and address of all employees who work for the
‘Research’ department.

Q1: {t.Fname, t.Lname, .Address | EMPLOYEE(t) AND (3d)
(DEPARTMENT(d) AND d.Dname=‘Research’ AND d.Dnumber=t.Dno)}

The only free tuple variables in a relational calculus expression should be those that
appear to the left of the bar (|). In Q1, t is the only free variable; it is then bound suc-
cessively to each tuple. If a tuple satisfies the conditions specified in Q1, the attributes
Fname, Lname, and ADDRESS are retrieved for each such tuple. The conditions
EMPLOYEE(t) and DEPARTMENT(d) specify the range relations for t and d. The con-
dition d.Dname = ‘Research’ is a selection condition and corresponds to a SELECT
operation in the relational algebra, whereas the condition d.Dnumber = .Dno is a
join condition and serves a similar purpose to the JOIN operation (see Section 6.3).

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
birth date, and address.

Q2: {p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p)
AND EMPLOYEE(m) AND p.Plocation="Stafford’
AND ((3d)(DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=11.Ssn))}

In Q2 there are two free tuple variables, p and m. Tuple variable d is bound to the
existential quantifier. The query condition is evaluated for every combination of
tuples assigned to p and m; and out of all possible combinations of tuples to which
p and m are bound, only the combinations that satisfy the condition are selected.

Several tuple variables in a query can range over the same relation. For example, to
specify Q8—for each employee, retrieve the employee’s first and last name and the
first and last name of his or her immediate supervisor—we specify two tuple vari-
ables e and s that both range over the EMPLOYEE relation:

Q8: {e.Fname, e.Lname, s.Fname, s.Lname | EMPLOYEE(e) AND EMPLOYEE(s)
AND e.Super_ssn=s.Ssn}

Query 3'. List the name of each employee who works on some project con-
trolled by department number 5. This is a variation of Q3 in which all is
changed to some. In this case we need two join conditions and two existential
quantifiers.

Q3": {e.Lname, e.Fname | EMPLOYEE(e)
AND ((3 x)(3 w)(PROJECT(x) AND WORKS_ON(w) AND x.Dnum=>5
AND w.Essn=e.Ssn AND x.Pnumber=w.Pno))}

205



206  Chapter 6 The Relational Algebra and Relational Calculus

Query 4. Make a list of project numbers for projects that involve an employee
whose last name is ‘Smith), either as a worker or as manager of the controlling
department for the project.

04: {p.Pnumber | PROJECT(p) AND ( ( (3 ¢)(3 w)(EMPLOYEE(e)
AND WORKS_ON(w) AND w.Pno=p.Pnumber
AND e.Lname="Smith’ AND e.Ssn=w.Essn) )
OR
((3m)(3 d)(EMPLOYEE(m) AND DEPARTMENT(d)
AND p.Dnum=d.Dnumber AND d.Mgr_ssn=1m.Ssn
AND 1.Lname="Smith’)))}

Compare this with the relational algebra version of this query in Section 6.5. The
UNION operation in relational algebra can usually be substituted with an OR con-
nective in relational calculus. In the next section we discuss the relationship
between the universal and existential quantifiers and show how one can be trans-
formed into the other.

6.6.5 Notation for Query Graphs

In this section we describe a notation that has been proposed to represent relational
calculus queries internally. This more neutral representation of a query is called a
query graph. Figure 6.13 shows the query graph for Q2. Relations in the query are
represented by relation nodes, which are displayed as single circles. Constant val-
ues, typically from the query selection conditions, are represented by constant
nodes, which are displayed as double circles or ovals. Selection and join conditions
are represented by the graph edges, as shown in Figure 6.13. Finally, the attributes to
be retrieved from each relation are displayed in square brackets above each relation.

The query graph representation does not include an order on which operations to
perform first. There is only a single graph corresponding to each query. Although
some optimization techniques were based on query graphs, it is now generally
accepted that query trees are preferable because, in practice, the query optimizer
needs to show the order of operations for query execution, which is not possible in
query graphs.

Figure 6.13
Query graph for Q2.

[P.Pnumber,P.Dnum] [E.Lname,E.address,E.Bdate]

P.Dnum=D.Dnumber /= D.Mgr_ssn=E.Ssn
© ®

P.Plocation="'Stafford’
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~‘mplﬁ}’ee 6.6.6 Transforming the Universal
peaiting and Existential Quantifiers

Next, we introduce some well-known transformations from mathematical logic that
relate the universal and existential quantifiers. It is possible to transform a universal
quantifier into an existential quantifier, and vice versa, to get an equivalent expres-
sion. One general transformation can be described informally as follows: Transform
one type of quantifier into the other with negation (preceded by NOT); AND and OR
replace one another; a negated formula becomes unnegated; and an unnegated for-
mula becomes negated. Some special cases of this transformation can be stated as
follows, where the = symbol stands for equivalent to:

n 8.5, The _
2 g (V x) (P(x)) =NOT (3 x) (NOT (P(x)))
‘tionship (3x) (P(x)) =NOT (V x) (NOT (P(x)))
e trans- (V x) (P(x) AND Q(x)) =NOT (3 x) (NOT (P(x)) OR NOT (Q(x)))
(V x) (P(x) OR Q(x)) =NOT (3 x) (NOT (P(x)) AND NOT (Q(x)))
(3x) (P(x)) OR Q(x)) =NOT (V x) (NOT (P(x)) AND NOT (Q(x)))
(3 x) (P(x) AND Q(x)) =NOT (V x) (NOT (P(x)) OR NOT (Q(x)))
‘elational Notice also that the following is TRUE, where the = symbol stands for implies:
- called a
|uery are (Vx) (P(x)) = (3x) (P(x))
-tant val- NOT (3 x) (P(x)) = NOT (V x) (P(x))
constant
opiens 6.6.7 Using the Universal Quantifier
ributes to
- relation. Whenever we use a universal quantifier, it is quite judicious to follow a few rules to
; ensure that our expression makes sense. We discuss these rules with respect to Q3.
“ations to
Yitough Query 3. List the names of employees who work on all the projects controlled
senerally d i y :
oL by department number 5. One way to specify this query is to use the universal
| 5o quantifier as shown:
‘ossible in
Q3: {e.Lname, e.Fname | EMPLOYEE(e) AND ((V x)(NOT(PROJECT(x))
OR NOT (x.Dnum=5) OR ((3 w)(WORKS_ON(w) AND w.Essn= e.Ssn
AND x.Pnumber=w.Pno))))}
We can break up Q3 into its basic components as follows:
- E.Bdate] Q3: {eLname, e.Fname | EMPLOYEE(e) AND F”}
F’=((V x)(NOT(PROJECT(x)) OR Fy))
:’) F, =NOT(x.Dnum=5) OR F,
- F, = ((3 w)(WORKS_ON(w) AND w.Essn= e.Ssn
AND x.Pnumber= w.Pno))

We want to make sure that a selected employee e works on all the projects controlled
by department 5, but the definition of universal quantifier says that to make the
quantified formula TRUE, the inner formula must be TRUE for all tuples in the uni-
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verse. The trick is to exclude from the universal quantification all tuples that we are
not interested in by making the condition TRUE for all such tuples. This is necessary
because a universally quantified tuple variable, such as x in Q3, must evaluate to
TRUE for every possible tuple assigned to it to make the quantified formula TRUE.
The first tuples to exclude (by making them evaluate automatically to TRUE)
are those that are not in the relation R of interest. In Q3, using the expression
NOT(PROJECT(x)) inside the universally quantified formula evaluates to TRUE all
tuples x that are not in the PROJECT relation. Then we exclude the tuples we are not
interested in from R itself. In Q3, using the expression NOT(x.Dnum=5) evaluates to
TRUE all tuples x that are in the PROJECT relation but are not controlled by depart-
ment 5. Finally, we specify a condition F, that must hold on all the remaining tuples
in R. Hence, we can explain Q3 as follows:

1. For the formula F’= (Vx)(F) to be TRUE, we must have the formula F be
TRUE for all tuples in the universe that can be assigned to x. However, in Q3 we
are only interested in F being TRUE for all tuples of the PROJECT relation
that are controlled by department 5. Hence, the formula F is of the form
(NOT(PROJECT(x)) OR F,). The ‘NOT(PROJECT(x)) OR . .. condition is
TRUE for all tuples not in the PROJECT relation and has the effect of elimi-
nating these tuples from consideration in the truth value of F,. For every
tuple in the PROJECT relation, F; must be TRUE if F”is to be TRUE.

. Using the same line of reasoning, we do not want to consider tuples in the
PROJECT relation that are not controlled by department number 5, since we
are only interested in PROJECT tuples whose Dnum=>5. Therefore, we can write:

IF (x.Dnum=5) THEN F,
which is equivalent to
(NOT (x.Dnum=5) OR F,)

. Formula F,, hence, is of the form NOT(x.Dnum=5) OR F,. In the context of
Q3, this means that, for a tuple x in the PROJECT relation, either its Dnum#5
or it must satisfy F,.

. Finally, F, gives the condition that we want to hold for a selected EMPLOYEE

tuple: that the employee works on every PROJECT tuple that has not been
excluded yet Such employee tuples are selected by the query.

In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e: For
every tuple x in the PROJECT relation with x.Dnum = 5, there must exist a tuple w in
WORKS_ON such that w.Essn = e.Ssn and w.Pno = x.Pnumber. This is equivalent to
saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5.
(Whew!)

Using the general transformation from universal to existential quantifiers given in
Section 6.6.6, we can rephrase the query in Q3 as shown in Q3A:

Q3A: {e.Lname, e.Fname | EMPLOYEE(e) AND (NOT (3 x) (PROJECT(x)
AND (x.Dnum=5) AND(NOT (3 w)(WORKS_ON(w)
AND w.Essn= e.Ssn AND x.Pnumber=w.Pno))))}
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6.6 The Tuple Relational Calculus

We now give some additional examples of queries that use quantifiers.

Query 6. List the names of employees who have no dependents.

Q6: {e.Fname, e.Lname | EMPLOYEE(e) AND (NOT (3 d)(DEPENDENT(d)
AND e.Ssn=d.Essn))}

Using the general transformation rule, we can rephrase Q6 as follows:

Q6A: {e.Fname, e.Lname | EMPLOYEE(e) AND ((V d)(NOT(DEPENDENT(d))
OR NOT(e.Ssn=d.Essn)))}

Query 7. List the names of managers who have at least one dependent.

Q7: {e.Fname, eLname | EMPLOYEE(e) AND ((3 d)(3 p)(DEPARTMENT(d)
AND DEPENDENT(p) AND e.Ssn=d.Mgr_ssn AND p.Essn=e.Ssn))}

This query is handled by interpreting managers who have at least one dependent as
managers for whom there exists some dependent.

6.6.8 Safe Expressions

Whenever we use universal quantifiers, existential quantifiers, or negation of predi-
cates in a calculus expression, we must make sure that the resulting expression
makes sense. A safe expression in relational calculus is one that is guaranteed to
yield a finite number of tuples as its result; otherwise, the expression is called unsafe.
For example, the expression

{t| NOT (EMPLOYEE(1))}

is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples,
which are infinitely numerous. If we follow the rules for Q3 discussed earlier, we will
get a safe expression when using universal quantifiers. We can define safe expres-
sions more precisely by introducing the concept of the domain of a tuple relational
calculus expression: This is the set of all values that either appear as constant values
in the expression or exist in any tuple in the relations referenced in the expression.
The domain of {t | NOT(EMPLOYEE(?))} is the set of all attribute values appearing in
some tuple of the EMPLOYEE relation (for any attribute). The domain of the expres-
sion Q3A would include all values appearing in EMPLOYEE, PROJECT, and
WORKS_ON (unioned with the value 5 appearing in the query itself).

An expression is said to be safe if all values in its result are from the domain of the
expression. Notice that the result of {t | NOT(EMPLOYEE(#))} is unsafe, since it will,
in general, include tuples (and hence values) from outside the EMPLOYEE relation;
such values are not in the domain of the expression. All of our other examples are
safe expressions.
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6.7 The Domain Relational Calculus

There is another type of relational calculus called the domain relational calculus, or
simply, domain calculus. While SQL (see Chapter 8), a language based on tuple
relational calculus, was being developed by IBM Research at San Jose, California,
another language called QBE (Query-By-Example), which is related to domain cal-
culus, was being developed almost concurrently at IBM T.J. Watson Research Center
at Yorktown Heights, New York. The formal specification of the domain calculus
was proposed after the development of the QBE system.

Domain calculus differs from tuple calculus in the type of variables used in formu-
las: Rather than having variables range over tuples, the variables range over single
values from domains of attributes. To form a relation of degree n for a query result,
we must have 1 of these domain variables—one for each attribute. An expression of
the domain calculus is of the form

{55 Kavia s Xt h CONDEE I 0Ges s Bl Kiiiasokois» sic5Boisnp) |

where x;, X3, . . ., X X 1415 X 42> « - + > X4y, are domain variables that range over
domains (of attributes), and COND is a condition or formula of the domain rela-
tional calculus.

A formula is made up of atoms. The atoms of a formula are slightly different from
those for the tuple calculus and can be one of the following:

1. An atom of the form R(x,, x,, . . ., xj), where R is the name of a relation of
degree j and each x;, 1 <7<}, is a domain variable. This atom states that a list
of Valuestofi<oaion it | x> must be a tuple in the relation whose name is R,
where x; is the value of the ith attribute value of the tuple. To make a domain
calculus expression more concise, we can drop the commas in a list of vari-
ables; thus, we can write

{x %5 . . ., %, | R(%; x, x5) AND .. .}
instead of
{555 25 o 2 5 P RO 25 ) AND . . )

- An atom of the form x; op x;, where op is one of the comparison operators in
the seti{= <, <>, 2 % yand % and x; are domain variables.

- An atom of the form x; op c or ¢ op x;, where op is one of the comparison
operators in the set {=, <, <, >, >, #}, x; and x;are domain variables, and cis a
constant value.

As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set of val-
ues, called the truth values of the atoms. In case 1, if the domain variables are
assigned values corresponding to a tuple of the specified relation R, then the atom is
TRUE. In cases 2 and 3, if the domain variables are assigned values that satisfy the
condition, then the atom is TRUE.

In a similar way to the tuple relational calculus, formulas are made up of atoms,
variables, and quantifiers, so we will not repeat the specifications for formulas here.
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6.7 The Domain Relational Calculus

Some examples of queries specified in the domain calculus follow. We will use low-
ercase letters [, m, n, . .., x, y, z for domain variables.

Query 0. List the birth date and address of the employee whose name is ‘John
B. Smith’.

Qo: {uv | (3g) (3r) (3Is) (3 @w) (3x) Fy) (32)
(EMPLOYEE(grstuvwxyz) AND g=John’ AND =B’ AND s="Smith’)}

We need ten variables for the EMPLOYEE relation, one to range over the domain of
each attribute in order. Of the ten variables g, 1, s, . . . , z, only u and v are free. We
first specify the requested attributes, Bdate and Address, by the free domain variables
u for BDATE and v for ADDRESS. Then we specify the condition for selecting a tuple
following the bar (|)—namely, that the sequence of values assigned to the variables
qrstuvwxyz be a tuple of the EMPLOYEE relation and that the values for g (Fname), r
(Minit), and s (Lname) be John’, ‘B’ and ‘Smith’, respectively. For convenience, we will
quantify only those variables actually appearing in a condition (these would be g, ,
and s in QO) in the rest of our examples.'?

An alternative shorthand notation, used in QBE, for writing this query is to assign
the constants John’, ‘B, and ‘Smith’ directly as shown in QOA. Here, all variables not
appearing to the left of the bar are implicitly existentially quantified:'*

QOA: {uv | EMPLOYEE(‘John’, B’ Smith’t,u,v,w,x,,2) }

Query 1. Retrieve the name and address of all employees who work for the
‘Research’ department.

Q1: {gsv| (3z) (1) (3m) (EMPLOYEE(grstuvwxyz) AND
DEPARTMENT(/mno) AND /="Research’ AND m=z)}

A condition relating two domain variables that range over attributes from two rela-
tions, such as m = z in Q1, is a join condition; whereas a condition that relates a
domain variable to a constant, such as [ = ‘Research), is a selection condition.

Query 2. For every project located in ‘Stafford’, list the project number, the
controlling department number, and the department manager’s last name,
birth date, and address.

Q2: {iksuv | (3j)(3m)(3In)(3t)(PROJECT (hijk)
AND EMPLOYEE(grstuvwxyz) AND DEPARTMENT(Imno)
AND k= AND n=t AND j="Stafford’)}

13. Note that the notation of quantifying only the domain variables actually used in conditions and of
showing a predicate such as EMPLOYEE(qgrstuvwxyz) without separating domain variables with commas
is an abbreviated notation used for convenience; it is not the correct formal notation.

14. Again, this is not formally accurate notation.
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Query 6. List the names of employees who have no dependents.

Q6: {gs | (3t)(EMPLOYEE(qrstuvwsxyz)
AND (NOT(E”)(DEPENDENT(lmnop) AND t=1)))}

Q6 can be restated using universal quantifiers instead of the existential quanti-
fiers, as shown in Q6A:

Q6A: {gs | (3t)(EMPLOYEE(grstuvwxyz)
AND ((V])(NOT(DEPENDENT(/mnop)) OR NOT(t=I))))}

Query 7. List the names of managers who have at least one dependent.

Q7: {sq | (31)(3))(3) (EMPLOYEE(qrstuvwxyz) AND DEPARTMENT (hijk)
AND DEPENDENT (Imnop) AND t=j AND I=t)}

As we mentioned earlier, it can be shown that any query that can be expressed in the
relational algebra can also be expressed in the domain or tuple relational calculus.
Also, any safe expression in the domain or tuple relational calculus can be expressed
in the relational algebra.

The QBE language was based on the domain relational calculus, although this was
realized later, after the domain calculus was formalized. QBE was one of the first
graphical query languages with minimum syntax developed for database systems.
It was developed at IBM Research and is available as an IBM commercial product
as part of the Query Management Facility (QMF) interface option to DB2. It has
been mimicked by several other commercial products. Because of its important
place in the field of relational languages, we have included an overview of QBE in
Appendix D.

6.8 Summary

In this chapter we presented two formal languages for the relational model of data.
They are used to manipulate relations and produce new relations as answers to
queries. We discussed the relational algebra and its operations, which are used to
specify a sequence of operations to specify a query. Then we introduced two types of
relational calculi called tuple calculus and domain calculus; they are declarative in
that they specify the result of a query without specifying how to produce the query
result.

In Sections 6.1 through 6.3, we introduced the basic relational algebra operations
and illustrated the types of queries for which each is used. First, we discussed the
unary relational operators SELECT and PROJECT, as well as the RENAME operation.
Then, we discussed binary set theoretic operations requiring that relations on which
they are applied be union compatible; these include UNION, INTERSECTION, and
SET DIFFERENCE. The CARTESIAN PRODUCT operation is a set operation that can
be used to combine tuples from two relations, producing all possible combinations.
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Review Questions

It is rarely used in practice; however, we showed how CARTESIAN PRODUCT fol-
lowed by SELECT can be used to define matching tuples from two relations and
leads to the JOIN operation. Different JOIN operations called THETA JOIN, EQUI-
JOIN, and NATURAL JOIN were introduced. Query trees were introduced as an inter-
nal representation of relational algebra queries.

We discussed some important types of queries that cannot be stated with the basic
relational algebra operations but are important for practical situations. We intro-
duced GENERALIZED PROJECTION to use functions of attributes in the projection
list and the AGGREGATE FUNCTION operation to deal with aggregate types of
requests. We discussed recursive queries, for which there is no direct support in the
algebra but which can be approached in a step-by-step approach, as we demon-
strated. Then we presented the OUTER JOIN and OUTER UNION operations, which
extend JOIN and UNION and allow all information in source relations to be pre-
served in the result.

The last two sections described the basic concepts behind relational calculus, which
is based on the branch of mathematical logic called predicate calculus. There are
two types of relational calculi: (1) the tuple relational calculus, which uses tuple
variables that range over tuples (rows) of relations, and (2) the domain relational
calculus, which uses domain variables that range over domains (columns of rela-
tions). In relational calculus, a query is specified in a single declarative statement,
without specifying any order or method for retrieving the query result. Hence, rela-
tional calculus is often considered to be a higher-level language than the relational
algebra because a relational calculus expression states what we want to retrieve
regardless of how the query may be executed.

We discussed the syntax of relational calculus queries using both tuple and domain
variables. We introduced query graphs as an internal representation for queries in
relational calculus. We also discussed the existential quantifier (3) and the universal
quantifier (V). We saw that relational calculus variables are bound by these quanti-
fiers. We described in detail how queries with universal quantification are written,
and we discussed the problem of specifying safe queries whose results are finite. We
also discussed rules for transforming universal into existential quantifiers, and vice
versa. It is the quantifiers that give expressive power to the relational calculus, mak-
ing it equivalent to relational algebra. There is no analog to grouping and aggrega-
tion functions in basic relational calculus, although some extensions have been
suggested.

Review Questions
6.1. List the operations of relational algebra and the purpose of each.

6.2. What is union compatibility? Why do the UNION, INTERSECTION, and
DIFFERENCE operations require that the relations on which they are applied
be union compatible?




