
.rr"pt". 5

The Relational Data Model and
Relational Database Gonstraints

his chapter opens Part 2, covering relational darta-
bases. The relational model was t-irst introduced

by Ted Codd of IBM Research in 1970 in a classic paper (Codd 1970), and artracted
immediate attention due to its simplicitv and r-r-rathen'ratical foundation. The model
uses the concept of a ntstlrcntqtical relstion-which looks somewhat l ike a table of
values-as its basic building block, and has its t l-reoretical basis ir-r set theory i.rnd
first-order predicate logic. In this chapter we discuss the basic characteristics of the
model and its constraints.

The first commercial implementations of the relational model became available in
the early 1980s, such as the SQL/DS si'sten.r on the N,IVS operating systern by IBM
and the Oracle DBIVIS. Since then, the model has been implemented in a large num-
ber of commercial systems. Current popular relational DBMSs (RDBMSs) include
DB2 and Informix Dynarmic Server (from IBM), Oracle and Rdb (from Oracle), and
SQL Server and Access (fiom Microsofi).

Because of the importance of the relational model, all of Part 2 is devoted to this
model and the languages associated rvith it. Chapter 6 covers the operations of the
relational algebra and introduces the relational calculus notation fbr two types of
calculi-tuple calculus and domain calculus. Chapter 7 relates the relational model
data structures to the coltstructs of the ER and EER models, and presents algo-
rithms tbr designing :r relational clatabase schema by rrrapping a conceptual schenta
in the ER or EER n.roclel (see Chapters 3 and 4) into a relatior.ral representation.
These mappings are incorporated into many database design and CASEr tools. In

+1

1, CASE stands for computer-aided sottware eng neer ng.

145

Chapter 5 The Relational Model and Relational Database Constraints

Chapter 8, we describe the SQL query language, which is the standard for commer-
cial relational DBMSs. Chapter 9 discusses the programming techniques used to
access database systerrs and the notion of connecting to relational datirbases via
ODBC and IDBC standard protocols. Chapters l0 ar-rd I I in Part 3 present another
aspect of the relational model, narnely the formal constraints of functional and
multivalued dependencies; these dependencies are used to develop a relational data-
base design theory based on the concept known as normalizotion.

Data models that preceded the relational model include the hierarchical and net-
work models. They were proposed in the 1960s and rvere implemented in early
DBMSs during the late 1960s and early 1970s. Beciruse of their historical impor-
tance and the large existing user base for these DBMSs, we have included a summary
of the highlights of these models ir-r appendices, which are available on this book's
Companion Website at http://www.trw.com/elmasri. These models and systems will
be used for many vears and are now referred to as /egac1' database systems.

In this chapter, we concentrate o11 describing the basic principles of t l-re relational
model of data. We begin by defining the modelir-rg concepts and notation of the
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational
constraints that are now considerecl an in-rportant part of the relational model and
are automatically enforced in most relational DBMSs. Section 5.3 defines the update
operations of the relirt ional model, discusses how violations of integrity constraints
are handled, and introduces the concept of a transaction.

5.1 Relational Model Concepts
The relational n-rodel represents the database as a collectiortof relations. Informally,
each relation resembles a table of virlues or, to some extent, aflatfie of records. For
example, the database of f i les thzrt lvas shown in Figure 1.2 is similar to the relational
model representation. However, there are important differences betrveen relations
and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of relatec-i c-lata values. We introduced entity types and relationship types
as concepts for rnodeling real-world data in Chapter -1. In the relational model, each
row in the table represents a fact that typically corresponds to a real-world entity or
relationship. The table name and column names are used to help to interpret the
meaning of the values in each row. For example, the first table of Figure I.2 is called
STUDENT because each row represents facts about a particular student entity. The
column names-Name, Student_number, Class, and Major-specifo how to interpret
the data values in each row, based on the column each value is in. All values in a col-
umn are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column header
is called an attribute, and the table is called a relatiotr. The data type describing the
types of values thirt can appear in each column is represente dby a domain of possi-

5.1 Relational Model Conceots

ble values. We now define these terms-domain, tuple, attribute, and relatiorr-
nrore precisely.

5.1.1 Domains, Attributes, Tuples, and Relations

.\ domain D is a set of atomic values. By atomic we mean that each value in the
domain is indivisible as far as the relational nrodel is concerned. A comrnon method
oi specifying a domain is to specifo a data type from which the data values forming
the domain are drawn. It is also useful to specifl ' a name for the domain, to help in
interpreting its values. Some examples of domains follow:

i:, Usa_phone_numbers. The set of ten-digit phone numbers valid in the United
States.

rl i Local_phone-numbers. The set oi seven-digit phone numbers valid within a
particular area code in the United States.

'$i Social-security_numbers. The set of valid nine-digit social security numbers.

i* Names: The set of character strit.rgs that represent names of persons.

Grade-point-averages. Possible values of computed grade point averagesi
each must be a real (f loating-point) number between 0 and 4.

cl Employee-ages. Possible ages of employees of a comp:rny; each must be a
value between l5 and 80.

*t Academic-department-names. The set of academic departrrlent names in a
universit l ' , such as Computer Science, Economics, and Physics.

* Academic-department codes. The set of academic depirrtment codes, such as
'CS'. 'ECON'. and'PHYS'.

The preceding are called logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain
Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-
,lddd, where each d is a numeric (decirnal) digit and the first three digits form a
valid telephone area code. The data type for Employee_ages is an integer number
between l5 and 80. For Academic_department_names, the data type is the set of all
character strings that represent valid department names. A domain is thus given a
name, data type, and format. Additional information for interpreting the values of a
domain can also be given; for example, a numeric domain such as Person_weights
should have the units of measurement, such as pounds or kilograms.

A relation schema: R, denoted by R(A,, A., . . . , A,,), is made r.rp of a relation name
R and a l is t of at t r ibutesA,,A,, . . . ,A, , . Each at t r ibuteA, is the name of a role playecl
by some domain D in the reiation schema R. D is called the domain of A, and is
denoted by dom(A;). A relation schema is used to describe a relation; R is called the
name of this relation. The degree (or arity) of a relation is the number of attributes
n of its relation schema.

147

colnmer-
:s used to
rbases via
rt another
ional and
rnal data-

and net-
J in early
al impor-
summary
ris book's
;tems wil l

relirt ional
on of the
relational
rodel and
he update
)nstraints

rformally,
:ords. For
relational
relations

:)resents a
,hip types
rdel, each
I entity or
,'rpret the
I is called
ntity. The
interpret

s in a col-

rn header
:ibing the
of possi- 2. A relat ion schema is somet mes cal led a relat ion scheme,

148 Chapter 5 The Relat ional Model and Relat ional Database Constraints

An example of a relation schema for a relation of degree seven, which describes uni-
versity students, is the following:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the above definition, we showed assignment of generic types such as
string or integer to the attributes. More precisely, we can specif' the following previ-
ously defined domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social-secur i ty-numbers; dom(HomePhone) =
Local-phone-numbersl, dom(Office_phone) = Local_phone-numbers, and dom(Gpa) =
Grade-point-averages. It is also possible to refer to attributes of a relation schema by
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)a r of the relation schema R(AD A2,. . . , A,,), also
denoted by r(R), is a set of n- tuples r= \ t , t2, . . . , r , , ,] . Each n-tuple t is an ordered
list of n values t = lvp ut, . . .,vr>, where each value vi, I I i(n, is an element of
dom(A') or is a special NULL value. (NULL values are discussed further below and in
Section 5.1.2.) The ith value in tuple f, which corresponds to the attribute A;, is
referred to as r[A,] (or r[i] i f we use the positional notation). The terms relation
intension for the schema R and relation extension for a relation state r(R) are also
commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the
STUDENT schema just specified. Each tuple in the relation represents a particular
student entity. We display the relation as a table, where each tuple is shown as a row
and each attribute corresponds Io a column header indicating a role or interpreta-
tion of the values in that column. NIJLL values represent attributes whose values are
unknown or do not exist for some individual STUDENT tuple.

The earlier definition of a relation can be restated more formally as follows. A rela-
tion (or relation state) r(R) is a mathematical relation of degree n on the domains
dom(A,), dorn(A,), . . . , dom(A,,), which is a subset of the Cartesian product of the
domains that define R:

r(R) c (dom(A,) x dom(A,) x. . . x dom(A,,))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a

3. Wth the arge increase in phone numbers caused by the prol i ferat ion of mobi le phones, some metro-
po r tan areas now have mult ip le area codes, so that seven-digi t ocal d ia l ing has been discont inued, In
this case, we would use Usa_phone_numbers as the domain,

4. This has also been ca ed a relat ion instance, We wi l l not use this term because instance is also used
to refer to a s inqle tuole or row

ribes uni-

"t'-'-'-t4AIt'

5.1 Relational Model Conceots 149

Figure 5.1
The attributes and tuples of a relation STUDENT.

Relation Name
I
V

STUDENT

/
/t/s

\

Name Ssn -{ome_phone Address)ffice_phone Age Gpa

Beniamin Bayer 305-61-2435 373-1 61 6 2918 Bluebonnet Lane NULL 19 3.21

Chung-cha Kim 381-62-1245 375-4409 125 Kirby Road NULL 18 2.A9

Dick Davidson 422-'t1-2320 NULL 3452 Elgin Road 749-'t253 25 3.53

Rohan Panchal 489-22-1100 376-9821 265 Lark Lane 749-6492 28 3.93

Barbara Benson 533-69-1 238 839-8461 7384 Fontana Lane NULL 19 3.25

as:

o8'

has seven
es such as
ing previ-
relation:

:HnoneJ =

m(GPa)=
;chema by
)ENT rela-

' '4") ' a lso
ln ordered

-' lement of
lorv and in
bute A;, is
rs relation
R) are also

nds to the
particular

;n as a row
interpreta-
'r.alues are

rvs. A rela-
re domains
duct of the

the under-
naliry in a

;ome metro-

' t nueo, In

: s also used

domain D by lDl (assuming that all domains are finite), the total number of tuples
in the Cartesian product is

ldom(A,) l x ldom(Ar) l x. . . x ldom(A,,) l
This product of cardinalit ies of all domains represents the total number of possible
instances or tuples that can ever exist in the relation instance r(R). Of all these pos-
sible combinations, a relation state at a given time-the current relation state-
reflects only the valid tuples that represent a particular state of the real world. In
general, as the state of the real world changes, so does the relation, by being trans-
formed into another relation state. However, the schema R is relatively static and
does not change except very infrequently-for example, as a result of adding an
attribute to represent new information that was not originally stored in the relation.

It is possible for several attributes lo have the same domain. The attributes indicate
different roles, or interpretations, for the domain. For example, in the STUDENT
relation, the same domain Local_phone_numbers plays the role of Home_phone, refer-
ring to the home phone of a student, and the role of Office phone, referring to the
office phone of the student.

5.1.2 Characteristics of Relations

The earlier definition of relations implies certain characteristics that make a relation
different from a file or a table. We now discuss some of these characteristics.

Order ing of Tuples in a Relat ion. A relat ion is def ined as a sef of tuples.
Mathematically, elements of a set have no order among them; hence, tuples in a rela-
tion do not have any particular order. In other words, a relation is not sensitive to
the ordering of tuples. However, in a file, records are physically stored on disk (or in
memory), so there always is an order among the records. This ordering indicates

150 Chapter 5 The Relat ional Model and Relat ional Database Constraints

t irst, second, lth, and last records in the fi le. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.

Tuple ordering is r-rot part of a relation definit ion because a relation attempts to rep-
resent farcts at a logical or abstract level. N{any logical orders can be specified on a
relation. For example, tuples in the STUDENT relation in Figure 5.1 could be logi-
callv ordered by values of Name, Ssn, Age, or some other attribute. The definit ion of
a relation does uot specify any order: There is no preference for one logical ordering
over another. Hence, the relation displayed in Figure 5.2 is considered identical to
tl-re one shown in Figure -5. t . When a relation is irnplerrented irs a fi le or displaved as
a table, a particular ordering may be specitied on the recorc-ls of the t'ile or the rows
of the table.

Order ing of Values within a Tuple and an Al ternat ive Def in i t ion of a
Relat ion. According to the preceding def in i t ion of a rel t r t ion, an n-tuple is an
ordered list of n values, so the ordering of values in a tuple-trnd hence of attributes
in a relation schema-is important. However, at a logical level, the order of attrib-
utes and their vah"res is not that important as long as the correspondence between
attributes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values in
a tuple wtnecessar)!. In this definit ion, a relation schelna R = {A1,A2, ...,A,,} is ir -serof
attributes, and ir relation state r(R) is a flnite set oirrappings r: {f1, t.,. . . , r,,,}, where
each tuple /; is a mapping from R to D, and D is the union of the attribute domains;
that is, D = dom(Ar) u donr(A,) u . . . U dom(A,,). In this definit ion, r[A,] must be in
dom(A;) for I < I < n fbr each rnapping r in r. Each mapping r, is called a tuple.

According to this definit ion of tuple as a mapping, a tuple can be considered as a set
of (<attribute), <value)) pairs, r 'vhere each pair gives the value of the mapping
from an attribute A, to a value v, from dom(A;). The ordering of attributes is nor
important, because the attribute name appears ivith its value. By this definit ion, the
two tuples shorvn in Figiire 5.3 are identical. This makes sense at an abstract or log-
ical level, since there really is no reason to prefer having one attribute value appear
before another in a tuple.

Figure 5.2
The relat ion STUDENT from Figure 5.1 wi th a di f ferent order of tuples

STUDENT

Name Ssn Home*phone Address Office_phone Age Gpa

Dick Davidson 422-11-2320 NULL 3452 Elgin Road 749-1253 25

Barbara Benson 533-69-1 238 839-8461 7384 Foniana Lane NULL 3.25

Rohan Panchal 489-22-1100 376-9821 265 Lark Lane 749-6492 28 3.93

Chung-cha Kim 381-62-1245 375-4409 125 Kirby Road NULL 18 2.89

Benjamin Bayer 305 61 2435 373-1 61 6 291 8 Bluebonnet Lane NULL 19 5.2 |

5.1 Relational Model Concepts 15i

l : ((Name, Dick Davidson),(ssn, 422-1 1-2320),(Home_phone, NULL),(Address, 3452 Ergin Road),
(Office_phone, 749-1 253),(Age, 2b),(Gpa, 9.53)>

f : ((Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),
(Office_phone, 749-1 253),(Gpa, 3.53),(Home_phone, NULL)>

Figure 5.3
Two dentical tuples when the order of attributes and values

is not part of relation definit ion.

l irt ion as

s to rep-
ied on a
be logi-
r i t ion of
lrdering
rttical to
rlayed as
the rows

fnofa
,.le is an
ttributes
ri attrib-
between

values in
is a sef of

f , where
iomains;
ust be in
t le.

lasaset
napping
es is nof
tion, the
:t or log-
e appear

when a relation is implemented as a fi le, the attributes are physically ordered as
fields within a record. we will generally use the first definition of relation, where
the attributes and the values within tuples are ordered, because it simplifies much of
the notation. However, the alternative definition given here is more general.s

values and N U LLs in the Tuples. Each value in a ruple is an atomic value; thar is,
it is not divisible into components within the framework of the basic relational
model. Hence, composi te and mult ivalued at t r ibutes (see Chapter 3) are not
allowed. This model is sometimes called the flat relational model. Much of the the-
ory behind the relational model was developed rvith this assumption in mind,
which is called the first normal form assumption.6 Hence, multivaluecl attributes
must be represented by separate relations, and composite attributes are represented
only by their simple component attributes in the basic relational model.T

An important concept is that of NULL values, which are used to represent the values
of attributes that may be unknown or may not apply to a tuple. A special value, called
NULL, is used in these cases. For exanple, ir.r Figure 5.1, some STUDENT tuples have
NULL for their office phones because they do not have an office (that is, office phone
does not apply to these students). Another studer.rt has a NULL for hon-re phone, pre-
sumably because either he does not have a home phone or he has one but we do not
know it (value is unknown).In general, we can have several meanings fbr N U LL values,
such as value unknown, value exists but is rtot t:ailnble, or attribute tloes not apply to
this tuple. An example of the last type of NULL wil l occur if we add an attribute
Visa-status to the STUDENT relation that applies only to tuples representir.rg fbreign
students. It is possible to devise different codes for different meanings of N U LL values.

5. As we shal l see, the a ternat ive def ni t on of re at on is useful when we discuss query process ng In
Chapters 15 and 16.

6. We discuss this assumption in more detai l in Chapter 10,

TExtensionsof thererat ior-al r rode'enrovet l"eseresrr iu lons,Fo'eranpe.oolect-elatola sysle.s
al low complex-structured at t r butes, as do the non-f i rst normal form or nested relat onal models, as
we shal l see in Chapter 22.

a-__l
'pa I
.53 |
;J
' tu I

93|

-
Aq

;
' - ' l

152 Chaoter 5 The Relat ional Model and Relat ional Database Constraints

Incorporating different types of NULL values into relational model operations (see

Chapter 6) has proven difficult and is outside the scope of our presentation.

NULL values arise due to several reasons stated above-value undefined, value
unknown, and vaiue presently not available are the most common reasons. The
exact meaning of a NULL value governs how it fares during arithmetic aggregations
or comparisons with other values. For exarnple: a comparison of two NULL values
leads to ambiguities-if both Customer A and B have N U LL addresses, does it mear.r
they have the sarne address? During database design, it is best to avoid NULL values
as much as possible. We will discuss them again in Chapters 6 and 8 in the context of
operations and queries, and in Chapter 10 in the context of design.

lnterpretation (Meaning) of a Relation. The relation schema can be interpreted
as a deciaration or a type of assertion. For example, the schema of the STUDENT
relat ion of Figure 5.1 asserts that , in general , a student ent i ty has a Name, Ssn,
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation cart
then be interpreted as a fact or a particular instance of the assertion. For example,
the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other rela-
tions may represent facts about relationships. For example, a relation schema
MAJORS (Student_ssn, Department-code) asserts that students major in academic
disciplines. A tuple in this relation relates a student to his or her major discipline.
Hence, the relational model represents facts about both entit ies and relationships
uniformly as reiations. This sometimes compromises understandabil ity because one
has to guess whether a relation represents an entity type or a relationship type. The
mapping procedures in Chapter 7 show how different constructs of the ER and EER
models get converted to relations.

An alternative interpretation of a relation schema is as a predicatei in this case, the
values in each tuple are interpreted as values that satisfy the predicate. For example,
the predicate STUDENT (Name, Ssn,. . .) is t rue for the f ive tuples in relat ion
STU DENT of Figure 5.1. These tuples represent f ive different propositions or facts in
the real wor ld. This interpretat ion is qui te useful in the context of logic program-
ming languages, such as Prolog, because it allows the relational modei to be used
within these languages (see Section 24.4). An assumption called the closed world
assumption states that the only true facts in the universe are those present within
the extension of the relation(s). Anv other combination of values makes the predi-

cate false.

5.1.3 Relational Model Notation

We wi l l use the fol lowing notat iorr i t t our presentat ion:

A relation schema R of degree n is denoted by R(A', A,, . . . , A,,).

'rr The ietters Q, R, S denote relation names.

:,, The letters 4, r, s denote relation states.

5.2 Relat ional Model Constraints and Relat ional Database Schemas

* The letters f , u, 1, denote tuples.

In general, the name of a relation schema such as STUDENT also indicates the
current set of tuples in that relation-the current relation state-whereas
STUDENT(Name, Ssn,. . .) refers onlyto the relat ion schema.

An attribr,rte A can be qualif ied with the relation name R to which it
belongs by using the dot notation R.A-for example, STUDENT.Name or
STUDENT.Age. This is because the same name may be used for two attributes
in different relations. However. all attribute names in a oarticular relation
must be distinct.

153

t ions (see

I

Lcd, value

sons. The

iregations
JLL values

-'s it mean
JLL values
:ontext of

)terPreted
STUDENT
ame, Ssn,
irt ion can
L'xample,

,c' Name is

ther rela-
r schema
.rcademic
liscipline.
r t ionships
caLrse one
tvpe. The
L and EER

s case, the
example,

r relation
or facts in

Program-
o be used
;ed world
'nt within
the predi-

w An n-tuple f in a reiation r(R) is denoted by t = 1vp v2, . .
the value corresponding to attribute A;. The following
component values of tuples:

Both r[A,] and t.A, (and sometimes r[i]) refer to the value v ; in t for attrib-
ute Ai.

Bothr[A,, ,A, , . , . . . ,Ar] andt.(A,, ,A,r , . . . ,Ar) ,whereAr,Ar, . . . ,A. isal ist
of attributes from R, refer to the subtuple of values 1u,,, vy, . . . , v") from
f corresponding to the attributes specified in the list.

As an exanrple, consider the tuple f = ('Barbara Benson', '533-69-12381 '839-8461',
'7384 Fontana Lane', NULL, 19,3.25> fiom the STUDENT relation in Figure 5.1; we
have r[Name] = <'Barbara Benson'>, and rISsn, Gpa, Age] = <'533-69-1238',3.25,19>.

5.2 Relational Model Constraints
and Relational Database Schemas

So far, we have discussed the characteristics of single relations. In a relational data-
base, there wil l typically be many relations, and the tuples in those relations are usu-
ally related in various ways. The state of the whole database will correspond to the
states of all i ts relations at a particular point in time. There are generally many
restrictions or constraints on the actual values in a database state. These constraints
are derived from the rules in the miniworld that the database represents, as we dis-
cussed in Section 1.6.8

In this section, we discuss the various restrictions on data that can be specified on a
relational database in the form of constraints. Constraints on databases can sener-
al ly be div ided in lo three main categol ies:

]" Constraints that are inherent in the data model. We call these inherent
model-based or implicit constraints.

n,

Constraints that can be directly expressed in schemas of the data model, typ-
ically by specif ing them in the DDL (data definit ion language, see Section
2.3.1). We call these schema-based or explicit constraints.

Constraints Ihat cannot be directly expressed in schemas of the data model,
and hence must be expressed and enfbrced by the application programs. We
call these application-based or semantic constraints or business rules.

. , vr), where v, is
notation refers to

?"

154 Chapter 5 The Relat ional Model and Relat ional Database Constraints

The characteristics of relations that we discussed ir-r Section 5.7.2 are the inherent
constraints of the relational model and belong to the first category; for example, the
constrait-tt that a relation cannot have duplicate tuples is an inherer-rt constraint. The
constraints we discuss in this section are of the second category, narnely, constraints
that can be expressed in the schema of the relat ional rnodel v ia the DDL.
Cor-rstraints in the third category are rrore general, relate to the meaning as well as
behavior of attributes, and are difl icult to express and enforce within the data
model, so they are usually checked within application programs.

Another important category of constraints is datn dependencies, which include func-
tional dependerrcies and nrultivalued dependencies. They are used mainly for testing
the "goodness" of the design of a relational database and are uti l ized in a process
ca\led nonrnlizntiort, which is discussed in Chapters l0 and 11.

We discuss the mair.r types of constraints that can be expressed in the relational
model-the schemar-based constraints from the second category. These include
domain constrairr ts, key constraints, constraints on NULLs, ent i ty integr i ty con-
straints, and referential ir-rtegrity constraints.

5.2.1 Domain Constraints

Domain constraints specifi ' that within each tuple, the value of each attribute A
must be an atomic value frorn the domain dom(A). We have already discussed the
ways in which domains can be specified in Section 5.1.1. The data types associated
with domains typically include standard numeric data types for integers (such
as short integer, integer, and long integer) and real numbers (float and double-
precision float). Characters, Booleans, f ixed-length strings, and variable-length
strings are also available, as are date, t ime, time-stamp, and n-loney, or other special
data types. Other possible domains may be described by a subrange of values from a
data type or as an enumerated data type in which all possible values are explicit ly
listed. Rather than describe these in detail here. we discuss the data types offered bv
the SQL-99 relational standard in Section 8.1.

5.2.2 Key Constraints and Constraints on NULL Values

A relation is defined as a set of tttples. By definition, all elements of a set are distinct;
hence, all tuples in a relation must also be distinct. This means that no two tuples
can have the same combination of values for n// their attributes. Usually, there are
other subsets of attributes of a relation schema R with the property that no two
tuples in any relation state r of R should have the same combination of values for
these attributes. Suppose that rve denote one such subset ofattributes by SK; then for
any two distinct tuples r, and f, in a relation state r of R, we have the constraint that

r , lSKl + r , lSKl

Any such set of at t r ibutes SK is cal led a superkey of the relat ion schema R. A
superkey SK specifies a Lnriqueness constroint that no two distinct tuples in any state
r of R can have the same value for SK. Every relation has at least one default

5.2 Relational Model Constraints and Relational Database Schemas

superkey-the set of all i ts attributes. A superkey can have redundant attributes,
however, so a more useful concept is that of a key, u,hich has no redundancf A key
r of a reiation schema R is a superkey of R with the additional property that remov-
ing any attribute A from K leaves a set of attributes K that is r-rot a superkey of R any
more. Hence, a key satisfies two constraints:

t. Two distinct tuples in any state of the relation cannot have identical values
for (all) the attributes in the key.

3. It is a minimal superkey-that is, a superkey from which we cannot remove
any attributes and sti l l have the uniqueness constraint in condition I hold.

The first condition applies to both keys and su;rerkeys. The second conclit ion is
required only for keys. For example, consider the STUDENT relation of Figure 5.1.
The attribute set {Ssn} is a key of STU DENT because no two stuclent tuples can have
the same value for Ssn.8 Any set of attributes that irrcludes Ssn-for example, {Ssn,
Name, Age]-is a superkev. Horvever, the superkev {Ssn, Name, Age} is not a key of
STUDENT because removing Name or Age or both fiom the set sti l l leaves us with a
superkey. In general, any slrperkey formed from a single attribute is also a key. A key
with multiple attributes must require a// its attributes to have the uniqueness prop-
erty hold.

The value of a key attribute can be usecl to identify uniquely each tuple in the relation.
For example, the Ssn value 305-61-2435 identif ies uniquely the tuple corresponding
to Benjamin Bayer in the STU DENT relation. Notice that a set of attributes constitut-
ing a key is a property of the relation schema; it is ir constraint that shor.rld hold on
every valid relation state of the schema. A key is determined fror-n the meaning of the
attributes, and the property is t inre-invariant: lr must continue to hold when we
insert new tuples in the relation. For example, we cannot and should not designate
theNameattr ibuteof theSTUDENTrelat ioninFigure5. l asakevbecausei t ispossi-
ble that two students with identical nirmes wil l exist at some point in a valid state.e

In general, a relation schena may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has trvo
candidate keys: License_number and Engine_serial number. It is common to designate
one of the candidate keys as the primary key of the relation. This is the candidate
key whose values are used to identify tuples in the relation. We use the conver.rtion
that the attributes that form the primar,v key of a relation schema are underlined, as
shown in Figure 5.4. Notice that when a reltrt ion scher-na has severirl candidate keys,
the choice of one to become the primary key is arbitrary; hou'ever, it is usually bet-
ter to choose a primary key with a single attribute or a small number of attributes.

Another constraint on attributes specifies whether NULL values are or are l lot per-
mitted. For example, if every STUDENT tuple must have a valid, norr-NULL value for
the Name attribute, then Name of STUDENT is constrained to be NOT NULL.

B, Note that Ssn is also a superkey.

9, Names are somet imes used as keys, butthen some art i tact-such as appending an ord nal number-

must be used to dist inouish between ident ical names.

155

nherent
rple, the
int . The
rstraints
e DDL.
r rvell as
hc' data

) - r ' . . . -^
l rc J LtnL-

r testing

Process

lat ional
include
l lv col l -

ibute A
ssed the
sociated
's (such
double-
' - len oth' ' - "b '^ '

r special
s fiom a
rplicit ly
t-ered by

clistinct;
o tr.rples
here are
no two

rlues for
ther.r for
int that

naR.A
rnv state
clefault

156 Chapter 5 The Relat ional Model and Relat ional Database Constraints

Figure 5.4
The CAR relation, with
two candidate keys:
License_number and
Enorne seral number.

CAR

License number Enoine serial number Make Model Year

Texas ABC-739 A693s2 Ford Mustang o2
Florida TVP-347 843696 Oldsmobi leCutlass 05

New York MPO-22 x83554 Oldsmobi le Delta 01

California 432-TFY c43742 Mercedes 190-D 9V

California RSK-629 Y82935 Toyota Camry o4
Texas RSK-629 u028365 Jaquar XJS 04

5.2.3 Relational Databases and Relational
Database Schemas

The definit ions and constraints rve have discussed so far apply to single relations and
their attributes. A relationai databtrse usually contair-ls n-rany relations, rvith tuples in
relations that are related in various ways. In this section we define a relational data-
base and a relational database schema. A relational database schema S is a set of
relat ion schemas S = {R1, R,, . , R,, , } and a set of integr i tyconstraints IC. A
relational database statel0 DB of S is ir set of relation states DB = lr1, r2,. . . , r,,,I such
that each r; is a state of R, and such that the r' relation states satisfy the integrity
constraints speci f ied in IC. Figure 5.5 shows a relat ional database schema that
we cal l COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT,
WORKS_ON, DEPENDENT|. The under l ined at t r ibutes represent pr imary keys.
Figure 5.6 shows a relational database state corresponding to the COMPANY schema.
We will use this schema and database state in this chapter and in Chapters 6 through
9 for developing exarnple queries in different relational lzrnguages. In fact, the data
shown here is aiso avaiiable as a populated database or.r the project Web site for the
book, which rvil l be used for hands-on project exercises at the end of the chapters.

\\4ren we refer to a relational database, we irnplicitly include both its schema and its
current state. A database state that does not obey all the integrity constraints is
called an invalid state, and a state that satisfies all the constraints in IC is called a
valid state.

In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT-LOCATIONS
stands for the same real-world cor-rcept-the number given to a departntent. That
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts uray have
tl-re same name in dif lerent relations. For example, we could have used the attribute
narne Name for both Pname of pRo.lgct and Dname of DEPARTMENT; in this case,
we would have two attributes thart share the same name but represent different real-
world concepts-project names and department names.

10, A relat ona database slale is sometrmes cal led a relat ional database instance. However, as we men-

toned ear l ier . we w not use the term instances nce i t a lso app es to s ingle tuples.

5.2 Relat ional Model Constraints and Relat ional Database Schemas 157

EMPLOYEE

Fname Mini t Lname Ssn Bdate Address Sex Salary Super_ssn Dno

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

DEPT LOCATIONS

Dnumber I Dlocation

PROJECT

Pname Pnumber Plocation Dnum

WORKS ON

HoursPnoEssn

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

Figure 5.5
Schema diagram for

the COMPANY
relational database

schema.

.r t ions and
h tuples in
ional data-
is a set of

ints IC. A
. , r,,,| such
c integr i ty
hc'nta that
PROJECT,
narv keys.
.Y schema.
6 through

:t . the data
.ite for the
n.lpters.

.:I.l and its
: . t ra ints is
: . cal led a

: CATIONS
:.<nt. That
i--:tes that
r.:. in dif-

I ::.rv have
p:: t r ibute

I ' : :s case,

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical
attribute names in all relations. This creates problems wl-ren the same real-world
concept is used in different roles (meanings) in the same relation. For example, the
concept of Social Security Number appears twice in the EMPLOYEE relation of
Figure 5.5: once in the role of the employee's SSN, and once in the role of the super-
visor's SSN. We gave them distinct attribute nnms5-$sn and Super-ssn, respec-
tively-in order to distinguish their meaning.

Each relational DBMS must have a data definit ion language (DDL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for this
purpose. We present the SQL DDL in Sections 8.1 through 8.3.

Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schemil. In addition to domain, key, and NOT NULL
constraints, two other types of constraints are considered part of the reiational
model: entity integrity and referential integrity.

5.2.4 Entity Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be N U LL. This is

because the primary key value is used to identify individual tuples in a relation.
Having NULL values for the primary key implies that we cannot identiff some tuples.

rt real-

158 Chapter 5 The Relat ional Model and Relat ional Database Constraints

For example, if trvo or more tuples had NULL for their primary keys, u,e might not be
able to distinguish them if we tried to reference them from other relations.

Key constraints ancl entity integrity constraints are specified on individual relations.
The referential integrity constraint is specifiecl between two relations and is used
to maintain the corrsistenq/ among tuples in the trvo relations. Informirl ly, the refer-
entiai ir-rtegritv constraint states th:rt a tuplle in one relation that ret-ers to another
relation nrust ret'er to an existing tuplc in that relation. For exirmple, in Figure 5.6,
the at t r ibute Dno of EMPLOYEE gives the department number for which each
employee rvorks; hence, its value in every EMPLOYEE tuple must match the Dnumber
value of some tuple in the DEPARTM ENT relation.

To define referentierl integrity more formally, f irst we define the concept of a foreign
key.The conditions fbr a foreign key, given below, specif, a referential integrity con-
straint between the trvo relation scher.nas R, and R.. A set of attributes FK in relation
schema R, is a foreign key of R, that references relation R. if i t satistles the follow-
ing rules:

The attributes in FK have the sane domain(s) as the prirr.rarv key attributes
PK of R,; the attributes FK are said to reference or refer to the relation R,.

A value of FK in a tuple r, of the current state 11(R1) either occurs as a value
of PK for some tuple f, in the current state rr(Rr) or is NlJLL.ln the former
case, we have r , IFK] = f , [PK], and rve say that the tuple r , references or
refers to the tu;rle f,.

In this defiuit ion, R, is called the referencing relation and R. is the referenced rela-
tion. If these trvo conditions hold, a referential integrity constraint tiorn R, to R, is
said to hold. In a database of many relations, there are usually many referential
integrity constrirints.

To specifo these constraints, f irst we must have a clear understanding of the mean-
ing or role that each set of attributes plavs in the various reiation schemas of the
database. Referential integrity constraints typically arise from the relationships
anlong the entit ies represented by the relation schemas. For example, consider the
database shown in Figure 5.6. In the EMPLOYEE relation, the attribute Dno refers to
the departr-nent fbr which an ernplovee lr,orks; hence, we designate Dno to be a for-
eign key of EMPLOYEE referring to the DEPARTMENT relation. This means that a
vaiue of Dno in any tuple f, of the EMPLOYEE relation must match ir value of the pri-
mary key of DEPARTMENT-the Dnumber at t r ibute- in some tuple f , of the
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not
belong to a department or wil l be assigr-red to a department later. h-r Figure 5.6 the
tuple for emplot'ee'John Smith' references the tuple for the'Research' department,
indicating tl-rat 'John Smith'works for this departn-rer-rt.

Notice that a firreign key car-r refer ttt i ts otvrt relation. For example, the attribute
Super_ssn in EMPLOYEE refers to the supervisor of an euployee; this is another
emplovee, rep.rresented by a tuple in the EMPLOYEE relation. Hence, Super-ssn is a
foreign keythat references the EMPLOYEE relation itself. In Figure 5.6 the tuple for

b.-*

5.2 Relat ional Model Constraints and Relat ional Database Schemas 159

ht not be

-r-lations.

cl is used
.he refer-
,another

s,ure 5.6,
ich each
Dnumber

t,,foreign
r i tv con-
r rclzrtion
e tbllon'-

r t t r ibutes
iou Rr.

rs a value
c fbrmer
ences or

ced rela-
l , to R, is
'f erential

le mean-
as of the
tionships
sider the
refers to
be a for-
ns that a
t the nr i -

: , of the
does not
'c 5.6 the
,.trt lnent,

.rttr ibute
rrnother

r ,ssn is a
tuple for

woRKs_oN

Figure 5.6
One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname Mini l Lname Ssn Bdate Address Sex Salary Super_ssn Dno

JOn n B Smith 1 23456789 1965-01-09731 Fondren, Houston, TX M 30000 aea / / qqqa 5

Frankl in T Wong 333445555 r 955-1 2-08 638 Voss, Houslon, TX M 40000 888665555 5

Al ic ia Zelaya 999887777 r968-01-193321 Castle, Spring, TX F 25000 98765432 1

Jennifer S Wallace 987654321 1941-06-20291 Berry, Bel la i re, TX F 43000 888665555 4

Ramesh K Narayan 666884444 1 962-09-1 5 975 Fire Oak, Humble, TX M 38000 333445555 q

Joyce A Engl ish 453453453 1972-07-31 5631 Rice, Houston, TX F 25000 333445555 5

Ahmad Jabbar 987987987 1969-03-29980 Dallas, Houston, TX M 25000 987654321 4

James E Borg 8886655ss 1 937-1 1-1 0 450 Stone, Houston, TX N4 55000 NULL

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

Research 5 333445555 1988-05-22

Administrat ion 987654321 1995-01-01

Headquarters 1 888665555 1981-06-.1 I

DEPT_LOCATIONS

Essn Pno Hours

1 23456789 1 32.5

1 23456789 2 7.5

666884444 3 40.0

453453453 20.0

453453453 c 20.0

333445555 10.0

333445555 3 10.0

333445555 10 10.0

333445555 20 10.0

999887777 30 30.0

999447777 10 10.0

987987987
.10

35.0

987987987 30 5.0

98765432 1 30 20.0

98765432 1 20 15.0

888665555 20 NULL

PROJECT

Pname Pnumber Plocation Dnum

ProductX 1 Bel la i re 5

ProductY 2 Sugarland 5

ProductZ J Houston 5

Computer izat ion 10 Stafford A

Reorganizat ion 20 Houston 'I

Newbenef i ts 30 Stafford A

DEPENDENT

Essn Dependent_name Sex Bdate Relat ionship

333445555 Al ice F 1986-04-05 Daughter

333445555 Theodore M 1 983- l 0-25 Son

333445555 Joy F 1 958-05-03 Spouse

98765432 1 Abner M 1942-02-28 Spouse

1 23456789 Michael M . l 988-01-04 Son

1 23456789 Al ice F 1 988-1 2-30 Daughter

123456789 El izabeth F 1 967-05-05 Spouse

160 Chapter 5 The Relat ional Model and Relat ional Database Constraints

employee'John Smith'references the tuple for employee'Franklin Wong,' indicating
that'Franklin Wong'is the supervisor of 'fohn Smith.'

We can diagratrmntically display referential integrity constraints by drawing a directecl
arc from each foreign key to the reiation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 5.7 shows the schema in
Figure 5.5 with the referential integrity constraints displayed in this manner.

All integrity constrait-tts should be specified on the relational database schema (i.e.,
defined as part of its definit ion) if we want to enforce these constraints on the data-
base states. Hence, the DDL includes provisions for specifl, ing the various types of
constraints so that the DBMS can automatically enforce them. Most relational
DBMSs support key and entity integrity constraints and make provisions to support
referential integrity. These constraints are specified as a part ofdata definit ion.

5.2.5 Other Types of Constraints

The precedir-rg integrity constraints do not include a large class of general con-
strairrts, sometimes called semantic integrity constraints, which may have to be spec-

Figure 5.7
Referential integrlty constraints displayed on the COMPANY relational database schema

EMPLOYEE

Fname Mini l Lname Ssn Bdate Address Sex Salary Super_ssn Dno

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

Dnumber I Dlocation

EssnlPnolHours

PROJECT

Pname Pnumber Plocation Dnum

DEPENDENT

Essn Dependent_name Sex Bdate Relationship

5.3 Update Operations and Dealing with Constraint Vrolations

ified and enforced on a relational database. Examples of such constraints are
the salary of an employee should not exceed the salary of the employee's supervisor and
the maximum nuntber of hours an employee can work on all projects per week is 56.
Such constraints can be specified and enforced within the application programs
that update the database, or by using a general-purpose constraint specification
language. Mechanisms called triggers and assertions can be used. In SQL-99, a
CREATE ASSERTION statement is used for this purpose (see Chapter 8). It is more
common to check for these types of constraints within the application programs
than to use constraint specification languages because the latter are difficult and
complex to use correctly, as we discuss in Section 24.1.

Another type of constraint is the fimctional dependencl, constraint, which establishes
a functional relationship among two sets of attributes X and Y. This constraint spec-
if ies that the value of X determines the value of Y in all states of a relation; it is
denoted as a functional dependency X -+ Y. We use functional dependencies and
other types of dependencies in Chapters 10 and 1 I as tools to analyze the quality of
relational designs and to "normalize" relations to improve their quality.

The types of constraints we discussed so far may be called state constraints because
they define the constraints that a valid state of the database must satisfy. Another
type of constraint, called transition constraints, can be defined to deal with state
changes in the database.llAn example of a transition constraint is: "the salary of
an employee can only increase." Such constraints are typically enforced by the
application programs or specified using active rules and triggers, as we discuss in
Sect ion 24.1.

5.3 Update Operations, Tranactions,
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and
updates. The relational algebra operations, which can be used to specify retrievals,
are discussed in detail in Chapter 6. A relational algebra expression forms a new
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database. The user formulates a query that spec-
if ies the data of interest, and a new relation is formed by applying relational
operators to retrieve this data. That relation becomes the answer to the user's query.
Chapter 6 also introduces the language called relational calculus, which is used to
define the new relation declaratively without giving a specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic update operations on relations: insert, delete, and modify.
They insert new data, delete old data, or modify existing data thus changing the
state of the database. Insert is used to insert a new tuple or tuples in a relation,

1 1. State constraints are somet imes cal led statc constraints, and transi t ion constrarnts are somet imes

called dy n am i c con st r a r nts.

161

rdicating

r directed
read may
,-hema in

:ma (i .e. ,
the data-
, tvpes of
elat ional
r support
lon.

: ra l con-
be spec-

162 Chapter 5 The Relat ional Model and Relat ional Database Constraints

Delete is used to delete tuples, and Update (or Modify) is used to change the values
of some attributes in existing tupies. Whenever these operations are applied, the
integrit,v constraints specified on the relationnl database schema should not be vio-
lated. In this section we discLtss the types of constraints that may be vioiirted by each
update operation and the types of actiorrs that rnay be taken if an update causes a
violation. We use the database shown in Figure 5.6 for examples and discuss only
key conslraints. ent i tv integr i t \ constraints, and the referent ia l integr i ty constraints
shown in Figure 5.7. For each type of npdate, we give some exarnple operations and
discuss any constraints that each operation may violate.

5.3.1 The Insert Operation

The Insert operation provides a i ist of attribute values for a nelv tuple r that is to be
inserted ir-rto a relatior.r R. Insert can violate any of the four types of constraints dis-
cussed in the previous section. Domain constraints can be violated if an attribute
value is given that does not appear in the corresponding domain. Key constraints
can be violated if a key value in the new tuple / alreadv exists in another tuple in the
reiatiort r(R). Entity integrit l, ctru be violatecl if the prinrary kev of the new tuple f is
NULL. Referential integrity can be violated if the value of any fbreign key in r refers
to a tuple that does not exist in the referenced relation. Here are some examples to
il lustrate this discussion.

Operatiort:

Insert ('Ceci l ia l 'F l 'Kolonskyl NULL, '1960-04-051'6357 Windy Lane, Katy,
TXI R 28000, NULL,4> into EMPLOYEE.

Resulf: This insertion violates the entitf integrity constraint (NULL for the
primary key Ssn), so it is rejected.

"' OPeration

Irrsert < Alicia', ' l ' , 'Zelaya', '999887777', ' I960-04-051 '6357 Windv Lane, Katy,
TXI F, 28000,'987651321',4> into EMPLOYEE.

Result '. This insertion violates the key constraint because another tuple with
the same Ssn value already exists in the EMPLOYEE relat ion, and so i t is
rejected.

',:" Operatiorr:

Insert ('Cecil ial 'Fl 'Kolonskyl '677678989', '1960-04-051 '6357 Windsrvept,
Katy, TXI F, 28000,'987654321',7> inro EMPLOYEE.

Restilt: This insertion violates the referential integrity constraint specified on
Dno in EMPLOYEE because no corresponding tuple exists in DEPARTMENT
lvith Dnumber = 7.

Operation:

Ir-rsert ('Cecil iai 'Fl 'Kolonsky', '677678989', ' i960-04-051 '6357 Windy Lane,
Katy, TXI F, 28000, NULL,4> into EMPLOYEE.

Result: This insertion satisfies all constraints. so it is acceptable.

5.3 Update Operations and Dealing with Constrarnt

If an insertion violates one or more constraints, the default option is to reject the
insertion. In this case, it would be usefr.rl i f the DBMS could exprlain to the user why
the insertion was rejected. Another option is to atterr.rpl to clrrect t lrc reason for
rejecting tlrc insertion, but this is typicall,v not used for violations causecl by Insert;
rather, it is used more often in correcting violations for Delete and Uprdate. ln oper-
ation I above, the DBMS could ask the user to provide a value for Ssn and could
accept the insertion if a valid Ssn value were provided. In operation 3, the DBMS
could either ask the user to change the value of Dno to some valid value (or set it to
NULL), or it could ask the Llser to insert a DEPARTMENT tr.rple rvith Dnumber =7 and
could accept the originirl insertior.r onlv afier such irn operation lvirs arccepted. Notice
that in the latter case the insertion violation can cascade back to the EMPLOYEE
relation if the user attempts to insert a tuple for department 7 with a value for
Mgr_ssn that does not exist in the EMPLOYEE relation.

5.3.2 The Delete Operation

The Delete operation can violate only referential integrity, if the tuple being deleted
is referenced by the foreign keys frorn other tuples in the database. To specif' dele-
tion, a condition on the attributes of the relation selects the tuple (or tuples) to be
deleted. Here are some examples.

w Operation:

Delete the WORKS_ON tuple wi th Essn ='999887777'and Pno = 10.

Result: This deletion is acceptable and deletes exirctly one tuple.

w Operation:

Delete the EMPLOYEE tuple with Ssn ='999887777'.

Result: This deletion is not acceptable, because there are tuples in
WORKS_ON that refer to this tr"rple. Hence, if the tuple in EMPLOYEE is
deleted, referential integrity violations wil l result.

w Operation'.

Delete the EMPLOYEE tuple wi th Ssn ='3334455551

Result: This deletion wil l result in even worse referential integrit l 'violations,
because the tuple involved is referenced by tuples f rom the EMPLOYEE,
D EPARTM ENT, WORKS_O N, and D EPEN D ENT relations.

Several options are available if a deletion operation causes a violation. The first
option isto reject the deletiott. The second option isto ilttetttpt to cascade (or propa-
gate) the deletion by deleting tuples that reference the tuple that is being deleted. For
example, in operation 2, the DBMS cor.rld automaticall l 'clelete the offending tuples
from WORKS_ON with Essn ='999887777'. A third option is to ntodi.f l ' t l te referenc-
ing attribute volues IhaI cause the violation; each such value is either set to NULL or
changed to reference another valid tuple. Notice that if a referencing trttribute that
causes a violation is part of the primarl,key, it cannot be set to NULL; otherwise, it
would v io late ent i ty integr i ty.

Violat ions 163

he values
rlied, the
rt be vio-
d by each
'causes a

-uss only
rnstraints
tions and

rt is to be
aints dis-
attribute

rnstraints
ple in the
tuple f is

ir.r r refers
rrnples to

.rne, Katy,

-L for the

ane, Katy,

uple with
rd so i t is

indsrvept,

ecified on
ARTMENT

ndv Lane,

164 Chaoter 5 The Relat ional Model and Relat ional Database Constraints

Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from
WORKS_ON and DEPENDENT with Essn ='333445555'. Tuples in EMPLOYEE with
Super-ssn ='333445555'and the tuple in DEPARTMENT with Mgr-ssn ='333445555'

can have their Super-ssn and Mgr ssn values changed to other valid values or to
NULL. Although it may make sense to delete automaticaliy the WORKS ON and
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to
delete other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS
will allow the user to specify which of the options applies in case of a violation of the
constraint. We discuss how to specif, these options in the SQL-99 DDL in Chapter 8.

5.3.3 The Update Operation

The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R. It is necessary to specifr a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modifred.
Here are some examples.

Operation:

Update the salary of the EMPLOYEE tuple with Ssn ='999887777 'to 28000.

Result. Acceptable.

', Operatiott:

Update the Dno of the EMPLOYEE tuple with Ssn ='999887777' to 1.

Result: Acceptable.

, Operation:

Update the Dno of the EMPLOYEE tuple with Ssn ='999887777' to 7 .

Result: Unacceptable, because it violates referential integrity.

"" OPeration:

Update the Ssn of the EMPLOYEE tuple wi th Ssn = '999887777' to
'987654321'.

Resuk: Unacceptable, because it violates primary key constraint by repeat-
ing a value that already exists as a primarv key in another tuple; it violates
referential integrity constraints because there are other relations that refer
to the existing value of Ssn.

Updating an attribute that is neither a primary key nor a foreign key usually causes
r-ro problems; the DBMS need only check to confirm that the new value is of the cor-
rect data type and domain. Modif ing a primary key value is similar to deleting one
tuple and inserting another in its place because we use the primary key to identifr

tuples. Hence, the issues discussed earlier in both Sections 5.3.1 (lnsert) and 5.3.2
(Delete) corne into play. If a foreign key attribute is modified, the DBMS must make

sure that the nerv value refers to an existing tuple in the referenced relation (or is
NULL). Similar options exist to deal with referential integrity violations caused by

5.4 Summary 165

id having
:rles from
,YLt wl tn
, -1. I4))))

ues or Io
, ON and
'sense to

hc DBMS
Lon of the

-hapter 8.

'or more
r a condi-
modified.

o 28000.

\ , / / / to

' rePeat-
violates
)at refer

.rl lv causes
oi the cor-
' leting one
to identify
and 5.3.2

nust make
t ion (or is
caused by

Update as those optior,s discussed fbr the Delete operation. In fact, lvhen a referen-
tial integrity constraint is specified in the DDL, the DBMS will allow the user to
choose separate options to deal with a violation caused by Delete and a violation
caused by Update (see Section 8.2).

5.3.4 The Transaction Concept

A database application program running against a relational database typically runs
a series of transactions. A transaction ir-rvolves reading tiom the databerse as well as
doing insertions, deletions, and updates to existing virlues in the datirbase. It must
leave the database in a consistent stirtr ' ; that state nust obey all the constraints we
spelled out in Section 5.2. A single transaction n-ray invoive any number of retrieval
operations (to be discussed as part of relational algebra and calculus in Chapter 6,
and as a part of the language SQL in Chirpters 8 and 9) that reads fronr the database
and any number of update operations n'e cliscussed above. A large numtrer of com-
mercial applications running against relational databases in the Online Transaction
Processing (OLIP) Systems are executing transactions at rates thirt reach several
hundred per second. Transaction processing concepts, concurrent execution of
transactions and recovery from failures wil l be discussed in Chapters l7 to 19.

5.4 Summary
In this chapter we presented the modeling concepts, data structures, and constraints
provided by the relational model of data. We started bv introducing the concepts of
domains, attributes, and tuples. Then, rve defined a relation schema as a l ist of
attributes thzrt describe the structure of a relation. A relation, or relation state, is a
set of tuples that confbrms to the scherna.

Several characteristics differentiate relations from ordinary tables or f-iles. The first
is that a relation is not sensitive to the ordering of tuples. The seconci involves the
ordering of attributes in a relatior-r scher-na and the corresponding ordering of vaiues
within a tuple. We gave an al ternat ive def in i t ion of re lat ion that does rrot require
these trvo orderings, but we continued to use the flrst definit ion, rvhich requires
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-
mation. We emphasized that NULL vah.res should be avoided as much as p-rossible.

We classified database constraints into inherent r.r.roclel-based constlaints, explicit
schenra-based constraints and application-based constraints, otherwise known as
semantic constraints or business rules. Then, we discussed the schema constraints
pertaining to the relational model, starting with domain constrair-tts, then key con-
straints, including the concepts of superkev, candidate ke,v, and primary key, and the
NOT NULL constraint on zrttributes. We defined relatior.ral databases and relational
database schemas. Additional relational constraints include the entitv integrity col' l-
straint, which prohibits primary key irttr ibutes from being NULL. We described the
interrelation referential integrity constraint, which is used to maintain consistency
of references among tuples from different relations.

t66 Chapter 5 The Relat ional Model and Relat ional Database Constraints

The modification operations on the relational rnodel are Insert, Delete, and Update.
Each operat ior . r nray v io late certain types of constraints (refer to Sect ion 5.3).
Whenever an operation is applied, the database sterte after the operation is executed
must be checked to ensLtre that no constraints have been violated. Finally, we intro-
cluced the coDcept of a transaction rvhicl-r is important in relational DBMSs.

Review Ouestions
Define the following terms: donnin, attribute, n-tuple, relation schema, rela,
tion sfate, degree of a relation, relational dcttabase schema, and relational data-
base st?tc.

Why are tuples in a relation not ordered?

Why are dnplicate tuples not allowed in a relation?

What is the difference betrveen a ke,v and a superkey?

Whv do we designate one of the car-rdidate keys of a relation to be the pri-
mar,v key'i

Discuss the characteristics of relations that make them different from ordi-
nary tables and fi les.

Discuss the various reasons that lead to the occurrence of NULL values in
relations.

Discuss the entity integrity and referential integrity constraints. Why is each
considered important?

Dehne .lbreign ke1. What is tl-ris concept used for?

:,: What is a transaction? How does it differ from an update?

Exercises
Suppose that each of the following update operations is applied directly to
the databirse state shown in Figure 5.6. Discuss all integrity constraints vio-
lated by each operation, if any, and the diff'erent ways of enforcing these con-
straints.

a. Irrsert <'Robert', 'Fl 'Scott ', '943775543', '1952-06-21', '2365 Nervcastle Rd,
Bel la i re, TXI M, 58000, '8886655551 t> into EMpLOyEE.

b. Insert <'ProductA', 4,'Bellaire', 2> into PROJECT.

c. Insert < 'Product ion' , 4, '94377 5543' , ' I 998- t0-01'> into DEPARTMENT.

d. Insert < '6776789891 NULL, '40.0 '> into WORKS ON.

e. Insert <' 453453453i'Johni' l . l ' , ' 1970-12- I 2', 'spouse') inro DEpENDENT.

f. Delete the WORKS_ON tuples with Essn ='333445555'.

