chapter 5

The Relational Data Model and
Relational Database Constraints

his chapter opens Part 2, covering relational data-
bases. The relational model was first introduced
by Ted Codd of IBM Research in 1970 in a classic paper (Codd 1970), and attracted
immediate attention due to its simplicity and mathematical foundation. The model
uses the concept of a mathematical relation—which looks somewhat like a table of
values—as its basic building block, and has its theoretical basis in set theory and
first-order predicate logic. In this chapter we discuss the basic characteristics of the
model and its constraints.

The first commercial implementations of the relational model became available in
the early 1980s, such as the SQL/DS system on the MVS operating system by IBM
and the Oracle DBMS. Since then, the model has been implemented in a large num-
ber of commercial systems. Current popular relational DBMSs (RDBMSs) include
DB2 and Informix Dynamic Server {from IBM), Oracle and Rdb {(from Oracle), and
SQL Server and Access (from Microsoft).

Because of the importance of the relational model, all of Part 2 is devoted to this
model and the languages associated with it. Chapter 6 covers the operations of the
relational algebra and introduces the relational calculus notation for two types of
calculi—tuple calculus and domain calculus. Chapter 7 relates the relational model
data structures to the constructs of the ER and EER models, and presents algo-
rithms for designing a relational database schema by mapping a conceptual schema
in the ER or EER model (see Chapters 3 and 4) into a relational representation.
These mappings are incorporated into many database design and CASE! tools. In

1. CASE stands for computer-aided software engineering.
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Chapter 8, we describe the SQL query language, which is the standard for commer-
cial relational DBMSs. Chapter 9 discusses the programming techniques used to
access database systems and the notion of connecting to relational databases via
ODBC and JDBC standard protocols. Chapters 10 and 11 in Part 3 present another
aspect of the relational model, namely the formal constraints of functional and
multivalued dependencies; these dependencies are used to develop a relational data-
base design theory based on the concept known as normalization.

Data models that preceded the relational model include the hierarchical and net-
work models. They were proposed in the 1960s and were implemented in early
DBMSs during the late 1960s and early 1970s. Because of their historical impor-
tance and the large existing user base for these DBMSs, we have included a summary
of the highlights of these models in appendices, which are available on this book’s
Companion Website at http://www.aw.com/elmasri. These models and systems will
be used for many years and are now referred to as legacy database systems.

In this chapter, we concentrate on describing the basic principles of the relational
model of data. We begin by defining the modeling concepts and notation of the
relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational
constraints that are now considered an important part of the relational model and
are automatically enforced in most relational DBMSs. Section 5.3 defines the update
operations of the relational model, discusses how violations of integrity constraints
are handled, and introduces the concept of a transaction.

5.1 Relational Model Concepts

The relational model represents the database as a collection of relations. Informally,
each relation resembles a table of values or, to some extent, a flat file of records. For
example, the database of files that was shown in Figure 1.2 is similar to the relational
model representation. However, there are important differences between relations
and files, as we shall soon see.

When a relation is thought of as a table of values, each row in the table represents a
collection of related data values. We introduced entity types and relationship types
as concepts for modeling real-world data in Chapter 3. In the relational model, each
row in the table represents a fact that typically corresponds to a real-world entity or
relationship. The table name and column names are used to help to interpret the
meaning of the values in each row. For example, the first table of Figure 1.2 is called
STUDENT because each row represents facts about a particular student entity. The
column names—~Name, Student_number, Class, and Major—specify how to interpret
the data values in each row, based on the column each value is in. All values in a col-
umn are of the same data type.

In the formal relational model terminology, a row is called a tuple, a column header
is called an attribute, and the table is called a relation. The data type describing the
types of values that can appear in each column is represented by a domain of possi-
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commer- ble values. We now define these terms—domain, tuple, attribute, and relation—

’s used to more precisely.

ibases via

1t another

ional and 5.1.1 Domains, Attributes, Tuples, and Relations

»nal data- A domain D is a set of atomic values. By atomic we mean that each value in the

domain is indivisible as far as the relational model is concerned. A common method

and net- of specifying a domain is to specify a data type from which the data values forming

iin early the domain are drawn. It is also useful to specify a name for the domain, to help in

al impor- interpreting its values. Some examples of domains follow:

summary # Usa_phone_numbers. The set of ten-digit phone numbers valid in the United

1is book’s States.

stems will

# Local_phone_numbers. The set of seven-digit phone numbers valid within a
particular area code in the United States.

relational # Social_security_numbers. The set of valid nine-digit social security numbers.
on of the k .
relational # Names: The set of character strings that represent names of persons.
1odel and # Grade_point_averages. Possible values of computed grade point averages;
he update each must be a real (floating-point) number between 0 and 4.
ynstraints # Employee_ages. Possible ages of employees of a company; each must be a
value between 15 and 80.
# Academic_department_names. The set of academic department names in a
university, such as Computer Science, Economics, and Physics.
# Academic_department_codes. The set of academic department codes, such as
‘CS’, ‘ECON’, and ‘PHYS’.
formally, : ) . ) ) .
-ords. For The preceding are called logical definitions of domains. A data type or format is
relational also specified for each domain. For example, the data type for the domain
relations Usa_phone_numbers can be declared as a character string of the form (ddd)ddd-
dddd, where each d is a numeric (decimal) digit and the first three digits form a
valid telephone area code. The data type for Employee_ages is an integer number
aresents a between 15 and 80. For Academic_department_names, the data type is the set of all
hip types character strings that represent valid department names. A domain is thus given a
)del,. each name, data type, and format. Additional information for interpreting the values of a
Lentity or domain can also be given; for example, a numeric domain such as Person_weights
crpret ﬁhs should have the units of measurement, such as pounds or kilograms.
I .
r_]tlist;dTie A relation schema- R, denoted by R(A|, A, ..., A,), is made up of a rAelation name
interpret Rand alist of attributes A}, A,, ..., A,. Each attribute A, is the name of a role played
sina col- by some domain D in the relation schema R. D is called the domain of A; and is
denoted by dom(A4;). A relation schema is used to describe a relation; R is called the
name of this relation. The degree (or arity) of a relation is the number of attributes
1n header i n of its relation schema.
-ibing the

“of pOSSi- 2. A relation schema is sometimes called a relation scheme.
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An example of a relation schema for a relation of degree seven, which describes uni-
versity students, is the following:

STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
Using the data type of each attribute, the definition is sometimes written as:

STUDENT(Name: string, Ssn: string, Home_phone: string, Address: string,
Office_phone: string, Age: integer, Gpa: real)

For this relation schema, STUDENT is the name of the relation, which has seven
attributes. In the above definition, we showed assignment of generic types such as
string or integer to the attributes. More precisely, we can specify the following previ-
ously defined domains for some of the attributes of the STUDENT relation:
dom(Name) = Names; dom(Ssn) = Social_security_numbers; dom(HomePhone) =
Local_phone_numbers®, dom(Office_phone) = Local_phone_numbers, and dom(Gpa) =
Grade_point_averages. It is also possible to refer to attributes of a relation schema by
their position within the relation; thus, the second attribute of the STUDENT rela-
tion is Ssn, whereas the fourth attribute is Address.

A relation (or relation state)* r of the relation schema R(A,, A,, ..., A,), also
denoted by r(R), is a set of n-tuples r = {#}, 15, . . ., t,,,}. Each n-tuple ¢ is an ordered
list of n values t = <v|, v5, .. ., v,>, where each value v;, 1 <i< #, is an element of
dom(A,) or is a special NULL value. (NULL values are discussed further below and in
Section 5.1.2.) The ith value in tuple ¢, which corresponds to the attribute A, is
referred to as t[A;] (or t[7] if we use the positional notation). The terms relation
intension for the schema R and relation extension for a relation state (R) are also
commonly used.

Figure 5.1 shows an example of a STUDENT relation, which corresponds to the
STUDENT schema just specified. Each tuple in the relation represents a particular
student entity. We display the relation as a table, where each tuple is shown as a row
and each attribute corresponds to a column header indicating a role or interpreta-
tion of the values in that column. NULL values represent attributes whose values are
unknown or do not exist for some individual STUDENT tuple.

The earlier definition of a relation can be restated more formally as follows. A rela-
tion (or relation state) r(R) is a mathematical relation of degree n on the domains
dom(A,), dom(A,),...,dom(A,), which is a subset of the Cartesian product of the
domains that define R:

r(R) € (dom(A,) x dom(A,) x...x dom(A,))

The Cartesian product specifies all possible combinations of values from the under-
lying domains. Hence, if we denote the total number of values, or cardinality, in a

3. With the large increase in phone numbers caused by the proliferation of mobile phones, some metro-
politan areas now have multiple area codes, so that seven-digit local dialing has been discontinued. In
this case, we would use Usa_phone_numbers as the domain.

4. This has also been called a relation instance. We will not use this term because instance is also used
to refer to a single tuple or row.
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ribes uni- Relation Name Attributes
. ‘//'/ \\\~
as: Name Ssn Home_phone Address Office_phone| Age | Gpa
ng Benjamin Bayer | 305-61-2435 | 373-1616 | 2918 Bluebonnet Lane | NULL 19 | 3.21
/( Chung-cha Kim | 381-62-1245 | 375-4409 | 125 Kirby Road NULL 18 | 2.89
Tuples T Dick Davidson | 422-11-2320 | NULL 3452 Elgin Road 749-1253 | 25 13.53
has seven NS
es such as \ Rohan Panchal | 489-22-1100 | 376-9821 | 265 Lark Lane 749-6492 | 28 | 3.93
ing previ- Barbara Benson | 533-69-1238 | 839-8461 | 7384 Fontana Lane NULL 19 |3.25
;Elatlc))ri Figure 5.1
rhone) = The attributes and tuples of a relation STUDENT.
m(Gpa) =
schema by
JENT rela-
. A,), also domain D by |D| (assuming that all domains are finite), the total number of tuples
in ordered in the Cartesian product is
zlement of
low and in |[dom(A))| x |dom(A,)| X ... x |[dom(A,)]|
bute A, is This product of cardinalities of all domains represents the total number of possible
is relation instances or tuples that can ever exist in the relation instance r(R). Of all these pos-
R) are also sible combinations, a relation state at a given time—the current relation state—
reflects only the valid tuples that represent a particular state of the real world. In
ads to the general, as the state of the real world changes, so does the relation, by being trans-
particular formed into another relation state. However, the schema R is relatively static and
T as a row does not change except very infrequently—for example, as a result of adding an
interpreta- attribute to represent new information that was not originally stored in the relation.
-values are It is possible for several attributes to have the same domain. The attributes indicate
different roles, or interpretations, for the domain. For example, in the STUDENT
ws. A rela- relation, the same domain Local_phone_numbers plays the role of Home_phone, refer-
e domains ring to the home phone of a student, and the role of Office_phone, referring to the
duct of the office phone of the student.
5.1.2 Characteristics of Relations
the under- ‘ The earlier definition of relations implies certain characteristics that make a relation
‘nality, in a | different from a file or a table. We now discuss some of these characteristics.
ome metro- Ordering of Tuples in a Relation. A relation is defined as a set of tuples.
~tinued. In Mathematically, elements of a set have no order among them; hence, tuples in a rela-
tion do not have any particular order. In other words, a relation is not sensitive to
- s also used the ordering of tuples. However, in a file, records are physically stored on disk (or in

memory), so there always is an order among the records. This ordering indicates
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first, second, ith, and last records in the file. Similarly, when we display a relation as
a table, the rows are displayed in a certain order.

Tuple ordering is not part of a relation definition because a relation attempts to rep-
resent facts at a logical or abstract level. Many logical orders can be specified on a
relation. For example, tuples in the STUDENT relation in Figure 5.1 could be logi-
cally ordered by values of Name, Ssn, Age, or some other attribute. The definition of
a relation does not specify any order: There is no preference for one logical ordering
over another. Hence, the relation displayed in Figure 5.2 is considered identical to
the one shown in Figure 5.1. When a relation is implemented as a file or displayed as
a table, a particular ordering may be specitied on the records of the file or the rows
of the table.

Ordering of Values within a Tuple and an Alternative Definition of a
Relation. According to the preceding definition of a relation, an n-tuple is an
ordered list of 11 values, so the ordering of values in a tuple—and hence of attributes
in a relation schema—is important. However, at a logical level, the order of attrib-
utes and their values is not that important as long as the correspondence between
attributes and values is maintained.

An alternative definition of a relation can be given, making the ordering of values in
a tuple unnecessary. In this definition, a relation schema R={A |, A,,..., A, } is a set of
attributes, and a relation state r(R) is a tinite set of mappings r={t,, t5,..., t,,}, where
each tuple 7, is a mapping from R to D, and D is the union of the attribute domains;
thatis, D=dom(A,) udom(A,) U ...udom(A,). In this definition, t{A;] must be in
dom(4;) for 1 < i< for each mapping ¢ in r. Each mapping ¢, is called a tuple.

According to this definition of tuple as a mapping, a tuple can be considered as a set
of (<attribute>, <value>) pairs, where each pair gives the value of the mapping
from an attribute A; to a value v, from dom(A;). The ordering of attributes is nor
important, because the attribute name appears with its value. By this definition, the
two tuples shown in Figure 5.3 are identical. This makes sense at an abstract or log-
ical level, since there really is no reason to prefer having one attribute value appear
before another in a tuple.

Figure 5.2

The relation STUDENT from Figure 5.1 with a different order of tuples.

STUDENT

Name

Ssn

Home_phone

Address T

Office_phone

Age

Gpa

Dick Davidson

422-11-2320

NULL

3452 Elgin Road

749-1263

25

3.53

Barbara Benson

533-69-1238

839-8461

7384 Fontana Lane

NULL

19

3.25

Rohan Panchal

489-22-1100

376-9821

265 Lark Lane

749-6492

28

3.93

Chung-cha Kim

381-62-1245

375-4409

125 Kirby Road

NULL

18

2.89

Benjamin Bayer

305-61-2435

373-1616

2918 Bluebonnet Lane

NULL

19

3.21
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t =< (Name, Dick Davidson),(Ssn, 422-1 1-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),
(Office_phone, 749-1253),(Age, 25),(Gpa, 3.53)>

t= < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-1 1-2320),(Age, 25),
(Office_phone, 749-1253),(Gpa, 3.53),(Home_phone, NULL)>

Figure 5.3

Two identical tuples when the order of attributes and values
is not part of relation definition.

When a relation is implemented as a file, the attributes are physically ordered as
fields within a record. We will generally use the first definition of relation, where
the attributes and the values within tuples are ordered, because it simplifies much of
the notation. However, the alternative definition given here is more general.’?

Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that is,
it is not divisible into components within the framework of the basic relational
model. Hence, composite and multivalued attributes (see Chapter 3) are not
allowed. This model is sometimes called the flat relational model. Much of the the-
ory behind the relational model was developed with this assumption in mind,
which is called the first normal form assumption.® Hence, multivalued attributes
must be represented by separate relations, and composite attributes are represented
only by their simple component attributes in the basic relational model.”

An important concept is that of NULL values, which are used to represent the values
of attributes that may be unknown or may not apply to a tuple. A special value, called
NULL, is used in these cases. For example, in Figure 5.1, some STUDENT tuples have
NULL for their office phones because they do not have an office (that is, office phone
does not apply to these students). Another student has a NULL for home phone, pre-
sumably because either he does not have a home phone or he has one but we do not
know it (value is unknown). In general, we can have several meanings for NULL values,
such as value unknown, value exists but is not available, or attribute does not apply to
this tuple. An example of the last type of NULL will occur if we add an attribute
Visa_status to the STUDENT relation that applies only to tuples representing foreign
students. It is possible to devise different codes for different meanings of NULL values.

5. As we shall see, the alternative definition of relation is useful when we discuss query processing in
Chapters 15 and 16.

6. We discuss this assumption in more detail in Chapter 10.

7. Extensions of the relational model remove these restrictions. For example, object-relational systems
allow complex-structured attributes, as do the non-first normal form or nested relational models, as
we shall see in Chapter 22.
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Incorporating different types of NULL values into relational model operations (see
Chapter 6) has proven difficult and is outside the scope of our presentation.

NULL values arise due to several reasons stated above—value undefined, value
unknown, and value presently not available are the most common reasons. The
exact meaning of a NULL value governs how it fares during arithmetic aggregations
or comparisons with other values. For example: a comparison of two NULL values
leads to ambiguities—if both Customer A and B have NULL addresses, does it mean
they have the same address? During database design, it is best to avoid NULL values
as much as possible. We will discuss them again in Chapters 6 and 8 in the context of
operations and queries, and in Chapter 10 in the context of design.

Interpretation (Meaning) of a Relation. The relation schema can be interpreted
as a declaration or a type of assertion. For example, the schema of the STUDENT
relation of Figure 5.1 asserts that, in general, a student entity has a Name, Ssn,
Home_phone, Address, Office_phone, Age, and Gpa. Each tuple in the relation can
then be interpreted as a fact or a particular instance of the assertion. For example,
the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name is
Benjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

Notice that some relations may represent facts about entities, whereas other rela-
tions may represent facts about relationships. For example, a relation schema
MAJORS (Student_ssn, Department_code) asserts that students major in academic
disciplines. A tuple in this relation relates a student to his or her major discipline.
Hence, the relational model represents facts about both entities and relationships
uniformly as relations. This sometimes compromises understandability because one
has to guess whether a relation represents an entity type or a relationship type. The
mapping procedures in Chapter 7 show how different constructs of the ER and EER
models get converted to relations.

An alternative interpretation of a relation schema is as a predicate; in this case, the
values in each tuple are interpreted as values that satisfy the predicate. For example,
the predicate STUDENT (Name, Ssn, . . . ) is true for the five tuples in relation
STUDENT of Figure 5.1. These tuples represent five different propositions or facts in
the real world. This interpretation is quite useful in the context of logic program-
ming languages, such as Prolog, because it allows the relational model to be used
within these languages (see Section 24.4). An assumption called the closed world
assumption states that the only true facts in the universe are those present within
the extension of the relation(s). Any other combination of values makes the predi-
cate false.

5.1.3 Relational Model Notation

We will use the following notation in our presentation:

A relation schema R of degree n is denoted by R(A|, A,, ..., A,).
The letters Q, R, S denote relation names.

The letters g, r, s denote relation states.
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tions (see @
1.

The letters 1, 1, v denote tuples.

# In general, the name of a relation schema such as STUDENT also indicates the

ed, value current set of tuples in that relation—the current relation state—whereas
sons. The STUDENT(Name, Ssn, . . .) refers only to the relation schema.

‘regations # An attribute A can be qualified with the relation name R to which it
ILL values belongs by using the dot notation R.A—for example, STUDENT.Name or
st mlean STUDENT.Age. This is because the same name may be used for two attributes
JLL values

in different relations. However, all attribute names in a particular relation

context of must be distinct.

& An n-tuple 1 in a relation r(R) is denoted by t = <v|, v,, ..., v,>, where v; is
the value corresponding to attribute A, The following notation refers to
erpreted component values of tuples:
STUDENT ’
ame, Ssn, © Both t[A;] and t.A, (and sometimes t]i]) refer to the value v; in ¢ for attrib-
ation can ute A,
example, o Botht[A,A,,....AJand r.(A, A,,...,A,), where A A, , ..., A isalist
¢ Name is of attributes from R, refer to the subtuple of values <v,, v, ..., v,> from
t corresponding to the attributes specified in the list.
ther rela- As an example, consider the tuple t = <'Barbara Benson ‘533-69-1238, ‘839-8461,,
1 schema ‘7384 Fontana Lane, NULL, 19, 3.25> from the STUDENT relation in Figure 5.1; we
academic have t[Name] = <‘Barbara Benson’>, and t[Ssn, Gpa, Age] = <'533-69-1238, 3.25, 19>.
liscipline.
itionships . .
cause one 5.2 Relational Model Constraints
“’P§~§§§ and Relational Database Schemas
lan
So far, we have discussed the characteristics of single relations. In a relational data-
base, there will typically be many relations, and the tuples in those relations are usu-
s case, the ally related in various ways. The state of the whole database will correspond to the
~example, states of all its relations at a particular point in time. There are generally many
1 relation restrictions or constraints on the actual values in a database state. These constraints
or facts in are derived from the rules in the miniworld that the database represents, as we dis-
program- cussed in Section 1.6.8.
o be used
sed world In this section, we discuss the various restrictions on data that can be specified on a
nt within relational database in the form of constraints. Constraints on databases can gener-
the predi- ally be divided into three main categories:

1, Constraints that are inherent in the data model. We call these inherent
model-based or implicit constraints.

2. Constraints that can be directly expressed in schemas of the data model, typ-
ically by specifying them in the DDL (data definition language, see Section
2.3.1). We call these schema-based or explicit constraints.

[

. Constraints that cannot be directly expressed in schemas of the data model,
and hence must be expressed and enforced by the application programs. We
call these application-based or semantic constraints or business rules.
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The characteristics of relations that we discussed in Section 5.1.2 are the inherent
constraints of the relational model and belong to the first category; for example, the
constraint that a relation cannot have duplicate tuples is an inherent constraint. The
constraints we discuss in this section are of the second category, namely, constraints
that can be expressed in the schema of the relational model via the DDL.
Constraints in the third category are more general, relate to the meaning as well as
behavior of attributes, and are difficult to express and enforce within the data
model, so they are usually checked within application programs.

Another important category of constraints is data dependencies, which include func-
tional dependencies and multivalued dependencies. They are used mainly for testing
the “goodness” of the design of a relational database and are utilized in a process
called normalization, which is discussed in Chapters 10 and 11.

We discuss the main types of constraints that can be expressed in the relational
model—the schema-based constraints from the second category. These include
domain constraints, key constraints, constraints on NULLs, entity integrity con-
straints, and referential integrity constraints.

5.2.1 Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute A
must be an atomic value from the domain dom(A). We have already discussed the
ways in which domains can be specified in Section 5.1.1. The data types associated
with domains typically include standard numeric data types for integers (such
as short integer, integer, and long integer) and real numbers (float and double-
precision float). Characters, Booleans, fixed-length strings, and variable-length
strings are also available, as are date, time, time-stamp, and money, or other special
data types. Other possible domains may be described by a subrange of values from a
data type or as an enumerated data type in which all possible values are explicitly
listed. Rather than describe these in detail here, we discuss the data types offered by
the SQL-99 relational standard in Section 8.1.

5.2.2 Key Constraints and Constraints on NULL Values

A relation is defined as a set of tuples. By definition, all elements of a set are distinct;
hence, all tuples in a relation must also be distinct. This means that no two tuples
can have the same combination of values for all their attributes. Usually, there are
other subsets of attributes of a relation schema R with the property that no two
tuples in any relation state r of R should have the same combination of values for
these attributes. Suppose that we denote one such subset of attributes by SK; then for
any two distinct tuples t, and t, in a relation state r of R, we have the constraint that

£,[SK] # 1,[SK]

Any such set of attributes SK is called a superkey of the relation schema R. A
superkey SK specifies a uniqueness constraint that no two distinct tuples in any state
r of R can have the same value for SK. Every relation has at least one default
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nherent superkey—the set of all its attributes. A superkey can have redundant attributes,
1ple, the however, so a more useful concept is that of a key, which has no redundancy. A key
int. The K of a relation schema R is a superkey of R with the additional property that remov-
\straints ing any attribute A from K leaves a set of attributes K’ that is not a superkey of R any
¢ DDL. more. Hence, a key satisfies two constraints:

» well as 1. Two distinct tuples in any state of the relation cannot have identical values
he data for (all) the attributes in the key.

) 2. It is a minimal superkey—that is, a superkey from which we cannot remove
defzmc- any attributes and still have the uniqueness constraint in condition 1 hold.
r;fgg:i The first condition applies to both keys and superkeys. The second condition is

required only for keys. For example, consider the STUDENT relation of Figure 5.1.
The attribute set {Ssn} is a key of STUDENT because no two student tuples can have
lational the same value for Ssn.® Any set of attributes that includes Ssn—for example, {Ssn,
include Name, Age}—is a superkey. However, the superkey {Ssn, Name, Age} is not a key of
ity con- STUDENT because removing Name or Age or both from the set still leaves us with a
superkey. In general, any superkey formed from a single attribute is also a key. A key
with multiple attributes must require all its attributes to have the uniqueness prop-
erty hold.
ibute A The value of a key attribute can be used to identify uniquely each tuple in the relation.

ed the For example, the Ssn value 305-61-2435 identifies uniquely the tuple corresponding
" to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes constitut-

ff’“ate_d ing a key is a property of the relation schema; it is a constraint that should hold on
s (such . . ; . .
Jouble- every valid relation state of thg sc}'lema.. A ke.y is determined frpm the meaning of the
~length éttrlbutes, and th.e property is time-invariant: It must continue to hold wh.en we
¢ special insert new tuples in the relation. For exgmp'le, we cannot and should not'd.es1gnat.e
< from a the Name attribute of the STU DENT relation in Flgure 5.lasa kgy t?ecause. it is possi-
splicitly ble that two students with identical names will exist at some point in a valid state.”
tered by In general, a relation schema may have more than one key. In this case, each of the
keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two
candidate keys: License_number and Engine_serial_number. It is common to designate
one of the candidate keys as the primary key of the relation. This is the candidate
key whose values are used to identify tuples in the relation. We use the convention
distinct; that the attributes that form the primary key of a relation schema are underlined, as
o tuples shown in Figure 5.4. Notice that when a relation schema has several candidate keys,
here are the choice of one to become the primary key is arbitrary; however, it is usually bet-
no two ter to choose a primary key with a single attribute or a small number of attributes.
tlues for Another constraint on attributes specifies whether NULL values are or are not per-
then for mitted. For example, if every STUDENT tuple must have a valid, non-NULL value for
int that the Name attribute, then Name of STUDENT is constrained to be NOT NULL.
na R. A 8. Note that Ssn is alsa a superkey.
iny state 9. Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—

default must be used to distinguish between identical names.
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Figure 5.4

The CAR relation, with
two candidate keys:
License_number and

Engine_serial_number.
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CAR
License_number | Engine_serial_number Make Model | Year
Texas ABC-739 AB9352 Ford Mustang | 02
Florida TVP-347 B43696 Oldsmobile | Cutlass 05
New York MPO-22 X83554 Oldsmobile | Delta 01
California 432-TFY C43742 Mercedes | 190-D 99
California RSK-629 Y82935 Toyota Camry 04
| Texas RSK-629 ‘ U028365 Jaguar XJS 04

5.2.3 Relational Databases and Relational
Database Schemas

The definitions and constraints we have discussed so far apply to single relations and
their attributes. A relational database usually contains many relations, with tuples in
relations that are related in various ways. In this section we define a relational data-
base and a relational database schema. A relational database schema S is a set of
relation schemas S = {R|, R,, ..., R,,} and a set of integrity constraints IC. A
relational database state'” DB of S is a set of relation states DB={r,, r,,...,r,,} such
that each r, is a state of R, and such that the r; relation states satisty the integrity
constraints specified in IC. Figure 5.5 shows a relational database schema that
we call COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT,
WORKS_ON, DEPENDENT}. The underlined attributes represent primary keys.
Figure 5.6 shows a relational database state corresponding to the COMPANY schema.
We will use this schema and database state in this chapter and in Chapters 6 through
9 for developing example queries in different relational languages. In fact, the data
shown here is also available as a populated database on the project Web site for the
book, which will be used for hands-on project exercises at the end of the chapters.

When we refer to a relational database, we implicitly include both its schema and its
current state. A database state that does not obey all the integrity constraints is
called an invalid state, and a state that satisfies all the constraints in IC is called a
valid state.

In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS
stands for the same real-world concept—the number given to a department. That
same concept is called Dno in EMPLOYEE and Dnum in PROJECT. Attributes that
represent the same real-world concept may or may not have identical names in dif-
ferent relations. Alternatively, attributes that represent different concepts may have
the same name in ditferent relations. For example, we could have used the attribute
name Name for both Pname of PROJECT and Dname of DEPARTMENT; in this case,
we would have two attributes that share the same name but represent different real-
world concepts—project names and department names.

10. A relational database state is sometimes called a relational database instance. However, as we men-
tioned earlier, we will not use the term instance since it also applies to single tuples.
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Figure 5.5

Schema diagram for
the COMPANY
relational database
schema.

In some early versions of the relational model, an assumption was made that the
same real-world concept, when represented by an attribute, would have identical
attribute names in all relations. This creates problems when the same real-world
concept is used in different roles (meanings) in the same relation. For example, the
concept of Social Security Number appears twice in the EMPLOYEE relation of
Figure 5.5: once in the role of the employee’s SSN, and once in the role of the super-
visor’s SSN. We gave them distinct attribute names—Ssn and Super_ssn, respec-
tively—in order to distinguish their meaning.

Each relational DBMS must have a data definition language (DDL) for defining a
relational database schema. Current relational DBMSs are mostly using SQL for this
purpose. We present the SQL DDL in Sections 8.1 through 8.3.

Integrity constraints are specified on a database schema and are expected to hold on
every valid database state of that schema. In addition to domain, key, and NOT NULL
constraints, two other types of constraints are considered part of the relational
model: entity integrity and referential integrity.

5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be NULL. This is
because the primary key value is used to identify individual tuples in a relation.
Having NULL values for the primary key implies that we cannot identify some tuples.
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For example, if two or more tuples had NULL for their primary keys, we might not be
able to distinguish them if we tried to reference them from other relations.

Key constraints and entity integrity constraints are specified on individual relations,
The referential integrity constraint is specified between two relations and is used
to maintain the consistency among tuples in the two relations. Informally, the refer-
ential integrity constraint states that a tuple in one relation that refers to another
relation must refer to an existing tuple in that relation. For example, in Figure 5.6,
the attribute Dno of EMPLOYEE gives the department number for which each
employee works; hence, its value in every EMPLOYEE tuple must match the Dnumber
value of some tuple in the DEPARTMENT relation.

To define referential integrity more formally, first we define the concept of a foreign
key. The conditions for a foreign key, given below, specify a referential integrity con-
straint between the two relation schemas R, and R.. A set of attributes FK in relation
schema R, is a foreign key of R, that references relation R, if it satisties the follow-
ing rules:

The attributes in FK have the same domain(s) as the primary key attributes
PK of R,; the attributes FK are said to reference or refer to the relation R,.

A value of FK in a tuple f, of the current state r,(R,) either occurs as a value
of PK for some tuple t, in the current state ry(R,) or is NULL. In the former
case, we have 1,{FK] = £,[PK], and we say that the tuple t, references or
refers to the tuple 1,.

In this definition, R, is called the referencing relation and R, is the referenced rela-
tion. If these two conditions hold, a referential integrity constraint from R, to R, is
said to hold. In a database of many relations, there are usually many referential
integrity constraints.

To specify these constraints, first we must have a clear understanding of the mean-
ing or role that each set of attributes plays in the various relation schemas of the
database. Referential integrity constraints typically arise from the relationships
among the entities represented by the relation schemas. For example, consider the
database shown in Figure 5.6. In the EMPLOYEE relation, the attribute Dno refers to
the department for which an employee works; hence, we designate Dno to be a for-
eign key of EMPLOYEE referring to the DEPARTMENT relation. This means that a
value of Dno in any tuple t; of the EMPLOYEE relation must match a value of the pri-
mary key of DEPARTMENT—the Dnumber attribute—in some tuple t, of the
DEPARTMENT relation, or the value of Dno can be NULL if the employee does not
belong to a department or will be assigned to a department later. In Figure 5.6 the
tuple for employee ‘John Smith’ references the tuple for the ‘Research’ department,
indicating that ‘John Smith’ works for this department.

Notice that a foreign key can refer to its own relation. For example, the attribute
Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is another
employee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is a
foreign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple for
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ht not be
Figure 5.6
One possible database state for the COMPANY relational database schema.
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employee ‘John Smith’ references the tuple for employee ‘Franklin Wong, indicating
that ‘Franklin Wong’ is the supervisor of ‘John Smith.

We can diagrammatically display referential integrity constraints by drawing a directed
arc from each foreign key to the relation it references. For clarity, the arrowhead may
point to the primary key of the referenced relation. Figure 5.7 shows the schema in
Figure 5.5 with the referential integrity constraints displayed in this manner.

All integrity constraints should be specified on the relational database schema (i.e.,
defined as part of its definition) if we want to enforce these constraints on the data-
base states. Hence, the DDL includes provisions for specifying the various types of
constraints so that the DBMS can automatically enforce them. Most relational
DBMSs support key and entity integrity constraints and make provisions to support
referential integrity. These constraints are specified as a part of data definition.

5.2.5 Other Types of Constraints

The preceding integrity constraints do not include a large class of general con-
straints, sometimes called semantic integrity constraints, which may have to be spec-

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.
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ified and enforced on a relational database. Examples of such constraints are
the salary of an employee should not exceed the salary of the employee’s supervisor and
the maximum number of hours an employee can work on all projects per week is 56.
Such constraints can be specified and enforced within the application programs
that update the database, or by using a general-purpose constraint specification
language. Mechanisms called triggers and assertions can be used. In SQL-99, a
CREATE ASSERTION statement is used for this purpose (see Chapter 8). It is more
common to check for these types of constraints within the application programs
than to use constraint specification languages because the latter are difficult and
complex to use correctly, as we discuss in Section 24.1.

Another type of constraint is the functional dependency constraint, which establishes
a functional relationship among two sets of attributes X and Y. This constraint spec-
ifies that the value of X determines the value of Y in all states of a relation; it is
denoted as a functional dependency X — Y. We use functional dependencies and
other types of dependencies in Chapters 10 and 11 as tools to analyze the quality of
relational designs and to “normalize” relations to improve their quality.

The types of constraints we discussed so far may be called state constraints because
they define the constraints that a valid state of the database must satisfy. Another
type of constraint, called transition constraints, can be defined to deal with state
changes in the database.!" An example of a transition constraint is: “the salary of
an employee can only increase.” Such constraints are typically enforced by the
application programs or specified using active rules and triggers, as we discuss in
Section 24.1.

5.3 Update Operations, Tranactions,
and Dealing with Constraint Violations

The operations of the relational model can be categorized into retrievals and
updates. The relational algebra operations, which can be used to specify retrievals,
are discussed in detail in Chapter 6. A relational algebra expression forms a new
relation after applying a number of algebraic operators to an existing set of rela-
tions; its main use is for querying a database. The user formulates a query that spec-
ifies the data of interest, and a new relation is formed by applying relational
operators to retrieve this data. That relation becomes the answer to the user’s query.
Chapter 6 also introduces the language called relational calculus, which is used to
define the new relation declaratively without giving a specific order of operations.

In this section, we concentrate on the database modification or update operations.
There are three basic update operations on relations: insert, delete, and modify.
They insert new data, delete old data, or modify existing data thus changing the
state of the database. Insert is used to insert a new tuple or tuples in a relation,

11. State constraints are sometimes called static constraints, and transition constraints are sometimes
called dynamic constraints.

5.3 Update Operations and Dealing with Constraint Violations

161
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Delete is used to delete tuples, and Update (or Modify) is used to change the values
of some attributes in existing tuples. Whenever these operations are applied, the
integrity constraints specified on the relational database schema should not be vio-
lated. In this section we discuss the types of constraints that may be violated by each
update operation and the types of actions that may be taken if an update causes a
violation. We use the database shown in Figure 5.6 for examples and discuss only
key constraints, entity integrity constraints, and the referential integrity constraints
shown in Figure 5.7. For each type of update, we give some example operations and
discuss any constraints that each operation may violate.

5.3.1 The Insert Operation

The Insert operation provides a list of attribute values for a new tuple ¢ that is to be
inserted into a relation R. Insert can violate any of the four types of constraints dis-
cussed in the previous section. Domain constraints can be violated if an attribute
value is given that does not appear in the corresponding domain. Key constraints
can be violated if a key value in the new tuple t already exists in another tuple in the
relation r(R). Entity integrity can be violated if the primary key of the new tuple f is
NULL. Referential integrity can be violated if the value of any foreign key in # refers
to a tuple that does not exist in the referenced relation. Here are some examples to
illustrate this discussion.

Operation:

Insert <*Cecilia) ‘F; ‘Kolonsky, NULL, ‘1960-04-05’, ‘6357 Windy Lane, Katy,
TX, F, 28000, NULL, 4> into EMPLOYEE.

Result: This insertion violates the entity integrity constraint (NULL for the
primary key Ssn), so it is rejected.

Operation:

Insert <‘Alicia; ]} “Zelaya, ‘9998877777, °1960-04-05’, ‘6357 Windy Lane, Katy,
TX F, 28000, ‘987654321, 4> into EMPLOYEE.

Result: This insertion violates the key constraint because another tuple with
the same Ssn value already exists in the EMPLOYEE relation, and so it is
rejected.

Operation:

Insert <‘Cecilia) ‘F, ‘Kolonsky’, ‘677678989, *1960-04-05’, ‘6357 Windswept,
Katy, TX, F, 28000, ‘987654321, 7> into EMPLOYEE.

Result: This insertion violates the referential integrity constraint specified on
Dno in EMPLOYEE because no corresponding tuple exists in DEPARTMENT
with Dnumber = 7.

Operation:

Insert <*Cecilia; ‘F; ‘Kolonsky’, ‘677678989, *1960-04-05’, ‘6357 Windy Lane,
Katy, TX, F, 28000, NULL, 4> into EMPLOYEE,

Result: This insertion satisfies all constraints, so it is acceptable.
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he values If an insertion violates one or more constraints, the default option is to reject the
slied, the insertion. In this case, it would be useful if the DBMS could explain to the user why
i be vio- the insertion was rejected. Another option is to attempt to correct the reason for
d by each rejecting the insertion, but this is typically not used for violations caused by Insert;
- causes a rather, it is used more often in correcting violations for Delete and Update. In oper-
cuss only ation 1 above, the DBMS could ask the user to provide a value for Ssn and could
mstraints accept the insertion if a valid Ssn value were provided. In operation 3, the DBMS
tions and could either ask the user to change the value of Dno to some valid value (or set it to

NULL), or it could ask the user to insert a DEPARTMENT tuple with Dnumber = 7 and
could accept the original insertion only after such an operation was accepted. Notice
that in the latter case the insertion violation can cascade back to the EMPLOYEE
relation if the user attempts to insert a tuple for department 7 with a value for
Mgr_ssn that does not exist in the EMPLOYEE relation.

atis to be
aints dis-
attribute .
\nstraints 5.3.2 The Delete Operation
plein th? The Delete operation can violate only referential integrity, if the tuple being deleted
‘tuple r1s is referenced by the foreign keys from other tuples in the database. To specify dele-
n f refers tion, a condition on the attributes of the relation selects the tuple (or tuples) to be
unples to deleted. Here are some examples.
@ Operation:
Delete the WORKS_ON tuple with Essn = ‘999887777 and Pno = 10.
e, Katy, Result: This deletion is acceptable and deletes exactly one tuple.
& QOperation:
_L for the peration ) ,
Delete the EMPLOYEE tuple with Ssn = ‘999887777
Result: This deletion is not acceptable, because there are tuples in
Kat WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is
ane, Katy, deleted, referential integrity violations will result.
. ® QOperation:
uple with per

d so it is Delete the EMPLOYEE tuple with Ssn = 333445555

Result: This deletion will result in even worse referential integrity violations,
because the tuple involved is referenced by tuples from the EMPLOYEE,
DEPARTMENT, WORKS_ON, and DEPENDENT relations.

indswept,

Several options are available if a deletion operation causes a violation. The first
ecified on ‘ option is to reject the deletion. The second option is to attempt to cascade (or propa-
ARTMENT gate) the deletion by deleting tuples that reference the tuple that is being deleted. For

example, in operation 2, the DBMS could automatically delete the offending tuples
from WORKS_ON with Essn =999887777. A third option is to modify the referenc-
ing artribute values that cause the violation; each such value is either set to NULL or
ndy Lane, changed to reference another valid tuple. Notice that if a referencing attribute that
‘ causes a violation is part of the primary key, it cannot be set to NULL; otherwise, it
would violate entity integrity.
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Combinations of these three options are also possible. For example, to avoid having
operation 3 cause a violation, the DBMS may automatically delete all tuples from
WORKS_ON and DEPENDENT with Essn = ‘333445555’ Tuples in EMPLOYEE with
Super_ssn = ‘333445555 and the tuple in DEPARTMENT with Mgr_ssn = ‘333445555
can have their Super_ssn and Mgr_ssn values changed to other valid values or to
NULL. Although it may make sense to delete automatically the WORKS_ON and
DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to
delete other EMPLOYEE tuples or a DEPARTMENT tuple.

In general, when a referential integrity constraint is specified in the DDL, the DBMS
will allow the user to specify which of the options applies in case of a violation of the
constraint. We discuss how to specify these options in the SQL-99 DDL in Chapter 8.

5.3.3 The Update Operation

The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condi-
tion on the attributes of the relation to select the tuple (or tuples) to be modified.
Here are some examples.

o Operation:
Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000.
Result: Acceptable.
Operatiomn:
Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777  to 1.
Result: Acceptable.
Operation:
Update the Dno of the EMPLOYEE tuple with Ssn ='999887777" to 7.
Result: Unacceptable, because it violates referential integrity.

#  Operation:
Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777 to
‘987654321

Result: Unacceptable, because it violates primary key constraint by repeat-
ing a value that already exists as a primary key in another tuple; it violates
referential integrity constraints because there are other relations that refer
to the existing value of Ssn.

Updating an attribute that is neither a primary key nor a foreign key usually causes
no problems; the DBMS need only check to confirm that the new value is of the cor-
rect data type and domain. Modifying a primary key value is similar to deleting one
tuple and inserting another in its place because we use the primary key to identify
tuples. Hence, the issues discussed earlier in both Sections 5.3.1 (Insert) and 5.3.2
(Delete) come into play. If a foreign key attribute is modified, the DBMS must make
sure that the new value refers to an existing tuple in the referenced relation (or is
NULL). Similar options exist to deal with referential integrity violations caused by
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Update as those options discussed for the Delete operation. In fact, when a referen-
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. ON and 5.3.4 The Transaction Concept

sense to A database application program running against a relational database typically runs

a series of transactions. A transaction involves reading from the database as well as

he DBMS doing insertions, deletions, and updates to existing values in the database. It must

lon of the leave the database in a consistent state; that state must obey all the constraints we

“hapter 8. spelled out in Section 5.2. A single transaction may involve any number of retrieval
operations (to be discussed as part of relational algebra and calculus in Chapter 6,
and as a part of the language SQL in Chapters 8 and 9) that reads from the database
and any number of update operations we discussed above. A large number of com-

* or more mercial applications running against relational databases in the Online Transaction

v a condi- Processing (OLTP) Systems are executing transactions at rates that reach several

modified. hundred per second. Transaction processing concepts, concurrent execution of
transactions and recovery from failures will be discussed in Chapters 17 to 19.

0 28000. 5.4 Summary

In this chapter we presented the modeling concepts, data structures, and constraints
‘ provided by the relational model of data. We started by introducing the concepts of
1. ‘ domains, attributes, and tuples. Then, we defined a relation schema as a list of
attributes that describe the structure of a relation. A relation, or relation state, is a
set of tuples that conforms to the schema.

Several characteristics differentiate relations from ordinary tables or files. The first
is that a relation is not sensitive to the ordering of tuples. The second involves the
ordering of attributes in a relation schema and the corresponding ordering of values
within a tuple. We gave an alternative definition of relation that does not require
37777 to these two orderings, but we continued to use the first definition, which requires
attributes and tuple values to be ordered, for convenience. Then, we discussed val-
ues in tuples and introduced NULL values to represent missing or unknown infor-

' r.ql)etat— mation. We emphasized that NULL values should be avoided as much as possible.
violates
wat refer We classified database constraints into inherent model-based constraints, explicit

schema-based constraints and application-based constraints, otherwise known as
semantic constraints or business rules. Then, we discussed the schema constraints

ally causes pertaining to the relational model, starting with domain constraints, then key con-

ot t.he cor- straints, including the concepts of superkey, candidate key, and primary key, and the
-let}ng one NOT NULL constraint on attributes. We defined relational databases and relational
to identify database schemas. Additional relational constraints include the entity integrity con-
and 5.3.2 straint, which prohibits primary key attributes from being NULL. We described the
?uSt Enak,i interrelation referential integrity constraint, which is used to maintain consistency
ion {or is

of references among tuples from different relations.
caused by
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The modification operations on the relational model are Insert, Delete, and Update.
Each operation may violate certain types of constraints (refer to Section 5.3).
Whenever an operation is applied, the database state after the operation is executed
must be checked to ensure that no constraints have been violated. Finally, we intro-
duced the concept of a transaction which is important in relational DBMSs.

Review Questions

Define the following terms: domain, attribute, n-tuple, relation schema, rela-
tion state, degree of a relation, relational database schema, and relational data-
base state.

Why are tuples in a relation not ordered?

Why are duplicate tuples not allowed in a relation?

What is the difference between a key and a superkey?

Why do we designate one of the candidate keys of a relation to be the pri-
mary key?

Discuss the characteristics of relations that make them different from ordi-

nary tables and files.

Discuss the various reasons that lead to the occurrence of NULL values in
relations.

Discuss the entity integrity and referential integrity constraints. Why is each
considered important?

Define foreign key. What is this concept used for?

What is a transaction? How does it differ from an update?

Exercises

Suppose that each of the following update operations is applied directly to
the database state shown in Figure 5.6. Discuss all integrity constraints vio-
lated by each operation, if any, and the different ways of enforcing these con-
straints.

a. Insert <‘Robert} ‘F), ‘Scott} ‘943775543 ‘1952-06-21", 2365 Newcastle Rd,
Bellaire, TX’, M, 58000, ‘888665555, 1> into EMPLOYEE.

Insert <‘ProductA) 4, ‘Bellaire’, 2> into PROJECT.

Insert <‘Production’, 4, ‘943775543’ '1998-10-01"> into DEPARTMENT.
Insert <°677678989’ NULL, ‘40.0’> into WORKS_ON.

Insert <*453453453, ‘John, ‘M, ‘1970-12-12’, ‘spouse’ into DEPENDENT.
Delete the WORKS_ON tuples with Essn = ‘333445555,

e Ao o



