chapter 3

Data Modeling Using
the Entity-Relationship
(ER) Model

onceptual modeling is a very important phase in

44" designing a successtul database application.
Generally, the term database application referstoa particular database and the asso-
ciated programs that implement the database queries and updates. For example, a
BANK database application that keeps track of customer accounts would include pro-
grams that implement database updates corresponding to customer deposits and
withdrawals. These programs provide user-friendly graphical user interfaces (GUIs)
utilizing forms and menus for the end users of the application—the bank tellers, in
this example. Hence, part of the database application will require the design, imple-
mentation, and testing of these application programs. Traditionally, the design and
testing of application programs has been considered to be more in the realm of the
software engineering domain than in the database domain. As database design
methodologies include more of the concepts for specifying operations on database
objects, and as software engineering methodologies specify the structure of the data-
bases that software programs will use and access in more detail, it is clear that these
activities are strongly related. We briefly discuss some of the concepts for specifying
database operations in Section 3.8, and again when we discuss database design
methodology with example applications in Chapter 12.

In this chapter, we follow the traditional approach of concentrating on the database
structures and constraints during database design. We present the modeling con-
cepts of the Entity-Relationship (ER) model, which is a popular high-level concep-
tual data model. This model and its variations are frequently used for the

57

58 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

conceptual design of database applications, and many database design tools emplov
its concepts. We describe the basic data-structuring concepts and constraints of the
ER model and discuss their use in the design of conceptual schemas for database
applications. We also present the diagrammatic notation associated with the ER
model, known as ER diagrams.

Object modeling methodologies such as the Universal Modeling Language (UML)
are becoming increasingly popular in software design and engineering. These
methodologies go beyond database design to specify detailed design of software
modules and their interactions using various types of diagrams. An important part
of these methodologies—namely, class diagrams'—are similar in many ways to the
ER diagrams. In class diagrams, operations on objects are specified, in addition to
specifying the database schema structure. Operations can be used to specify the
functional requirements during database design, as discussed in Section 3.1. We pre-
sent some of the UML notation and concepts for class diagrams that are particularly
relevant to database design in Section 3.8, and briefly compare these to ER notation

and concepts. Additional UML notation and concepts are presented in Section 4.6
and in Chapter 12.

This chapter is organized as follows: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements for an
example database application in Section 3.2 to illustrate the use of concepts from
the ER model. This example database is also used in subsequent chapters. In Section
3.3 we present the concepts of entities and attributes, and we gradually introduce
the diagrammatic technique for displaying an ER schema. In Section 3.4 we intro-
duce the concepts of binary relationships and their roles and structural constraints.
Section 3.5 introduces weak entity types. Section 3.6 shows how a schema design is
refined to include relationships. Section 3.7 reviews the notation for ER diagrams,
summarizes the issues that arise in schema design, and discusses how to choose the
names for database schema constructs. Section 3.8 introduces some UML class dia-
gram concepts, compares them to ER model concepts, and applies them to the same
database example. Section 3.9 discusses more complex types of relationships.
Section 3.10 summarizes the chapter.

The material in Sections 3.8 and 3.9 may be excluded from an introductory course;
if a more thorough coverage of data modeling concepts and conceptual database
design is desired, the reader should continue from Section 3.7 to Chapter 4, where
we describe extensions to the ER model that lead to the Enhanced-ER (EER) model,
which includes concepts such as specialization, generalization, inheritance, and
union types (categories). We also introduce some additional UML concepts and
notation in Chapter 4.

1. A class is similar to an entity type in many ways.

3.1 Using High-Level Conceptual Data Models for Database Design 59

3.1 Using High-Level Conceptual
Data Models for Database Design

Figure 3.1 shows a simplified description of the database design process. The first
step shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users’ require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifying the data requirements, it is useful to specify
the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including

Figure 3.1

A simplified diagram
to illustrate the
main phases of
database design.

REQUIREMENTS

COLLECTION AND
/ ANALYSIS

Functional Requirements Data Requirements
FUNCTIONAL ANALYSIS | | CONCEPTUAL DESIGN
High-Level Transaction Conceptual Schema

Specification (In a high-level data model)

'

LOGICAL DESIGN
(DATA MODEL MAPPING)

/

Logical (Conceptual) Schema
(In the data model of a specific DBMS)

'

PHYSICAL DESIGN

Y)
TRANSACTION | o Internal Schema
IMPLEMENTATION

T DBMS-independent

l DBMS-specific

Y
APPLICATION PROGRAM
DESIGN

Application Programs

60 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

both retrievals and updates. In software design, it is common to use data flow dia-
grams, sequence diagrams, scenarios, and other techniques to specify functional
requirements. We will not discuss any of these techniques here; they are usually
described in detail in software engineering texts. We give an overview of some of
these techniques in Chapter 12.

Once all the requirements have been collected and analyzed, the next step is to create
a conceptual schema for the database, using a high-level conceptual data model.
This step is called conceptual design. The conceptual schema is a concise description
of the data requirements of the users and includes detailed descriptions of the entity
types, relationships, and constraints; these are expressed using the concepts provided
by the high-level data model. Because these concepts do not include implementation
details, they are usually easier to understand and can be used to communicate with
nontechnical users. The high-level conceptual schema can also be used as a reference
to ensure that all users’ data requirements are met and that the requirements do not
conflict. This approach enables database designers to concentrate on specifying the
properties of the data, without being concerned with storage details. Consequently, it
is easier for them to create a good conceptual database design.

During or after the conceptual schema design, the basic data model operations can
be used to specify the high-level user operations identified during functional analy-
sis. This also serves to confirm that the conceptual schema meets all the identified
functional requirements. Modifications to the conceptual schema can be intro-
duced if some functional requirements cannot be specified using the initial schema.

The next step in database design is the actual implementation of the database, using
a commercial DBMS. Most current commercial DBMSs use an implementatior
data model—such as the relational or the object-relational database model—so the
conceptual schema is transformed from the high-level data model into the imple-
mentation data model. This step is called logical design or data model mapping; it
result is a database schema in the implementation data model of the DBMS.

The last step is the physical design phase, during which the internal storage struc-
tures, indexes, access paths, and file organizations for the database files are specified.
In parallel with these activities, application programs are designed and imple-
mented as database transactions corresponding to the high-level transaction speci-
fications. We discuss the database design process in more detail in Chapter 12.

We present only the basic ER model concepts for conceptual schema design in this

chapter. Additional modeling concepts are discussed in Chapter 4, when we intro-
duce the EER model.

3.2 An Example Database Application

In this section we describe an example database application, called COMPANY
which serves to illustrate the basic ER model concepts and their use in schem:
design. We list the data requirements for the database here, and then create its con-
ceptual schema step-by-step as we introduce the modeling concepts of the Ek

3.3 Entity Types, Entity Sets, Attributes, and Keys 61

v dia- model. The COMPANY database keeps track of a company’s employees, depart-
tional ments, and projects. Suppose that after the requirements collection and analysis
sually phase, the database designers provide the following description of the miniworld—
me of the part of the company to be represented in the database.

The company is organized into departments. Each department has a unique
create name, a unique number, and a particular employee who manages the
10del. department. We keep track of the start date when that employee began man-
iption aging the department. A department may have several locations.
entity # A department controls a number of projects, each of which has a unique
wicjed name, a unique number, and a single location.
tation # We store each employee’s name, social security number,? address, salary, sex,
> with . L

and birth date. An employee is assigned to one department, but may work on
-rence several projects, which are not necessarily controlled by the same depart-
o not ment. We keep track of the number of hours per week that an employee
1¢ the . . .
= works on each project. We also keep track of the direct supervisor of each
ntly, it employee.

We want to keep track of the dependents of each employee for insurance
1s can purposes. We keep each dependent’s first name, sex, birth date, and relation-
analy- ship to the employee.
1itied
ntro- Figure 3.2 shows how the schema for this database application can be displayed by
hema. means of the graphical notation known as ER diagrams. This figure will be

explained gradually as the ER model concepts are presented. We describe the step-
using by-step process of deriving this schema from the stated requirements—and explain
tation the ER diagrammatic notation—as we introduce the ER model concepts.
so the
mple-
ng; its
3.3 Entity Types, Entity Sets,
struc- Attributes, and Keys
;:T:]BS_ The. ER model describes data as en.ti‘ties, relatim?ships,. and attribut.es. In Sect%on 3.3.1
\peci- we 1ntroduc‘e the concepts of entities and thelr.attrlbutes. We d1§cuss entity types
) and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial con-
ceptual design of the entity types for the COMPANY database. Relationships are
in this described in Section 3.4,
Iintro-
3.3.1 Entities and Attributes
Entities and Their Attributes. The basic object that the ER model represents is an
entity, which is a thing in the real world with an independent existence. An entity ;
PANY, §
-hema 2. The social security number, or SSN, is a unique nine-digit identifier assigned to each individual in the f
s con- United States to keep track of his or her employment, benefits, and taxes. Other countries may have sim- :
he ER lar identification schemes, such as personal identification card numbers.

62 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

CFrame) (CMinit) ("Lname
Coane™y CRame™> Rl Say
> <N

WORKS_FOR
/ Number

| EMPLOYEE | < Number of_employees—| DEPARTMENT |

CrowsD 1y
M N
Supervisor Supervisee 1 7

PROJECT J
1 N

DEPENDENTS_OF

| DEPENDENT |

Csex @ Relationship
Figure 3.2

An ER schema diagram for the COMPANY database. The diagrammatic notation
is introduced gradually throughout this chapter.

may be an object with a physical existence (for example, a particular person, car,
house, or employee) or it may be an object with a conceptual existence (for exam-
ple, a company, a job, or a university course). Each entity has attributes—the par-
ticular properties that describe it. For example, an EMPLOYEE entity may be
described by the employee’s name, age, address, salary, and job. A particular entity
will have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.

7son, car,

or exam-
-the par-
may be

lar entity-

ribe each

3.3 Entity Types, Entity Sets, Attributes, and Keys 63

Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE
entity e; has four attributes: Name, Address, Age, and Home_phone; their values are
‘John Smith; 2311 Kirby, ‘Houston, Texas 77001, ‘55, and 713-749-2630, respec-
tively. The COMPANY entity ¢, has three attributes: Name, Headquarters, and
President; their values are ‘Sunco Oil, ‘Houston,’ and ‘John Smith, respectively.

several types of attributes occur in the ER model: simple versus composite, single-
valued versus multivalued, and stored versus derived. First we define these attribute
tvpes and illustrate their use via examples. Then we introduce the concept of a NULL
value for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
divided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,* with the val-
ues 2311 Kirby), ‘Houston), ‘Texas, and 77001, Attributes that are not divisible are
called simple or atomic attributes. Composite attributes can form a hierarchy; for
example, Street_address can be subdivided into three simple attributes: Number,
Street, and Apartment_number, as shown in Figure 3.4. The value of a composite
attribute is the concatenation of the values of its constituent simple attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its
components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (ZIP Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
value for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a set

Name = John Smith Name = Sunco Oil

Address = 2311 Kirby
Houston, Texas 77001

€ cy Headquarters = Houston

Age =55

Home_phone = 713-749-2630 President = John Smith

3. ZIP Code is the name used in the United States for a five-digit postal code.

Figure 3.3

Two entities,
EMPLOYEE e, and
COMPANY ¢, and
their attributes.

64 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Figure 3.4
A hierarchy of
composite attributes.

Address
Street_address City State Zip
Number Street Apartment_number

of values for the same entity—for example, a Colors attribute for a car, or a
College_degrees attribute for a person. Cars with one color have a single value.
whereas two-tone cars have two color values. Similarly, one person may not have a
college degree, another person may have one, and a third person may have two or
more degrees; therefore, different persons can have different numbers of values for
the College_degrees attribute. Such attributes are called multivalued. A multivalued
attribute may have lower and upper bounds to constrain the number of values
allowed for each individual entity. For example, the Colors attribute of a car may have
between one and three values, if we assume that a car can have three colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related—for example, the Age and Birth_date attributes of a person. For a
particular person entity, the value of Age can be determined from the current
(today’s) date and the value of that person’s Birth_date. The Age attribute is hence
called a derived attribute and is said to be derivable from the Birth_date attribute.
which is called a stored attribute. Some attribute values can be derived from
related entities; for example, an attribute Number_of_employees of a DEPARTMENT
entity can be derived by counting the number of employees related to (working
for) that department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment_number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similarly, a College_degrees attribute applies
only to persons with college degrees. For such situations, a special value called NULL
is created. An address of a single-family home would have NULL for its
Apartment_number attribute, and a person with no college degree would have NULL
for College_degrees. NULL can also be used if we do not know the value of an attrib-
ute for a particular entity—for example, if we do not know the home phone num-
ber of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is not
applicable, whereas the meaning of the latter is unknown. The unknown category of
can be further classified into two cases. The first case arises when it is known that

Jar, Or a
Jde value,
ot have a
¢ two or
dlues for
Juivalued
of values
may have
at most.

Hute val-
on. For a
courrent
- Is hence
attribute,
ved from
ARTMENT
working

ible value
s~ applies
'~ of resi-
te applies
lled NULL
L for its
ave NULL
an attrib-
e num-

JLL 1s not-

wegory of
10wn that

the attribute value exists but is missing—for example, if the Height attribute of a per-
son is listed as NULL. The second case arises when it is not known whether the attrib-
ute value exists—for example, if the Home_phone attribute of a person is NULL.

Complex Attributes. Notice that composite and multivalued attributes can be
nested arbitrarily. We can represent arbitrary nesting by grouping components of a
composite attribute between parentheses () and separating the components with
commas, and by displaying multivalued attributes between braces {}. Such attrib-
utes are called complex attributes. For example, if a person can have more than one
residence and each residence can have a single address and multiple phones, an
attribute Address_phone for a person can be specified as shown in Figure 3.5.* Both
Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

Entity Types and Entity Sets. A database usually contains groups of entities that
are similar. For example, a company employing hundreds of employees may want to
store similar information concerning each of the employees. These employee enti-
ties share the same attributes, but each entity has its own value(s) for each attribute.
An entity type defines a collection (or set) of entities that have the same attributes.
Each entity type in the database is described by its name and attributes. Figure 3.6
shows two entity types: EMPLOYEE and COMPANY, and a list of attributes for each.
A few individual entities of each type are also illustrated, along with the values of
their attributes. The collection of all entities of a particular entity type in the data-
hase at any point in time is called an entity set; the entity set is usually referred to
using the same name as the entity type. For example, EMPLOYEE refers to both a
nvpe of entity as well as the current set of all employee entities in the database.

An entity type is represented in ER diagrams® (see Figure 3.2) as a rectangular box
enclosing the entity type name. Attribute names are enclosed in ovals and are
attached to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
Jdouble ovals. Figure 3.7(a) shows a CAR entity type in this notation.

3.3 Entity Types, Entity Sets, Attributes, and Keys 65

{Address_phone({Phone(Area_code,Phone_number)},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip))}

< For those familiar with XML, we should note that complex attributes are similar to complex elements in
ML (see Chapter 27).

T We use a notation for ER diagrams that is close to the original proposed notation (Chen 1976). Many
~~er notations are in use; we illustrate some of them later in this chapter when we present UML class
- agrams and in Appendix A.

Figure 3.5
A complex attribute:
Address_phone.

e —

66 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Entity Type Name: EMPLOYEE COMPANY
Name, Age, Salary Name, Headquarters, President
€1 e W Cie
{John Smith, 55, 80k) (Sunco Oil, Houston, John Smith)
€2 o C2 9
Entity Set: .
(Extension) (Fred Brown, 40, 30K) (Fast Computer, Dallas, Bob King)
€3 e .
Judy Clark, 25, 20K .
Figure 3.6 Uudy Clar)
Two entity types, EMPLOYEE .
and COMPANY, and some :
member entities of each. N J o

An entity type describes the schema or intension for a set of entities that share the
same structure. The collection of entities of a particular entity type is grouped into
an entity set, which is also called the extension of the entity type.

Key Attributes of an Entity Type. An important constraint on the entities of an
entity type is the key or uniqueness constraint on attributes. An entity type usuallv
has an attribute whose values are distinct for each individual entity in the entity set.
Such an attribute is called a key attribute, and its values can be used to identify
each entity uniquely. For example, the Name attribute is a key of the COMPANY
entity type in Figure 3.6 because no two companies are allowed to have the same
name. For the PERSON entity type, a typical key attribute is Ssn (Social Security
Number). Sometimes several attributes together form a key, meaning that the com-
bination of the attribute values must be distinct for each entity. If a set of attributes
possesses this property, the proper way to represent this in the ER model that we
describe here is to define a composite attribute and designate it as a key attribute of
the entity type. Notice that such a composite key must be minimal; that is, all com-
ponent attributes must be included in the composite attribute to have the unique-
ness property. Superfluous attributes must not be included in a key. In ER
diagrammatic notation, each key attribute has its name underlined inside the oval.
as illustrated in Figure 3.7(a).

Specifying that an attribute is a key of an entity type means that the preceding
uniqueness property must hold for every entity set of the entity type. Hence, it is a
constraint that prohibits any two entities from having the same value for the ke
attribute at the same time. It is not the property of a particular extension; rather, it
is a constraint on all extensions of the entity type. This key constraint (and other
constraints we discuss later) is derived from the constraints of the miniworld that
the database represents.

are the
:d into

sof an
asually
ity set.
lentify
APANY
2 same
Jcurity
¢ com-
ributes
hat we
»ute of
I com-
nique-
In ER

e oval,

ceding
Jitisa
he key
ther, it
1 other
1d that

3.3 Entity Types, Entity Sets, Attributes, and Keys 67

Some entity types have more than one key attribute. For example, each of the

Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in its

own right. The Registration attribute is an example of a composite key formed from

two simple component attributes, State and Number, neither of which is a key on its

own. An entity type may also have no key, in which case it is called a weak entity type
see Section 3.5).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specify the value
set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings of alphabetic characters separated by blank characters, and so on. Value sets
are not displayed in ER diagrams. Value sets are typically specified using the basic
data types available in most programming languages, such as integer, string,
Boolean, float, enumerated type, subrange, and so on. Additional data types to rep-
resent date, time, and other concepts are also employed.

(a)

(b) CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

4 CAR, A
((ABC 128, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CARy
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {biue})

CAR;
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

.

Figure 3.7

The CAR entity type with two
key attributes, Registration and
Vehicle_id. (a) ER diagram
notation. (b) Entity set with

three entities.

68

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Mathematically, an attribute A of entity type E whose value set is V can be defined a-
a function from E to the power set® P(V) of V:

A:E— P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition cov-
ers both single-valued and multivalued attributes, as well as NULLs. A NULL value i
represented by the empty set. For single-valued attributes, A(e) is restricted to being
a singleton set for each entity ¢ in E, whereas there is no restriction on multivalued
attributes.” For a composite attribute A, the value set V is the Cartesian product ot
P(V), P(V,),..., P(Vu), where V|, V,, ..., V, are the value sets of the simple compo-
nent attributes that form A:

V=P(V,) X P(V,) x ... x P(V,)

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database. Those values represent the data from the state of the mini-
world. They correspond to the data as it actually exists in the miniworld.

3.3.3 Initial Conceptual Design of the COMPANY Database

We can now define the entity types for the COMPANY database, based on the
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section 3.4 after we introduce the concept of
a relationship. According to the requirements listed in Section 3.2, we can identifv
four entity types—one corresponding to each of the four items in the specification
(see Figure 3.8):

An entity type DEPARTMENT with attributes Name, Number, Locations.
Manager, and Manager_start_date. Locations is the only multivalued attribute.
We can specify that both Name and Number are (separate) key attributes
because each was specified to be unique.

2. An entity type PROJECT with attributes Name, Number, Location, and
Controlling_department. Both Name and Number are (separate) key attributes.

% An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary.
Birth_date, Department, and Supervisor. Both Name and Address may be com-
posite attributes; however, this was not specified in the requirements. We
must go back to the users to see if any of them will refer to the individual
components of Name—TFirst_name, Middle_initial, Last_name—or of Address.

An entity type DEPENDENT with attributes Employee, Dependent_name, Sex.
Birth_date, and Relationship (to the employee).

6. The power set P (V) of a set Vis the set of all subsets of V.

7. A singleton set is a set with only one element (value).

3.3 Entity Types, Entity Sets, Attributes, and Keys 69 ‘

ined as

M cov-
calue 1s
» being
walued
duct of
ompo-

ese val-
¢ mini-

-e

on the
1d their
1cept of
identify

fication

[
i
3
¥
k4
5
i

cations,
‘tribute.
tributes

Figure 3.8

Preliminary design of entity
types for the COMPANY
database. Some of the
shown attributes will be
refined into relationships.

on. and
1butes.

5. Salary,
be com-
mts. We
dividual
idress. so far, we have not represented the fact that an employee can work on several proj-
ects, nor have we represented the number of hours per week an employee works on
cach project. This characteristic is listed as part of the third requirement in Section
3.2, and it can be represented by a multivalued composite attribute of EMPLOYEE
called Works_on with the simple components (Project, Hours). Alternatively, it can be
represented as a multivalued composite attribute of PROJECT called Workers with
the simple components (Employee, Hours). We choose the first alternative in Figure
3.8, which shows each of the entity types just described. The Name attribute of
EMPLOYEE is shown as a composite attribute, presumably after consultation with
the users.

ime, Sex,

70 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types.
In fact, whenever an attribute of one entity type refers to another entity type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to an
employee who manages the department; the attribute Controlling_department of
PROJECT refers to the department that controls the project; the attribute Supervisor
of EMPLOYEE refers to another employee (the one who supervises this employee);
the attribute Department of EMPLOYEE refers to the department for which the
employee works; and so on. In the ER model, these references should not be repre-
sented as attributes but as relationships, which are discussed in this section. The
COMPANY database schema will be refined in Section 3.6 to represent relationships
explicitly. In the initial design of entity types, relationships are typically captured in
the form of attributes. As the design is refined, these attributes get converted into
relationships between entity types.

This section is organized as follows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role names, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships—such as cardinality ratios
and existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationship
types can also have attributes.

3.4.1 Relationship Types, Sets, and Instances

A relationship type R among n entity types E|, E,, . . ., E, defines a set of associa-
tions—or a relationship set—among entities from these entity types. As for the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same name, R. Mathematically, the
relationship set R is a set of relationship instances r;, where each r; associates n indi-
vidual entities (¢, e,, . . ., ¢,), and each entity e, in r; is a member of entity type E;, 1
< j < n. Hence, a relationship type is a mathematical relation on E|, E,, .. ., E; alter-
natively, it can be defined as a subset of the Cartesian product E, X E; X ... X E,. Each
of the entity types E|, E», .. ., E,, is said to participate in the relationship type R; sim-
ilarly, each of the individual entities e, e,, . . ., e, is said to participate in the relation-
ship instance r;= (e}, €5, .. ., €,).

Informally, each relationship instance r; in R is an association of entities, where the
association includes exactly one entity from each participating entity type. Each
such relationship instance r; represents the fact that the entities participating in r;
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS_FOR between the two entity types EMPLOYEE
and DEPARTMENT, which associates each employee with the department for which
the employee works. Each relationship instance in the relationship set WORKS_FOR
associates one EMPLOYEE entity and one DEPARTMENT entity. Figure 3.9 illustrates
this example, where each relationship instance r; is shown connected to the

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 71

EMPLOYEE WORKS_FOR DEPARTMENT

Figure 3.9

Some instances in the
WORKS_FOR relationship
set, which represents a refa-
tionship type WORKS_FOR
between EMPLOYEE and
DEPARTMENT.

EMPLOYEE and DEPARTMENT entities that participate in r;. In the miniworld repre-

ocia- ~ented by Figure 3.9, employees ¢, e, and ¢, work for department d,; employees ¢,
r the and e, work for department d,; and employees e; and e, work for department d;.
v_\re{l; R In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
indi- are connected by straight lines to the rectangular boxes representing the participat-
E.1 ing entity types. The relationship name is displayed in the diamond-shaped box (see
Jter- Figure 3.2).

Each

S1m- 3.4.2 Relationship Degree, Role Names,

ton- and Recursive Relationships

¢ the Degree of a Relationship Type. The degree of a relationship type is the number
Fach of participating entity types. Hence, the WORKS_FOR relationship is of degree two.
cin A relationship type of degree two is called binary, and one of degree three is called
nple, ternary. An example of a ternary relationship is SUPPLY, shown in Figure 3.10,
JYEE where each relationship instance r; associates three entities—a supplier s, a part p,
vhich and a project j—whenever s supplies part p to project j. Relationships can generally
_FOR be of any degree, but the ones most common are binary relationships. Higher-
trates degree relationships are generally more complex than binary relationships; we char-

> the acterize them further in Section 3.9.

72 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Figure 3.10
Some relationship
instances in the
SUPPLY ternary
relationship set.

SUPPLIER SUPPLY PROJECT

Relationships as Attributes. It is sometimes convenient to think of a relationship
type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type of Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attrib-
ute, we always have two options. In this example, the alternative is to think of a mul-
tivalued attribute Employee of the entity type DEPARTMENT whose values for each
DEPARTMENT entity is the set of EMPLOYEE entities who work for that department.
The value set of this Employee attribute is the power set of the EMPLOYEE entity
set. Either of these two attributes—Department of EMPLOYEE or Employee of
DEPARTMENT-—can represent the WORKS_FOR relationship type. If both are repre-
sented, they are constrained to be inverses of each other.?

8. This concept of representing relationship types as attributes is used in a class of data models called
functional data models. In object databases (see Chapter 20), relationships can be represented by ref-
erence attributes, either in one direction or in both directions as inverses. In relational databases (see
Chapter 5), foreign keys are a type of reference attribute used to represent relationships.

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 73

Role Names and Recursive Relationships. Each entity type that participates in
a relationship type plays a particular role in the relationship. The role name signi-
‘ies the role that a participating entity from the entity type plays in each relationship
instance, and helps to explain what the relationship means. For example, in the
WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and
DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the partici-
pating entity types are distinct, since each participating entity type name can be
used as the role name. However, in some cases the same entity type participates
more than once in a relationship type in different roles. In such cases the role name
becomes essential for distinguishing the meaning of each participation. Such rela-
tionship types are called recursive relationships. Figure 3.11 shows an example.
The SUPERVISION relationship type relates an employee to a supervisor, where
both employee and supervisor entities are members of the same EMPLOYEE entity
tvpe. Hence, the EMPLOYEE entity type participates twice in SUPERVISION: once in
the role of supervisor (or boss), and once in the role of supervisee (or subordinate).
Fach relationship instance r; in SUPERVISION associates two employee entities e;
and e, one of which plays the role of supervisor and the other the role of supervisee.
In Figure 3.11, the lines marked ‘1 represent the supervisor role, and those marked
2 represent the supervisee role; hence, ¢, supervises e, and e;, e, supervises ¢, and
-, and es supervises ¢, and e,. In this example, each relationship instance must have
two lines, one marked with ‘1’ (supervisory) and the other with 2’ (supervisee).

.ationship

~ider the EMPLOYEE SUPERVISION Figure 3.11
ute called A recursive relation-
: tor each ship SUPERVISION
hich that between EMPLOYEE
- set of all €1 &=, in the supervisor role
we did in (1) and EMPLOYEE
EE tor the e2¢ in the subordinate
an attrib- e3 role (2).
ot a mul-

s for each a -

partment. es “

‘EE entity

ployee of €g

are repre- er

szels called .

=-rec by ref- ‘

zzzses (see

74 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.4.3 Constraints on Relationship Types

Relationship types usually have certain constraints that limit the possible combina-
tions of entities that may participate in the corresponding relationship set. These
constraints are determined from the miniworld situation that the relationships rep-
resent. For example, in Figure 3.9, if the company has a rule that each employee
must work for exactly one department, then we would like to describe this con-
straint in the schema. We can distinguish two main types of relationship con-
straints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the maximum number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, employs) any number of employees,” but an employee can
be related to (work for) only one department. The possible cardinality ratios for
binary relationship types are 1:1, 1:N, N:1, and M:N.

An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a
department entity to the employee who manages that department. This represents
the miniworld constraints that—at any point in time—an employee can manage
one department only and a department can have one manager only. The relation-
ship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N because the mini-
world rule is that an employee can work on several projects and a project can have
several employees.

Figure 3.12
A 1:1 relationship,
MANAGES.

EMPLOYEE MANAGES DEPARTMENT

9. N stands for any number of related entities (zero or more).

binary
entity
' type,
‘tment
‘ee can
ios for

lates a
-esents
1anage
lation-

mini-
n have

EMPLOYEE WORKS_ON PROJECT

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 75

Figure 3.13
An M:N relationship,
WORKS_ON.

Cardinality ratios for binary relationships are represented on ER diagrams by dis-
playing 1, M, and N on the diamonds as shown in Figure 3.2.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the existence of an entity depends on its being related
to another entity via the relationship type. This constraint specifies the minimum
number of relationship instances that each entity can participate in, and is some-
times called the minimum cardinality constraint. There are two types of participa-
tion constraints—total and partial—which we illustrate by example. If a company
policy states that every employee must work for a department, then an employee
entity can exist only if it participates in at least one WORKS_FOR relationship
instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is
called total participation, meaning that every entity in the total set of employee
entities must be related to a department entity via WORKS_FOR. Total participation
is also called existence dependency. In Figure 3.12 we do not expect every employee
to manage a department, so the participation of EMPLOYEE in the MANAGES rela-
tionship type is partial, meaning that some or part of the set of employee entities are
related to some department entity via MANAGES, but not necessarily all. We will
refer to the cardinality ratio and participation constraints, taken together, as the
structural constraints of a relationship type.

o o veReSinan

H
H
£

76 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Mode!

In ER diagrams, total participation (or existence dependency) is displayed as a dou-
ble line connecting the participating entity type to the relationship, whereas partial
participation is represented by a single line (see Figure 3.2).

3.4.4 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that an employee works on a par-
ticular project, we can include an attribute Hours for the WORKS_ON relationship
type of Figure 3.13. Another example is to include the date on which a manager
started managing a department via an attribute Start_date for the MANAGES rela-
tionship type of Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE or DEPARTMENT, although con-
ceptually it belongs to MANAGES. This is because MANAGES is a 1:1 relationship, so
every department or employee entity participates in at most one relationship instance.
Hence, the value of the Start_date attribute can be determined separately, either by the
participating department entity or by the participating employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS_FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for only one depart-
ment, and hence participates in at most one relationship instance in WORKS_FOR.
In both 1:1 and 1:N relationship types, the decision as to where a relationship attrib-
ute should be placed—as a relationship type attribute or as an attribute of a partic-
ipating entity type—is determined subjectively by the schema designer.

For M:N relationship types, some attributes may be determined by the combination
of participating entities in a relationship instance, not by any single entity. Such
attributes must be specified as relationship attributes. An example is the Hours attrib-
ute of the M:N relationship WORKS_ON (Figure 3.13); the number of hours an
employee works on a project is determined by an employee-project combination
and not separately by either entity.

3.5 Weak Entity Types

Entity types that do not have key attributes of their own are called weak entity
types. In contrast, regular entity types that do have a key attribute—which include
all the examples we discussed so far—are called strong entity types. Entities
belonging to a weak entity type are identified by being related to specific entities
from another entity type in combination with one of their attribute values. We call

3.5 Weak Entity Types 77

this other entity type the identifying or owner entity type,'” and we call the rela-
tionship type that relates a weak entity type to its owner the identifying relation-
ship of the weak entity type.'" A weak entity type always has a total participation
constraint (existence dependency) with respect to its identifying relationship
because a weak entity cannot be identified without an owner entity. However, not
every existence dependency results in a weak entity type. For example, a
DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity, even
though it has its own key (License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the dependents of each employee via a 1:N relationship (Figure 3.2). The
attributes of DEPENDENT are Name (the first name of the dependent), Birth_date,
Sex, and Relationship (to the employee). Two dependents of two distinct employees
may, by chance, have the same values for Name, Birth_date, Sex, and Relationship, but
they are still distinct entities. They are identified as distinct entities only after deter-
mining the particular employee entity to which each dependent is related. Each
employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the set of attributes that can
uniquely identify weak entities that are related to the same owner entity.'? In our
example, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
case, a composite attribute of all the weak entity’s attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are distin-
guished by surrounding their boxes and diamonds with double lines (see Figure
3.2). The partial key attribute is underlined with a dashed or dotted line.

Weak entity types can sometimes be represented as complex (composite, multi-
valued) attributes. In the preceding example, we could specify a multivalued attrib-
ute Dependents for EMPLOYEE, which is a composite attribute with component
attributes Name, Birth_date, Sex, and Relationship. The choice of which representation
to use is made by the database designer. One criterion that may be used is to choose
the weak entity type representation if there are many attributes. If the weak entity
participates independently in relationship types other than its identifying relation-
ship type, then it should not be modeled as a complex attribute.

In general, any number of levels of weak entity types can be defined; an owner
entity type may itself be a weak entity type. In addition, a weak entity type may have
more than one identifying entity type and an identifying relationship type of degree
higher than two, as we illustrate in Section 3.9.

10. The identifying entity type is also sometimes called the parent entity type or the dominant entity type.
11. The weak entity type is also sometimes called the child entity type or the subordinate entity type.

12. The partial key is sometimes called the discriminator.

78 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.6 Refining the ER Design
for the COMPANY Database

We can refine the database design of Figure 3.8 by changing the attributes that rep-
resent relationships into relationship types. The cardinality ratio and participation
constraint of each relationship type are determined from the requirements listed in
Section 3.2. If some cardinality ratio or dependency cannot be determined from the
requirements, the users must be questioned further to determine these structural
constraints.

In our example, we specify the following relationship types:

MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.
EMPLOYEE participation is partial. DEPARTMENT participation is not clear
from the requirements. We question the users, who say that a department
must have a manager at all times, which implies total participation.” The
attribute Start_date Is assigned to this relationship type.

© WORKS_FOR, a 1:N relationship type between DEPARTMENT and
EMPLOYEE. Both participations are total.

CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT.
The participation of PROJECT is total, whereas that of DEPARTMENT is
determined to be partial, after consultation with the users indicates that
some departments may control no projects.

SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-
sor role) and EMPLOYEE (in the supervisee role}. Both participations are
determined to be partial, after the users indicate that not every employee is a
supervisor and not every employee has a supervisor.

- WORKS_ON, determined to be an M:N relationship type with attribute
Hours, after the users indicate that a project can have several employees
working on it. Both participations are determined to be total.

DEPENDENTS_OF, a L:N relationship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the weak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is total.

After specifying the above six relationship types, we remove from the entity types in
Figure 3.8 all attributes that have been refined into relationships. These include
Manager and Manager_start_date from DEPARTMENT; Controlling_department from
PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee
from DEPENDENT. It is important to have the least possible redundancy when we
design the conceptual schema of a database. If some redundancy is desired at the
storage level or at the user view level, it can be introduced later, as discussed in
Section 1.6.1.

13. The rules in the miniworld that determine the constraints are sometimes called the business rules,
’ since they are determined by the business or organization that will utilize the database.

3.7 ER Diagrams, Naming Conventions, and Design Issues 79

3.7 ER Diagrams, Naming Conventions,
and Design Issues

b rep-
B -\NJO.H 3.7.1 Summary of Notation for ER Diagrams
<edin
:?. ~ the igures 3.9 through 3.13 illustrate examples of the participation of entity types in
o _.-ural -clationship types by displaying their extensions—the individual entity instances
21d relationship instances in the entity sets and relationship sets. In ER diagrams

:he emphasis is on representing the schemas rather than the instances. This is more

w~eful in database design because a database schema changes rarely, whereas the

B VENT. contents of the entity sets change frequently. In addition, the schema is usually eas-
poo clear wer to display than the extension of a database, because it is much smaller.

B ment ¥igure 3.2 displays the COMPANY ER database schema as an ER diagram. We now

b The review the full ER diagram notation. Entity types such as EMPLOYEE, DEPARTMENT,

ind PROJECT are shown in rectangular boxes. Relationship types such as

B~ and WORKS_FOR, MANAGES, CONTROLS, and WORKS_ON are shown in diamond-

-haped boxes attached to the participating entity types with straight lines.

©=CT. Attributes are shown in ovals, and each attribute is attached by a straight line to its

2T is entity type or relationship type. Component attributes of a composite attribute are

. -hat attached to the oval representing the composite attribute, as illustrated by the Name

attribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as illus-

i trated by the Locations attribute of DEPARTMENT. Key attributes have their names

H-:‘are underlined. Derived attr.ibutes are shown in dotted ovals, as illustrated by the

ia Number_of_employees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by
~ute having their identifying relationship placed in double diamonds, as illustrated by
€S the DEPENDENT entity type and the DEPENDENTS_OF identifying relationship

tvpe. The partial key of the weak entity type is underlined with a dotted line.

- and In Figure 3.2 the cardinality ratio of each binary relationship type is specified by
ity attaching a 1, M, or N on each participating edge. The cardinality ratio of
:vof DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for
DEPARTMENT:EMPLOYEE in WORKS_FOR, and M:N for WORKS_ON. The partici-
in pation constraint is specified by a single line for partial participation and by double
C de lines for total participation (existence dependency).
om In Figure 3.2 we show the role names for the SUPERVISION relationship type
:ree because the EMPLOYEE entity type plays both roles in that relationship. Notice that
- we the cardinality is 1:N from supervisor to supervisee because each employee in the
the role of supervisee has at most one direct supervisor, whereas an employee in the role
c2in of supervisor can supervise zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams.

80 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Figure 3.14 .
Summary of the Symbol Meaning
notation for ER
diagrams. :} Entity
[:| Weak Entity
<> Relationship
<<> Indentifying Relationship
_O Attribute
—C Key Attribute
_© Multivalued Attribute

§ %% ~ Composite Attribute

Derived Attribute

_ Total Participation of £, in R

Cardinality Ratio 1: N for E,:E, in R

(min, max)

Structural Constraint {min, max)
on Participation of E in R

3.7 ER Diagrams, Naming Conventions, and Design Issues 81

3.7.2 Proper Naming of Schema Constructs

When designing a database schema, the choice of names for entity types, attributes,
relationship types, and (particularly) roles is not always straightforward. One
should choose names that convey, as much as possible, the meanings attached to the
different constructs in the schema. We choose to use singular names for entity types,
rather than plural ones, because the entity type name applies to each individual
entity belonging to that entity type. In our ER diagrams, we will use the convention
that entity type and relationship type names are uppercase letters, attribute names
are initial letter capitalized, and role names are lowercase letters. We have used this
convention in Figure 3.2.

As a general practice, given a narrative description of the database requirements, the
rouns appearing in the narrative tend to give rise to entity type names, and the verbs
tend to indicate names of relationship types. Attribute names generally arise from
additional nouns that describe the nouns corresponding to entity types.

Another naming consideration involves choosing binary relationship names to
make the ER diagram of the schema readable from left to right and from top to bot-
tom. We have generally followed this guideline in Figure 3.2. To explain this naming
convention further, we have one exception to the convention in Figure 3.2—the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
describe this relationship, we can say that the DEPENDENT entities (bottom entity
tvpe) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type).
To change this to read from top to bottom, we could rename the relationship type to
HAS_DEPENDENTS, which would then read as follows: An EMPLOYEE entity (top
entity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottom
entity type). Notice that this issue arises because each binary relationship can be
described starting from either of the two participating entity types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design

It is occasionally difficult to decide whether a particular concept in the miniworld
should be modeled as an entity type, an attribute, or a relationship type. In this sec-
tion, we give some brief guidelines as to which construct should be chosen in partic-
ular situations.

In general, the schema design process should be considered an iterative refinement
process, where an initial design is created and then iteratively refined until the most
suitable design is reached. Some of the refinements that are often used include the
following:

A concept may be first modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity type. It is often the case that a pair of such attributes that are inverses
of one another are refined into a binary relationship. We discussed this type
of refinement in detail in Section 3.6.

e

82

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

% Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that several
entity types in a UNIVERSITY database, such as STUDENT, INSTRUCTOR, and
COURSE, each has an attribute Department in the initial design; the designer
may then choose to create an entity type DEPARTMENT with a single attribute
Dept_name and relate it to the three entity types (STUDENT, INSTRUCTOR,
and COURSE) via appropriate relationships. Other attributes/relationships of
DEPARTMENT may be discovered later.

- An inverse refinement to the previous case may be applied—for example, if
an entity type DEPARTMENT exists in the initial design with a single attribute
Dept_name and is related to only one other entity type, STUDENT. In this
case, DEPARTMENT may be reduced or demoted to an attribute of STUDENT.

Section 3.9 discusses choices concerning the degree of a relationship. In
Chapter 4, we discuss other refinements concerning specialization/general-
ization. Chapter 12 discusses additional top-down and bottom-up refine-
ments that are common in large-scale conceptual schema design.

3.74 Alternative Notations for ER Diagrams

There are many alternative diagrammatic notations for displaying ER diagrams.
Appendix A gives some of the more popular notations. In Section 3.8, we introduce
the Universal Modeling Language (UML) notation for class diagrams, which has
been proposed as a standard for conceptual object modeling.

In this section, we describe one alternative ER notation for specifying structural
constraints on relationships. This notation involves associating a pair of integer
numbers (min, max) with each participation of an entity type E in a relationship
type R, where 0 < min < max and max = 1. The numbers mean that for each entity e
in E, e must participate in at least min and at most max relationship instances in R
at any point in time. In this method, min = 0 implies partial participation, whereas
min > 0 implies total participation.

Figure 3.15 displays the COMPANY database schema using the (min, max) nota-
tion." Usually, one uses either the cardinality ratio/single-line/double-line notation
or the (min, max) notation. The (min, max) notation is more precise, and we can
use it to specify structural constraints for relationship types of any degree. However,
it is not sufficient for specifying some key constraints on higher-degree relation-
ships. as discussed in Section 3.9.

Figure 3.15 also displays all the role names for the COMPANY database schema.

14. In some notations, particularly those used in object modeling methodologies such as UML, the (min,
max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR rela-
tionship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the
EMPLOYEE side. Here we used the original notation from Abrial (1974).

3.7 ER Diagrams, Naming Conventions, and Design Issues 83

- :ted or

¢ several Figure 3.15

~~3. and ER diagrams for the company
-.igner schema, with structural constraints
':' ; specified using (min, max) notation
ribute and role names

#_CTOR, '

e~:psof

ar:hute

F.CENT. WORKS_FOR (4,N)

- o ln 1) Clame > | Clumber

orale Employee Department
lgr__ °ra i T .
®one EMPLOYEE . Rumber_of_employees " DEPARTMENT |

0,1) Department (0,N) | Controlling
Manager Managed (1,1) Department
i
CONTROLS
N
ON Worker Controlled
s "o (1,1) | Project
upervisor .
Project ™ "pRoJECT |

(ON)
Employee

DEPENDENTS _OF

Dependent

| DEPENDENT |

Cllame S o CBirste >

Relationship

84 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensively in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here, and compare them with ER diagrams. In some
ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 4.6, and in Chapter
12, Figure 3.16 shows how the COMPANY ER database schema of Figure 3.15 can be
displayed using UML class diagram notation. The entity types in Figure 3.15 are
modeled as classes in Figure 3.16. An entity in ER corresponds to an object in UML.

In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the class name,
the middle section includes the attributes for individual objects of the class; and the
last section includes operations that can be applied to these objects. Operations are
not specified in ER diagrams. Consider the EMPLOYEE class in Figure 3.16. Its

Figure 3.16

The COMPANY conceptual schema in UML class diagram notation.

EMPLOYEE 4* WORKS FOR 1.1 DEPARTMENT Multiplicity
Name: Name_dom - = “— Name Notation in OMT:
Frame i 0.1 Number —_— 1.1
Minit - ; ~—— add_employee ® o
Lname . number_of_employees O 0.1

Ssn MANAGES change_manager 0.r
Bdate: Date Start dat o C
Sex: {M,F} art_date
Address 1+ 1.1
Salary =
age) | 1.x
change_department ! CONTROLS LOCATION
change_projects supervisece | |WORKS_ON Namo
- Hours 11
l Dependent_nami} 0.1 1.x *)
supervisor PROJECT
0.r

Name
DEPENDENT Number Ko——
S?": {M,F} add_employee Aggregation
glr:hfdat? Date add_project Notation in UML:
elationship change_manager

TS [Whote > Part |

3.8 Example of Other Notation: UML Class Diagrams* 85

attributes are Name, Ssn, Bdate, Sex, Address, and Salary. The designer can optionally
specify the domain of an attribute if desired, by placing a colon (:) followed by the
domain name or description, as illustrated by the Name, Sex, and Bdate attributes of
EMPLOYEE in Figure 3.16. A composite attribute is modeled as a structured
domain, as illustrated by the Name attribute of EMPLOYEE. A multivalued attribute
will generally be modeled as a separate class, as illustrated by the LOCATION class in
Figure 3.16.

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a line connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a link attribute, is placed in a box
that is connected to the association’s line by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
min..max, and an asterisk (*) indicates no maximum limit on participation.
However, the multiplicities are placed on the opposite ends of the relationship when
compared with the notation discussed in Section 3.7.4 (compare Figures 3.15 and
3.16). In UML, a single asterisk indicates a multiplicity of 0..%, and a single 1 indi-
cates a multiplicity of 1..1. A recursive relationship (see Section 3.4.2) is called a
reflexive association in UML, and the role names—Ilike the multiplicities—are
placed at the opposite ends of an association when compared with the placing of
role names in Figure 3.15.

In UML, there are two types of relationships: association and aggregation.
Aggregation is meant to represent a relationship between a whole object and its
component parts, and it has a distinct diagrammatic notation. In Figure 3.16, we
modeled the locations of a department and the single location of a project as aggre-
gations. However, aggregation and association do not have different structural
properties, and the choice as to which type of relationship to use is somewhat sub-
jective. In the ER model, both are represented as relationships.

UML also distinguishes between unidirectional and bidirectional associations (or
aggregations). In the unidirectional case, the line connecting the classes is displayed
with an arrow to indicate that only one direction for accessing related objects is
needed. If no arrow is displayed, the bidirectional case is assumed, which is the
default. For example, if we always expect to access the manager of a department
starting from a DEPARTMENT object, we would draw the association line represent-
ing the MANAGES association with an arrow from DEPARTMENT to EMPLOYEE. In
addition, relationship instances may be specified to be ordered. For example, we
could specify that the employee objects related to each department through the
WORKS_FOR association (relationship) should be ordered by their Bdate attribute
value. Association (relationship) names are optional in UML, and relationship
attributes are displayed in a box attached with a dashed line to the line representing
the association/aggregation (see Start_date and Hours in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the

T

86

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

operation names initially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
more details are added, such as the exact argument types (parameters) for each
operation, plus a functional description of each operation. UML has function
descriptions and sequence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion. Chapter 12 will introduce some of
these diagrams.

Weak entities can be modeled using the construct called qualified association (or
qualified aggregation) in UML; this can represent both the identifying relationship
and the partial key, which is placed in a box attached to the owner class. This is illus-
trated by the DEPENDENT class and its qualified aggregation to EMPLOYEE in
Figure 3.16. The partial key Dependent_name is called the discriminator in UML ter-
minology, since its value distinguishes the objects associated with (related to) the
same EMPLOYEE. Qualified associations are not restricted to modeling weak enti-
ties, and they can be used to model other situations in UML.

3.9 Relationship Types of Degree
Higher Than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relationship type of degree two binary and a rela-
tionship type of degree three ternary. In this section, we elaborate on the differences
between binary and higher-degree relationships, when to choose higher-degree or
binary relationships, and constraints on higher-degree relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed at
the instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of
relationship instances (s, j, p), where s is a SUPPLIER who is currently supplying a
PART p to a PROJECT j. In general, a relationship type R of degree n will have n edges
in an ER diagram, one connecting R to each participating entity type.

Figure 3.17(b) shows an ER diagram for the three binary relationship types
CAN_SUPPLY, USES, and SUPPLIES. In general, a ternary relationship type repre-
sents different information than do three binary relationship types. Consider the
three binary relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN_SUPPLY, between SUPPLIER and PART, includes an instance (s, p) whenever
supplier s can supply part p (to any project); USES, between PROJECT and PART,
includes an instance (j, p) whenever project j uses part p; and SUPPLIES, between
SUPPLIER and PROJECT, includes an instance (s, j) whenever supplier s supplies
some part to project j. The existence of three relationship instances (s, p), (j, p), and
(s,7) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not necessarily imply

3.9 Relationship Types of Degree Higher Than Two* 87

w applied
. refined,
r each
Souction
¢ .:ls, but
2 ~ome of

sation (or
- onship
~ o s llus-
» _VEE in
v ML ter-
w. o) the
- .x enti-

,

e+ ot par-
o arela-
1. orences
.. .rce or

B 7(3);
3. Cd at

s set of
L winga
s+ - edges

Figure 3.17

Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships
~ot equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

& types
. repre-
.~ ot the
- ¢ that
.~ mever
Wl DART,
“oween
_oplies
-, and
-~ mply

that an instance s, j, p) exists in the ternary relationship SUPPLY, because the mean-
ing is different. It is often tricky to decide whether a particular relationship should be
represented as a relationship type of degree n or should be broken down into several
relationship types of smaller degrees. The designer must base this decision on the
semantics or meaning of the particular situation being represented. The typical solu-

88 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

tion is to include the ternary relationship plus one or more of the binary relation-
ships, if they represent different meanings and if all are needed by the application.

Some database design tools are based on variations of the ER model that permit
only binary relationships. In this case, a ternary relationship such as SUPPLY must
be represented as a weak entity type, with no partial key and with three identifying
relationships. The three participating entity types SUPPLIER, PART, and PROJECT
are together the owner entity types (see Figure 3.17(c)). Hence, an entity in the weak
entity type SUPPLY of Figure 3.17(c) is identified by the combination of its three
owner entities from SUPPLIER, PART, and PROJECT.

It is also possible to represent the ternary relationship as a regular entity type by
introducing an artificial or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity type.
Three binary 1:N relationships relate SUPPLY to the three participating entity types.

Another example is shown in Figure 3.18. The ternary relationship type OFFERS
represents information on instructors offering courses during particular semesters;
hence it includes a relationship instance (i, s, ¢) whenever INSTRUCTOR : offers
COURSE ¢ during SEMESTER s. The three binary relationship types shown in
Figure 4.12 have the following meanings: CAN_TEACH relates a course to the
instructors who can teach that course, TAUGHT_DURING relates a semester to the
instructors who taught some course during that semester, and OFFERED_DURING
relates a semester to the courses offered during that semester by any instructor.
These ternary and binary relationships represent different information, but certain
constraints should hold among the relationships. For example, a relationship
instance (i, s, ¢) should not exist in OFFERS unless an instance (i, s) exists in
TAUGHT_DURING, an instance (s, ¢) exists in OFFERED_DURING, and an instance
(1, c) exists in CAN_TEACH. However, the reverse is not always true; we may have
instances (i, 5), (s, ¢), and (4, ¢) in the three binary relationship types with no corre-

Figure 3.18
Another example of
ternary versus binary
relationship types.

OFFERED_DURING

COURSE

e

[

- -

v on

v

«

E..

had

e,

- pes.

_*FERS
sosters;

offers
‘Wi 1n
0 the

- 10 the

JRING

“Uuctor.
. Jertain

mship

Lsts In

“stance
+ have
Jorre-

3.9 Relationship Types of Degree Higher Than Two* 89

sponding instance (i, s, ¢) in OFFERS. Note that in this example, based on the mean-
ings of the relationships, we can infer the instances of TAUGHT_DURING and
OFFERED_DURING from the instances in OFFERS, but we cannot infer the
instances of CAN_TEACH; therefore, TAUGHT DURING and OFFERED_DURING are
redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relationship,
they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is 1:1 (an instructor can teach one course, and a course
can be taught by only one instructor), then the ternary relationship OFFERS can be
left out because it can be inferred from the three binary relationships CAN_TEACH,
TAUGHT_DURING, and OFFERED_DURING. The schema designer must analyze the
meaning of each specific situation to decide which of the binary and ternary rela-
tionship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
fying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specify different constraints. They should thus both be used if it is impor-
tant to fully specify the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each partici-
pation arc (both M and N symbols stand for many or any number).'> Let us illus-
trate this constraint using the SUPPLY relationship in Figure 3.17.

CANDIDATE

COMPANY

Dept_date

INTERVIEW JOB_OFFER

15. This notation allows us to determine the key of the relationship relation, as we discuss in Chapter 7.

Figure 3.19

A weak entity type
INTERVIEW with a
ternary identifying

relationship type.

90

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Recall that the relationship set of SUPPLY is a set of relationship instances (s, j, p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particular project-part combination, only one supplier will be used
(only one supplier supplies a particular part to a particular project). In this case, we
place 1 on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j, p) combination
can appear at most once in the relationship set because each such (PROJECT, PART)
combination uniquely determines a single supplier. Hence, any relationship
instance (s, j, p) is uniquely identified in the relationship set by its (j, p) combina-
tion, which makes (J, p) a key for the relationship set. In this notation, the participa-
tions that have a one specified on them are not required to be part of the identifying
key for the relationship set.'®

The second notation is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (min, max) on a participation here specifies that each
entity is related to at least min and at most max relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2, but specify a different type of constraint that places
restrictions on how many relationship instances each entity can participate in.

3.10 Summary

In this chapter we presented the modeling concepts of a high-level conceptual data
model, the Entity-Relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented
an example set of database requirements for the COMPANY database, which is one
of the examples that is used throughout this book. We defined the basic ER model
concepts of entities and their attributes. Then we discussed NULL values and pre-
sented the various types of attributes, which can be nested arbitrarily to produce
complex attributes:

Simple or atomic

Composite

Multivalued
We also briefly discussed stored versus derived attributes. Then we discussed the ER
model concepts at the schema or “intension” level:

Entity types and their corresponding entity sets

Key attributes of entity types

Value sets (domains) of attributes

Relationship types and their corresponding relationship sets

Participation roles of entity types in relationship types

16. This is also true for cardinality ratios of binary relationships.

17 The (min, max) constraints can determine the keys for binary relationships, though.

Review Questions 91

= Lp) We presented two methods for specifying the structural constraints on relationship
“~traint types. The first method distinguished two types of structural constraints:
;‘ ¢ used & Cardinality ratios (1:1, 1:N, M:N for binary relationships)
LG WE
-ricipa- ® Participation constraints (total, partial)
£ nation We noted that, alternatively, another method of specifying structural constraints is
B DART) to specify minimum and maximum numbers (min, max) on the participation of
L 31§h1P each entity type in a relationship type. We discussed weak entity types and the
'M“a‘ related concepts of owner entity types, identifying relationship types, and partial
Preaapa- key attributes.
e ihving

Entity-Relationship schemas can be represented diagrammatically as ER diagrams.
We showed how to design an ER schema for the COMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they relate
to ER model concepts. We also described ternary and higher-degree relationship
types in more detail, and discussed the circumstances under which they are distin-
guished from binary relationships.

b0 315
¢ - cach
g rela-
& . ary
®’.Claces
[3

The ER modeling concepts we have presented thus far—entity types, relationship
types, attributes, keys, and structural constraints—can model traditional business
data-processing database applications. However, many newer, more complex appli-
cations—such as engineering design, medical information systems, or telecommu-
nications—require additional concepts if we want to model them with greater

_ Jata
coaata
- ated

accuracy. We discuss some advanced modeling concepts in Chapter 4 and revisit
) o;u; further advanced data modeling techniques in Chapter 24.
e
;L opre-
Zuce
Review Questions
3.1, Discuss the role of a high-level data model in the database design process.
3.2. List the various cases where use of a NULL value would be appropriate.
IR 3.3. Define the following terms: entity, attribute, attribute value, relationship

instance, composite attribute, multivalued attribute, derived attribute, complex
attribute, key attribute, and value set (domain).

3.4. What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

3.5. Explain the difference between an attribute and a value set.

3.6. What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

3.7 What is a participation role? When is it necessary to use role names in the
description of relationship types?

