
.-"

clrapter 3

Data Modeling Using
the EntitY'RelationshiP

(ER) Model

#%-
ffi onceptual modeling is a very important phase in
E,;,, n a.rigning a successtul database application'

Generally, the term database applicatio-n ,efirs to a particular database and the asso-

ciated programs that t-pr.-Jtitthe database oY"it: T1i*lll,,f"t
example' a

BANKdatabaseapplicationthatkeepstrackofcustomeraccountswouldincludepro-
granrsthat implemerrtdatabaseupdut",correspondinqlo:ustoTerdepositsand
rvithdrawals. These progil;t;;";id" user-fiienily graphical user'intertaces (GUIs)

utilizing forms and
-"rlu,

foithe end users of the a'ppiication-the bank tellers' in

this example. Hence, p".i "i
in. database application will require the design, irnple-

mentation, and testing of these application programs' Traditionally, the design and

testing of application programs has been consiiere<l to be more in the realm of the

software engineering doirain than in the database.9q-ui"l o-ldatabase design

n-rethodologies include more of the concepts for specifying-operations on database

objects, and as softwa';;;;;g
-'ti'oaotogigi 'pei'fv;1:,it::::*'of

the data-

bases that software p."g*il,r *ill Jse and u...ri in more detail, it is clear that these

activities are strongly .;-f",.a. We briefly discuss some of the concepts for specifring

database operations ln Stttlon 3'8' and again when we discuss database design

-"tttoaotogy
with example applications in Chapter 12'

inthischapter,wefol lowthetradit ionalapproachofconcentrat ingonthedatabase
structures und .or,rt.Ji"t' autittg database gttig.n: yt pttttll-the modeling con-

cepts of the Entity-Reiatio"rfrip iEOf model, wliich is a popular high-level concep-

,,rul dutu model. This modei and its ua.iutions ur. fi.q.t.tttly used for the

fi i

rrl;:,",.i;,;

7-

58 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

conceptual design of database applications, and many database design tools emplor'
its concepts. We describe the basic data-structuring concepts and constraints of tht
ER rnodel and discuss their use in tl-re design of cor.rceptual schemas for database
applictrt ions. We also present the diagrammatic notation associated with the ER
model, known as ER diagrams.

Object modeling methodologies such as the Universal Modeling Language (UMLr
are becoming increasingly popular in sof tware design and engineer ing. These
methodologies go beyond database design to speci$, detailed design of software
modules and their interactions using various types of diagrams. An irnportant part
of these methodologies-namely, class diagran 15)-i11g similar in many rvays to the
ER diagrams. In class cliagrams, opcratiotts on objects are specified, in addition to
specilying the database schema structure. Operations can be used to specify the
functional recluiretttents during database design, as discussed in Section 3.1. We pre-
sellt some of the UML notation and concepts for class diagrams that are particularh'
relevant to database design in Section 3.8, and briefly compare these to ER notation
and concepts. Additional UML notation and concepts are presented in Section 4.6
and itr Chapter 12.

This chaprter is organized as follorvs: Section 3.1 discusses the role of high-level con-
ceptual data models in database design. We introduce the requirements fbr an
example database application in Section 3.2 to i l lustrate the use of concepts fionr
the ER model. This example databirse is also used in subsequent chapters. In Section
3.3 we present the concepts of entit ies and attributes, and we gradually introduce
the diagrammatic technique tbr displaying an ER scherna. In Section 3.4 we intro-
duce the concepts ofbinary relationships and their roles and structural constraints.
Section 3.5 introduces weak entity types. Section 3.6 shows how a schema design is
refined to include relationships. Section 3.7 reviews the notation for ER diagrams,
summarizes the issues that arise in schema design, and discusses how to choose the
names for database schemtr constructs. Section 3.8 introduces some UML class dia-
gram concepts, compirres thenr to ER model concepts, and applies them to the sarne
database exarmple. Sect ion 3.9 discusses more complgx types of re iat ionships.
Sect ion 3.10 summarizes the chapter.

The material in Sections 3.8 and 3.9 may be excluded from an introductory course;
if a more thorough coverage of data modeling concepts and conceptual database
design is desired, the reac-ler should continue from Section 3.7 to Chapter 4, where
we describe extensions to the ER nrodel that lead to the Enhanced-ER (EER) model,
which inclucies concepts such as specialization, generalization, inheritance, and
union types (categories). We also introduce some adclit ional Ulv{L concepts and
notation in Chapter 4.

1, A class is s imi lar Io an ent i ty type in many ways.

.fl

3.1 Using High-Level Conceptual Data Models for Database Design 59

3.1 Using High-Level Conceptual
Data Models for Database Design

Figure 3.1 shows a simplif ied description of the database design process. The first
step shown is requirements collection and analysis. During this step, the database
designers interview prospective database users to understand and document their
data requirements. The result of this step is a concisely written set of users' require-
ments. These requirements should be specified in as detailed and complete a form
as possible. In parallel with specifring the data requirements, it is useful to specify
the known functional requirements of the application. These consist of the user-
defined operations (or transactions) that will be applied to the database, including

Data Requirements

t

+
@
| (DATA MODEL MAPPTNG) |

-
V

Functional Requirements+
@ +

High-Level Transaction
Specif icat ion

luy
the
'ilSe
ER

'{L)
r-Se
'il re
)ilrt
the
l to
the
)re-
:rly
lon
-1.6

on-
'an
'om
.lon
uce
tro-
nts.
.n is
lTls,
the

dia-
Itne
ipr s.

lrse;
lase
:)ere
,iel,
and
and

DBMS-independent

I DBMS-specific

I

@
V

Conceptual Schema
(ln a high-level data model)

Logical (Conceptual) Schema
(ln the data model of a specif ic DBMS)

Figure 3.1
A simpl i f ied diagram

to i l lustrate the
main phases of

t^+^f ,^^^ t^^ i^^udr4uass uE>19i l .

REOUIREMENTS
COLLECTION AND

ANALYSIS

Application Programs

ernal Schema

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

both retrievals and updates. In soflware design, it is common Io use dsta Jlow dia-
gronts, sequence diagrttms, scartorios, and other techniques to specify functional
requirements. We lvil l not discuss any of these techniques here; they are usr.rallr
described in detail in software engineering texts. We give an overview of some ot
these techniques in Chapter 12.

Once all the requirements have beer-r collected and analyzed, the next step is to crt'atr'
a conceptual scherna for the database, using a high-level conceptual data rnodel.
This step is called conceptual design. The conceptual schema is a concise description
of the data requirements of the users irnd includes detailed descriptions of the entitr
types, relationships, and constraints; these are expressed using the concepts provided
by the high-level data model. Because these concepts do not include implementation
details, they are usr.rally easier to understand and can be used to communicate rvith
nontechnical users. The high-level cor-rceptual schema can also be used as a referencc
to ensure that all users'data requirements are met and that the requirements do nor
conflict. This approach enabies database designers to concentrate on specifing thc
properties of the data, without being concerned rvith storage details. Consequently, it
is easier fbr them to create a good conceptual database design.

During or after the conceptuirl schema design, the basic data model operations can
be used to specily the high-level user operations identif ied during tirnctional analr -
sis. This also serves to confirm that the conceptual schema meets all the identifiec
functional requirements. Modifications to the conceptual schema can be intro-
duced if some functional requirements cannot be specified using the init iai schenra

The next step in database design is the actual implementation of the database, usins
a commercial DBNrlS. Most current commercial DBMSs use an implementatior:
data model-such as the relational or the object-relational database rnodel-so th.
conceptual schema is transformed from the high-level data model into the imple-
mentation data model. This step is called logical design or data model mapping; it.
result is ar database schema in the implementation clata model of the DBMS.

The last step is the physical design phase, during which the internal storage strLrc-
tures, indexes, access paths, ar-rd file organizations for the database files are specified.
In paral le l wi th t l - rese act iv i t ies, appl icat ion programs are designed and implc-
mented as databirse transactions corresponding to the high-level transaction speci
fications. We discuss the database design process in more detail in Chapter 12.

We present only the basic ER n-rodel concepts for conceptutrl schema clesign in thi.
chapter. Additional modeling concepts are discussed in Chapter 4, when we intro'
duce the EER model.

3.2 An Example Database Application
In this sect ion we descr ibe an example database appl icat ion, cal led COMPANY
which serves to i l lustrate the basic ER model concepts and their use iu schenr.
design. We list the data requirements for the database here, and then create its con-
ceptual schema step-by-step as we i r - r t roduce the model ing concepts of the EI i

.^3.

3.3 Entity Types, Entity Sets, Attributes, and Keys

model. The COMPANY database keeps track of a company's employees, depart-
ments, and projects. Suppose that after the requirements collection and analysis
phase, the database designers provide the following description of the miniworld-
the part of the company to be represented in the database.

,;: The company is organized into departments. Each department has a unique
name, a unique number, and a particular employee who manages the
department. We keep track of the start date when that employee began man-
aging the department. A department may have several locations.

,p A department controls a number of projects, each of which has a unique
name, a unique number, and a single location.

We store each employee's name, social security number,2 address, salary, sex,
and birth date. An employee is assigned to one department, but may work on
several projects, which are not necessarily controlled by the same depart-
ment. We keep track of the number of hours per week that an employee
works on each project. We also keep track of the direct supervisor of each
employee.

s We want to keep track of the dependents of each employee for insurance
purposes. We keep each dependent's first name, sex, birth date, and relation-
ship to the employee.

Figure 3.2 shows how the schema for this database application can be displayed by
means of the graphical notation known as ER diagrams. This figure wil l be
explained gradually as the ER model concepts are presented. we describe the step-
b)'-step process of deriving this schema from the stated requirements-and explain
the ER diagrammatic notation-as we introduce the ER model concepts.

3.3 Entity Types, Entity Sets,
Attributes, and Keys

The ER model describes data as entities, relationships, and attribute.s. In Section 3.3.I
\ve introduce the concepts of entities and their attributes. we discuss entity types
and key attributes in Section 3.3.2. Then, in Section 3.3.3, we specifo the init ial con-
ceptual design of the entitv types for the coMPANY database. Relationships are
described in Section 3.4.

3.3.1 Entities and Attributes

Entities and Their Attributes. The basic object that the ER model represents is an
entity, which is a thing in the real world with an independent existence. An entity

2. The social secur i ty number, or SSN, is a unique nine-digi t ident i f ier assigned to each rndiv idual in the
United States to keep track of h is or her employment, benefts, and taxes. Other countr ies may have sim-
ar ident i f catron schemes, such as persona dent i f icat ion card numbers,

61

t dia-
i ional
sual ly
nrc of

create
roclel.
ipt ion
cnt i ty
'r ' ided
t.ltior-l
, 'n ' i th
-'rcllce
kr not
rtr the, t . . ' .

ntlr', it

Llslng
t . r t ion
:o the
,r. t . ! e -

ng; its

st ruc-
ci t red.
,r. t - l c-

speci-

in th is
ln l ro-

PANY,
:hema
s col l -
he ER

:=ili€

Chapter 3 Data Modeling Using the Enti ty-Relat ionship (ER) Model

Supervisor Supervisee

Figure 3.2
An ER schema diagram for the coMPANY database. The diagrammatic notation
is introduced gradual ly throughout th is chapter.

DEPENDENTS_OF

DEPENDENT

may be an object with a physical existence (for example, a particular person, car,
house, or ernployee) or it r lay be an object with a conceptual existence (for exam-
ple, a company, a job, or a university course). Each entity has attributes-the par-
i icular propert ies that descr ibe i t . For example, an EMPLOYEE ent i ty may be
described by the employee's name, age, address, salary, and job. A particular entit l '
wili have a value for each of its attributes. The attribute values that describe each
entity become a major part of the data stored in the database.

"d.

3.3 Entity Types, Entity Sets, Attributes, and Keys

Figure 3.3 shows two entit ies and the values of their attributes. The EMPLOYEE
r'ntity el has four attributes: Name, Address, Age, and Home_phone; their values are
'lohn Smith,' '231I Kirby,' 'Houston, Texas 77001,' '55,' and '713-749-2630,' respec-
tively. The COMPANY entity c, has three attributes: Name, Headquarters, and
Dresident; their values are'Sunco Oil,"Houston,'and'John Smith,'respectively.

Several types of attributes occur in the ER model: simple versus composite, single-
',dued versus multivalued, and stored versus derived. First we define these attribute
tvpes and illustrate their use via examples. Then we introduce the concept of a N U LL
', alue for an attribute.

Composite versus Simple (Atomic) Attributes. Composite attributes can be
Jivided into smaller subparts, which represent more basic attributes with indepen-
dent meanings. For example, the Address attribute of the EMPLOYEE entity shown
in Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with the val-
ues '2311 Kirbyl 'Houston', 'Texas', and'77001.'Attributes that are not divisible are
called simple or atomic attributes. Composite attributes can form a hierarchy; for
crample, Street_address can be subdivided into three simple attributes: Number,
Street, and Apartment_number, as shown in Figure 3.4. The value of a composite
.rttribute is the concatenation of the values of its constituent simple attributes.

Composite attributes are useful to model situations in which a user sometimes
refers to the composite attribute as a unit but at other times refers specifically to its
components. If the composite attribute is referenced only as a whole, there is no
need to subdivide it into component attributes. For example, if there is no need to
refer to the individual components of an address (ZIP Code, street, and so on), then
the whole address can be designated as a simple attribute.

Single-Valued versus Multivalued Attributes. Most attributes have a single
r-alue for a particular entity; such attributes are called single-valued. For example,
Age is a single-valued attribute of a person. In some cases an attribute can have a set

63

't
---,--:-.:
JmoeI-_==-?'

T

:5o11, car,
or exam-
-t l rc rrrr-

nray be
l.rr entity
r ibc each

Name: John Smith

Address: 231 1 Kirby
Houston, Texas 77001

Age:55

Home_phone : 7 1 3-749-2630

Name: Sunco Oi l

Headquarters : Houston

President: John Smith

Figure 3.3
Two entit ies,

trn,4Dt . \vtr t r ^ ^^;Llvl l LV I LL Cl I a l lU

COMPANY c, , and
their attributes,

3. ZIP Code is the name used in the Un ted States for a f ve-dioi t oostal code

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Street_address City State

,,"1\
,/ l \

. / l \
/ \

Number Street Apartment_number

Figure 3.4
A hierarchy of
composite attributes.

Address

of values for the same entity-for example, a Colors attribute for a car, or . i
College-degrees attribute fbr a person. Cars with one color have a single valr,rc.
whereas two-tone cars have two color values. Similarly, one person may not have .r
college degree, another person may have one, altd a third person rray have two or
more degrees; therefore, different persons can have different ruunbers of values fctr
the College_degrees attribute. Such attributes are called multivalued. A rnultivalued
attribute may have lower and upper bounds to constrain the number of value:
allowed for each individual entity. For example, the Colors attribute of a car may havc
between one and three values, if we assume that a car can have three colors at most.

Stored versus Derived Attributes. In some cases, two (or more) attribute val-
ues are related-fbr example, the Age and Birth-date attributes of a person. For a
part icular person ent i ty, the value of Age can be determined from the current
(today's) date and the value of that person's Birth-date. The Age attribute is hencc
called a derived attribute and is said to be derivable from the Birth-date attribute.
which is cailed a stored attribute. Some attribute values can be derived fronr
related entit ies; for example, an attribute Number-of-employees of a DEPARTMENT
entity can be derived by counting the number of employees related to (workins
for) that department.

NULL Values. In some cases, a particular entity may not have an applicable value
for an attribute. For example, the Apartment-number attribute of an address applies
only to addresses that are in apartment buildings and not to other types of resi-
dences, such as single-family homes. Similariy, a College-degrees attribute applies
only to persons with college degrees. For such situations, a special value called N U LL
is created. An address of a s ingle-fami ly home would have NULL for i ts
Apartment-number attribute, and a person with no college degree would have NULL
for College-degrees. NULL can also be used if we do not know the value of an attrib-
ute for a particuiar entity-for example, if we do not know the home phone num-
ber of 'John Smith'in Figure 3.3. The meaning of the former type of NULL is not
applicable, whereas the meaning of the latter is unknown.The unknowfi category ot
can be further classified into two cases. The first case arises rvhen it is known that

,3,

3.3 Entity Types, Entity Sets, Attributes, and Keys

the attribute value exists but is missing-for example, if the Height attribute of a per-
son is l isted as N U LL. The second case arises when it is not known whether the attrib-
ute value exists-for example, if the Home-phone attribute of a person is NULL.

Complex Attributes. Notice that composite and multivalued attributes can be
nested arbitrarily. We can represent arbitrary nesting by grouping components of a
cttmposite attribute between parentheses 0 and separating the components with
commas, and by displaying multivalued attributes between braces {}. Such attrib-
utes are called complex attributes. For example, if a person can have more than one
residence and each residence can have a single address and multiple phones, an
rttribute Address_phone for a person can be specified as shown in Figure 3.5.4 Both
Phone and Address are themselves composite attributes.

3.3.2 Entity Types, Entity Sets, Keys, and Value Sets
Entity Types and Entity Sets. A database usually contains groups of entities that
.rre similar. For example, a company employing hundreds of employees may want to

'tore similar information concerning each of the employees. These employee enti-
t ies share the same attributes, but each entity has tIs own value(s) for each attribute.
..\rr entitytype defines a collection (or sef) of entities that have the same attributes.
Each entity type in the database is described by its name and attributes. Figure 3.6
:hows two entity types: EMPLOYEE and COMPANY, and a l ist of attributes for each.
\ t-ew individual entities of each type are also illustrated, along with the values of
their attributes. The collection of all entit ies of a particular entity type in the data-
b.ise at any point in time is called an entity set; the entity set is usually referred to
using the same name as the entity type. For example, EMPLOYEE refers to both a
rvpe of entity as well as the current set of all employee entities in the database.

.\n entity type is represented in ER diagramss (see Figure 3.2) as a rectangular box
cnclosing the entity type name. Attribute names are enclosed in ovals and are
.itttrched to their entity type by straight lines. Composite attributes are attached to
their component attributes by straight lines. Multivalued attributes are displayed in
.louble ovals. Figure 3.7(a) shows a CAR entity type in this notation.

iAddress_phone({Phone(Area_code,Phone_numbed},Address(Street_address
(Number,Street,Apartment_number),City,State,Zip)))

65

aJr. or a
.lc vi.rlue,
()l hal\re a
. d t\\ 'o or
,i/rrc-s for

; i t i r a lued
. ' l - r 'a lues
:n.n have
.it ntost.

5utc val-
r)n. For a
- 'current
' i : hence
.rr t r ibute,
, cd iror-n
\RTMENT
rr orking

r l . lc value
.. .rpplies
' r o i resi-
tc .rpplies
I lcd NULL
L firr its
. t rc 'NULL
.rn i ittr ib-
)l lL ' l lL l lT l -

JLL rs l rot
r tcgorY of
l() \ \ ' l l that

Figure 3.5
A complex attribute:

Arldrocc nhnna

tror those fami l iar wi th XML, we should note that complex at t r ibutes are s im lar to complex elements ln
\1 L (see Chapter 27),

We use a notat ion for ER diagrams that rs c lose to the or ig inal proposed notat ion (Chen 1976), Many
.er notatrons are in use; we i l lustrate some of them later n th s chapter when we present UML class
agrams and in Appendix A.

T-

Figure 3.6
Two entity types, EMPLOYEE
and COMPANY, and some
member entit ies of each.

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Entity Type Name: EMPLOYEE

Entity Set:
(Extension)

COMPANY

Name, Headquarters, President

c1 o

(Sunco Oil, Houston, John Smith)

C2o

(Fast Computer, Dallas, Bob King)

Name, Age, Salary

Arr entity type describes the schema or intension for a set of entities tirat share thc
same structure. The collection of entit ies of a particular entity type is grouped into
an entity set, which is also called the extension of the entity t) 'pe.
Key Attributes of an Entity Type. An important constrainr on rhe entit ies of an
entity type is the key or uniqueness constraint on attributes. An entity type usuallr
hars an attribute whose values are distinct for each individual entity in the entity set.
Such an attribute is calied a key attribute, and its values can be useci to identifr
each entity uniquely. For exarnple, the Name attribute is a key of the coMpANy
entity type in Figure 3.6 because no two companies are allowed to have the same
name. For the PERSoN entity type, a typical key attribute is ssn (Social Securitr
Number). Sornetirnes several attributes together form a key, meaning that the corrr-
bination of the attribute values must be distinct for each entity. If a set of attributes
possesses this propertv, the proper way to represent this in the ER model that wr'
describe here is to define a contposite attribute and designate it as a key attribute oi
the entity type. Notice that such a composite key rnust be ntirt intal; that is, all com-
ponent attributes must be included in the composite attribute to have the unique-
ness property. Superf luous at t r ibutes must not be included in a key. In ER
diagrammatic r.rotatior-r, each key attribute has its name underlined inside the oval.
as i l lustrated in Figure 3.7(a).

Specifying thirt an attribr.rte is a key of an entitv type means that the preceding
uniqueness property rnust hold for every cntit l,5gs of the entitv type. Hence, it is.r
constrair-rt that prohibits any two entit ies from having the same value for the ker
attribute at the same time. It is not the property of a particular extensiorr; rather, ir
is a constraint on a// e-rtensiotls of the entitv type. This key constraint (and other
constraints we di-scr.rss later) is derived from the constraints of the miniworld that
the database re[)resen ts.

.3"

3.3 Entity Types, Entity Sets, Attributes, and Keys

Some entity types have more than one key attribute. For example, each of the
Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in its
orvn right. The Registration attribute is an example of a composite key formed from
trvo simple component attributes, State and Number, neither of which is a key on its
orvn. An entity type may also have no key,in which case it is called a weak entity type
see Section 3.5).

Value Sets (Domains) of Attributes. Each simple attribute of an entity type is
associated with a value set (or domain of values), which specifies the set of values
that may be assigned to that attribute for each individual entity. In Figure 3.6, if the
range of ages allowed for employees is between 16 and 70, we can specifr the value
let of the Age attribute of eVpLOYf E to be the set of integer numbers between 16
and 70. Similarly, we can specify the value set for the Name attribute to be the set of
strings ofalphabetic characters separated by blank characters, and so on. Value sets
are not displayed in ER diagrams. Value sets are typically specified using the basic
data types available in most programming languages, such as integer, string,
Boolean, f loat, enumerated type, subrange, and so on. Additional data types to rep-
resent date, time, and other concepts are also employed.

$
t

(a)

(b)

.rre the
,.d into

sofan
.rsually
i tv set .
I'ntifr
/PANY
:'Si l ITl€

- l r l r rL/

a c0n1-
r ibutes
hat lve
)ute of
Icom-
r l lque-
In ER
Lc oval ,

, ' . 'dir-rg
. i t isa
he key
ther, it
I other
ld that

Figure 3.7
The CAR entity type with two

key attributes, Registration and
Vehicle_id, (a) ER diagram
notaiion. (t-r) Fntitv set with

three entit ies.

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

cARl
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

cAR2
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

cAR3
((VSY 720, TEXAS), fD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

F-

Chapter 3 Data Modeling Usrng the Entity-Relationship (ER) Model

Mathematically, an irttr ibute A of entity type E rvhose value set is V can be clef-ined a.
a function from E to the power set6 P(V) of V:

A: E --> P(V)

We refer to the value of attribute A fbr entity e as A(e). The previous definit ion cor -
ers both single-vah"red and multivalued attributes, as well as NULLs. A NULL value i.
represented by the entpty ser. For single-varlued attributes, A(e) is restricted to beinc
a singleton set for each entitv e in E, whereas there is no restriction on multivaluec
attributes.T For a courposite attribute A, the vaiue set V is the Cartesian product or
P(yr), P(\/),. . ., P(l. ' ,,), where \1,, y,, . ., {, are the value sets of the simple compo-
nent attributes that tbrm A:

V= P(Vr) x P(y:) x . . . x P(y, ,)

The value set provides all possible values. Usually only a small number of these val-
ues exist in the database. Those values represent the data from the state of the mini-
world. They correspond to the data as it actually exists in the miniworld.

3.3.3 lnit ial Conceptual Design of the COMPANY Database
We can now def ine the ent i ty types for the COMPANY database, based on thc
requirements described in Section 3.2. After defining several entity types and their
attributes here, we refine our design in Section -1.4 after we introduce the concept of
a relationship. According to the requirenlents l isted in Section 3.2, rve crrn identif\
four entity types-one correspronding to each of the four items in the specification
(see Figure 3.8):

' An ent i ty type DEPARTMENT rvi th at t r ibr-r tes Name, Number, Locat ions.
Manager, and Manager_start_date. Locations is the or-rly multivaiued attribute.
We can speci f l ' that both Name and Number are (separate) key at t r ibutes
because each was specified to be unique.

: : An ent i ty type PROJECT with at t r ibutes Name, Number, Locat ion, ancl
Controll ing-department. I loth Name and Number are (separate) key attribr-rtes.

::, An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary.
Birth_date, Department, and Supervisor. Both Name and Address may be con-r-
posite attributes; however, this wrrs not specified in the requirements. \{e
must go back to the users to see i[any of them rvill ref-er to the individual
components of Name-First name, Middle_init ial, Last name-or of Address.

' An entity type DEPENDENT with attributes Employee, Dependent_name, Sex.
Birth-date, and Relationship (to the employee).

6, The power set P(V) of a set / s the set of alL subsets of V
7 A singleton set s a set wrth only one eLement (value),

-3.

3.3 Entity Types, Entity Sets, Attributes, and Keys 69

Figure 3.8
Prelrminary design of ent i ty

types for the COMPANY
database. Some of the

shown attributes wii l be
ref ined into relat ionships,

)n cov-
, l lue is
r bcing
rr . r lued
tluct of
' r) t l lpo-

csc \ral-
c nr in i -

e
on the
rti their
rcc'pt of
idr'ntiff
t lcat ion

,cat ions,
: t r ibute.
t r ibutes

on, i rnd
l bLltes.

; . Salary,
l'tc com-
-'l'rts. We
diviclual
,oress.

rme, Sex,

Fname)(Mini t) (Lna.e Project) (Hours

Name) z--\\I-,z----=\ (Works on
-\(Ssn) l (Salary))-=:

Depadment) \ \ \ | / -- l (Supervisor

Birth date
EMPLOYEE

Address

So f-ar, we have not represented the fact that an employee can work on several proj-
ccts, nor have we represented the number of hours per week an employee works on
c.rch project. This characteristic is i isted as part of the third requirement in Section
-r.1, and it can be represented by a multivalued composite attribute of EMPLOYEE
c.rl led Works on with the simple components (Project, Hours). Alternatively, it can be
represented as a multivalued composite attribute of PROJECT called Workers with
rhe simple components (Employee, Hours). We choose the first alternative in Figure
r.8, which shows each of the entity types just described. The Name attribute of
EMPLOYEE is shown as a composite attribute, presumably after consultation with
thc users.

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.4 Relationship Types, Relationship Sets,
Roles, and Structural Constraints

In Figure 3.8 there are several irnplicit relationships an-lol-rg the varrious entity types.
In fact, whenever an attribute of one entity type refers to another entitv type, some
relationship exists. For example, the attribute Manager of DEPARTMENT refers to an
employee who manirges the department; the at t r ibute Control l ing-department oi
PROJECT refers to the departn-rer.rt that controls the project; the attribute Supervisor
of EMPLOYEE refers to another employee (the one who supervises this employee);
the at t r ibute Department of EMPLOYEE refers to the department for which the
employee rvorks; and so or.r. In the ER moclel, these references should not be repre-
sented as attributes but as relationships, which are discussed in this section. The
COMPANY databa-se scher.na wil l be refined in Section 3.6 to represent relationships
explicit ly. In the init ial design of entity types, relationships are typically captured in
the tbrm of attributes. As the design is retined, these attributes get converted into
relat ionships between ent i ty types.

This section is organized as fbllows: Section 3.4.1 introduces the concepts of rela-
tionship types, relationship sets, and relationship instances. We define the concepts
of relationship degree, role narnes, and recursive relationships in Section 3.4.2, and
then we discuss structural constraints on relationships-such as cardinality ratios
and existence dependencies-in Section 3.4.3. Section 3,4.4 shows how relationship
types can also have attribr,rtes.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R an'rong n entity types E', E2, . . ., E,, defines a set of associa-
tions-or a relationship set-among entit ies from these entity types. As for the
case of entity types and entity sets, a relationship type and its corresponding rela-
tionship set are customarily referred to by the same neme, R. Mathematically, the
relationship set R is a set oI relationship instances r;, where each r, associates n indi-
vidual entit ies (ep e1, .. ., c,,), and each entity e, in r; is a member of entity type E', I
3 j! n. Hence, a relationship type is a mathematical relation on E1, E2, . . ., Er; alter-
natively, it can be deflned as a subset of the Cartesian product E, x Erx . . . x E,,. Each
of the entity types E1, E ., . . ., E,, is said to participate in the relationship type R; sim-
ilarly, each of t l-re individual entit ies €D e,,. .., e,, is said to participate in the relation-
ship instarnce r ;= (ey, e. , . . . , e, ,) .

Informally, each relationship instance r; in R is an association of entit ies, where the
association includes exactly one entity from each participating entity type. Each
such rel:.rtionship instance r, represents the fact that the entities participating in r'
are related in some way in the corresponding miniworld situation. For example,
consider a relationship type WORKS-FOR between the two entity types EMPLOYEE
and DEPARTMENT, rvhich associates each employee with the department for which
the employee works. Each relationship instance in the relationship set WORKS-FOR
associates one EMPLOYEE entity and one DEPARTMENT entity. Figure 3.9 i l lustrates
this example, where each relationship instance r; is shown connected to the

-3.

EMPLOYEE

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 71

WORKS FOR DEPARTMENT

Figure 3.9
Some 'nstarces in the

WORKS_[OR relatror sr ip
cet whir l ' renre. .enls r .e la-

t ionship type WORKS_FOR
between EMPLOYEE and

DEPARTIVENT.

pes.
Jme
oan
rt of
visor

the

The
hips
:d in
into

rela-
-epts
and

atios
rship

€1

€3

€4

ocia-
r the
rela-
.', the
indi-

tlter-
Each
slm-
I lon-

'e the
Fach
.tnr i
nple,
]YEE
rhich
_FOR
trates
r the

:MPLOYEE and DEPARTMENT entit ies that participate in r,. In the miniworld repre-
.crrted by Figure 3.9, employe€S s1, er, and eu work for department d,; employees el
.rnd en work for department d,; and employees e. and e, work for department d.,.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which
rrc connected by straight l ines to the rectangular boxes representing the participat-
ing entity types. The relationship name is displayed in the diamond-shaped box (see
Ir igure 3.2).

3.4.2 Relationship Degree, Role Names,
and Recursive Relationships

Degree of a Relationship Type. The degree of a relationship type is the number
oi participating entity types. Hence, the WORKS FOR relationship is of degree two.
.\ relationship type of degree two is called binary, and one of degree three is called
ternary. An example of a ternary relationship is SUPPLY, shown in Figure 3.10,
rvhere each relationship instance r, associates three entit ies-a supplier s, a part p,
.ind a project j-whenever s supplies partP to project j. Relationships can generaliy
be of any degree, but the ones most comrnon are binary relationships. Higher-
degree relationships are generally more complex than binary relationships; we char-
.rcterize them further in Section 3.9.

72 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

SUPPLIER SUPPLY

Figure 3.10
Some relat ionship
instances in the
SUPPLY ternary
rplal innchin sel

PROJECT

l1

:
l2

le

Relationships as Attributes. It is sometimes convenient to think of a relationship
type in terms of attributes, as we discussed in Section 3.3.3. Consider the
WORKS_FOR relationship type of Figure 3.9. One can think of an attribute called
Department of the EMPLOYEE entity type where the value of Department for each
EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that
employee works. Hence, the value set for this Department attribute is the set of all
DEPARTMENT entit ies, which is the DEPARTMENT entity set. This is what we did in
Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the
COMPANY database. However, when we think of a binary relationship as an attrib-
ute, we always have two options. In this example, the alternative is to think of a mul-
tivalued attribute Employee of the entity type DEPARTMENT whose values for each
DEPARTMENT entity is the set of EMPLOYEE entit ies who work for that department.
The value set of this Employee attribute is the power set of the EMPLOYEE entity
set. Either of these two attributes-Department of EMPLOYEE or Employee of
DEPARTMENT-can represent the WORKS_FOR relationship type. If both are repre-
sented, they are constrained to be inverses ofeach other.8

B. Thrs concept of represent ing relat ionship types as at t r ibutes is used in a c lass of data models cal led
funct ional data models. In object databases (see Chapter 2O), re lat ionships can be represented by ref-
erence at t r ibutes, e i ther in one direct ion or in both direct ions as inverses, In relat ional databases (see
Chapter 5), foreign keys are a type of reference at t r ibute used to represent relat ionships.

"dl

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

Role Names and Recursive Relationships. Each entity type that participates in
.r relationship type plays a particular role in the relationship. The role name signi-
:lcs the role that a participating entity t i-om the entity tvpe plirvs in each relationship
:nstance, and helps to explain what the relationsl-rip means. For exanrple, in the
WORKS-FOR relationship type, EMPLOYEE plays the role of entployee or worker and
DEPARTMENT plays the role of departrnent or employer.

I{ole names are not technically necessary in relationshipr types rvhere all the partici-
prting entity types are distinct, since each participating entity type name can be
r.is! 'd as the role name. However, in some cases the -srinle entity type participates
;rrcrre than once in a relationship type in diJlbrent role,-s. In such cases the role name
[.. 'comes essential for distinguishing the meaning of each participation. Such rela-
rionship types are called recursive relationships. Figure 3.11 shows an example.
I 'he SUPERVISION relationship type relates an emplo,vee to a supervisor, where
iroth ernployee and supervisor entit ies are members o[the same EMPLOYEE entity
rr'1re. | lgr.., the EMPLOYEE entitv rvpe pnrticipofes fh,ice in SUPERVISION: once in
thr'role of supervisor'(or boss), and once in the role oI supervisee (or subordinate).
F.rcl-r relationship instance r' in SUPERVISION associates two employee entit ies er
.rnd e1, one of which plays the role of supervisor and the other the role of supervisee.
I n Figure 3. I 1, the l ines marked ' 1 ' represent the supervisor role, and those marked
I' reprresent the supervisee role; hence, c, supervises e, and e-,, eo supervises cn and
,' , irDd eo supervises e I and eo. ln this example, each relationship instirnce must have
tr lo l ines, one marked with '1 ' (supervisory) and the other wi th '2 ' (supervisee).

.. it ionship

. . i . . ler the
'utc cal led
: for each
hich that
' :et of all
' , 'c did in
r t lor tne
.rn attrib-
t r ia mul-

s tor each
partment.
'EE ent i ty
,ployee of
Jrc repre-

EMPLOYEE SUPERVISION Figure 3.11
A recursive relation-
ship SUPERVISION

between EIVPLOYEE
in the supervisor role
(1) and EN/PLOYEE

ln lhe subordinate
role (2).

74 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.4.3 Constraints on Relationship Types
Relationship types usually have certain constraints that l imit the possible combina-
tions of entit ies that rnay participate in the corresponding reiationship set. These
constraints are deternrined from the miniworld situation that the relationships rep-
resent. For exanrple, in Figure 3.9, if the contpany has a rule that each employee
must work for exactl l, one department, then we would l ike to describe this con-
straint in the schema. We can dist inguish two main types of re lat ionship con-
straints: cardinality rotio and porticipation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary
relationship specifies the rnaxinuri number of relationship instances that an entity
can participate in. For example, in the WORKS_FOR binary relationship type,
DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department
can be related to (that is, eniploys) any nun"rber of employees,e but an employee can
be related to (work for) only one department. The possible cardinality ratios for
binary relat ionship types are 1: i , 1:N, N:1, and M:N.

An examprle of a l: l binary relationship is MANAGES (Figure 3.12), which relares a
department entity to the employee who manages that department. This represents
the minirvorld constraints that-at any point in time-an ernployee can manage
one departrnent only and a department can have one manager only. The relation-
ship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N because the nini-
world rule is that an employee can work on several projects and a project can have
several employees.

Figure 3.12
A 1:1 relat ionship,
MANAGES.

EMPLOYEE MANAGES DEPARTMENT

d1

d2

ds

9, N stands Ior any number of re lated ent i t les (zero or more),

'3u

EMPLOYEE

3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

WORKS ON PROJECT

nbina-
These

_rs rep-
ployee
s con-
,1 COn-

binary
entity

) type,
-tment
'ee can
ios for

rlates a
:esents
lanage
lat ion-
mini-

n have

Figure 3.13
An M:N relat ionship,

WORKS_ON

€1

e2

€a

Pt

Pz

Ps

P4

t-ardinality ratios for binary relationships are represented on ER diagrams by dis-
plaving l, M, and N on the diamonds as shown in Figure 3.2.

Participation Constraints and Existence Dependencies. The participation
constraint specifies whether the exister.rce of an entity depends on its being reiated
ttr irnother entity via the relationship type. This constraint specifies the minimurn
number of relationship instances that each entity can participate in, and is some-
t imes called the minimum cardinality constraint. There are two types of participa-
tion constraints-total and partial-which we il lustrate by example. If a company
policy states thal every employee must work for a department, then an employee
r.rlt i ty can exist only if i t participates in at least one WORKS FOR relationship
instance (Figure 3.9). Thus, the part ic ipat ion of EMPLOYEE in WORKS_FOR is
c.rl led total participation, meaning that every entity in the total sel of employee
cntit ies must be related to a department entity via WORKS_FOR. Total participation
is trlso called existence dependenry. In Figure 3.12 we do not expect every employee
to nanage a department, so the participation of EMPLOYEE in the MANAGES reia-
tionship type is partial, meaning thar some or part of the set o/employee entit ies are
rc'lated to some department entity via MANAGES, but not necessarily all. We wil l
ret-er to the cardinality ratio and participation constraints, taken together, as the
structural constraints of a relationship type.

_L-

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

In ER diagrams, total participation (or existence dependency) is displayed as a dou-
ble line connecting the participating entity type to the relationship, whereas partial
participation is representedby a single l ine (see Figure 3.2).

3.4.4 Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For
example, to record the number of hours per week that an employee works on a par-
ticular project, we can include an attribute Hours for the WORKS_ON relationship
type of Figure 3.13. Another example is to include the date on which a manager
started managing a department via an attribute Start-date for the MANAGES rela-
tionship type of Figure 3.12.

Notice that attributes of I :1 or I :N relationship types can be migrated to one of the
participating entity types. For example, the Start_date attribute for the MANAGES
relationship can be an attribute of either EMPLOYEE or DEPARTMENT, although con-
ceptually it belongs to MANAGES. This is because MANAGES is a l:1 relationship, so
every department or employee entity participates in at most one relationship instance.
Hence, the value of the Start-date attribute can be determined separately, either by the
participating department entity or by the participating employee (manager) entity.

For a 1:N relationship type, a reiationship attribute can be migrated only to the
entity type on the N-side of the relationship. For example, in Figure 3.9, if the
WORKS-FOR relationship also has an attribute Start_date that indicates when an
employee started working for a department, this attribute can be included as an
attribute of EMPLOYEE. This is because each employee works for only one depart-
ment, and hence participates in at most one relationship instance in WORKS_FOR.
In both 1: I and l:N relationship types, the decision as to where a relationship attrib-
ute should be placed-as a relationship type attribute or as an attribute of a partic-
ipating entity type-is determined subjectively by the schema designer.

For M:N relationship types, some attributes may be determined by the combintttion
of participating entit ies in a relationship instance, not by any single entity. Such
attributes must be specified as relationship attributes. An example is the Hours attrib-
ute of the M:N relationship WORKS_ON (Figure 3.13); the number of hours an
employee works on a project is determined by an employee-project combination
and not separately by either entity.

3.5 Weak Entity Types
Entity types that do not have key attributes of their own are called weak entity
t1pes. In contrast, regular entity types that do have a key attribute-which include
all the examples we discussed so far-are called strong entity types. Entit ies
belonging to a weak entity type are identified by being related to specific entities
from another entity type in combination with one of their attribute values. We call

.G

3.5 Weak Entity Types

this other entity type the identifying or owner entity type,r') and we cirl i the rela-
tionship type that relates a weak entity type to its owner the identif ing relation-
ship of the weirk entity type.rr A ll'eak entity type always has a total participtrtion
.onstraint (existence dependency) rvith respect to its identifying relationsl,ip
because a weak entity cannot be identif ied without an owner entity. However, not
r'\.ery existence ciependency results in a weak entity tvpe. For example, ir
DRIVER_LICENSE entity cannot exist Lrnless it is related to a PERSON entity, even
thor-rgh it has its orvn key (License number) and hence is not a rveak entity.

Consider the er-rtity type DEPENDENT, related to EMPLOYEE, which is used to keep
track of the deprendents of each employee via a 1:N relationship (Figure 3.2). The
rttributes of DEPENDENT are Name (the first name of the dependent), Birth_date,
Sex, and Relationship (to the ernployee). Two dependents of two distirrct employees
nray, by chance, have the same values ft lr Name, Birth date, Sex, and Relationship, but
they are sti l l distinct entit ies. They are identif ied as distinct entit ies only after deter-
rrrirring the particulttr enrployee ctrtif t, to rvhich each dependent is related. Eacl-r
r 'rnployee entit,y is said to own the dependent entit ies that are related to it.

.\ weak entity type normally has a partial key, which is the set of attributes that car.r
ur-riquely identiff weak entit ies that are related to the sanrc owner entity.lr In our
erample, if we assume that no two dependents of the same employee ever have the
same first name, the attribute Name of DEPENDENT is the partial key. In the worst
cirse, a composite irttr ibute of all t lrc wcak errtity's ottributes rvil l be the partial key.

In ER diagrams, both a weak entit,v tvpe and its identif,ving relationship are distin-
guished by surrounding their boxes and diamonds with clouble l ines (see Figure
-1.2). The partial key attribute is underlined with a dashed or dotted l ine.

\\ 'eak entity types can sometimes be represented as complex (composite, multi-
vaiued) attributes. In the preceding exan'rple, we could specity a multivalued attrib-
r . r te Dependents for EMPLOYEE, which is i r composi te at t r ibute wi th component
attributes Name, Birth_date, Sex, and Relationship. The choice of rvhich l 'epresentatiorl
to use is made b,v the database designer. One criterion that may be used is to choose
tl-re weak entity type representation if there are many attributes. If the weak entity
participates independently in relationship types other than its identif ing relati irrt-
ship type, then it should not be modeled as a complex attribute.

In general, any number of levels of weak entity types can be defined; an owner
e ntity type may itself be a weak entity tvpe. In addition, a wezrk entity type may have
nrore than one identifring entit,v type sncl an iclentifying relationsl-rip type of clegree
higher than two, as we il lustrate in Section 3.9.

10. The ident i fy ing ent i ty type is also somet mes cal led the parent ent i ty type or the dominant ent i ty type

I 1. The weak ent i ty type is also somet imes ca ed the chi ld ent i ty type or the subordinate ent i ty type,

12, The oar l ia l kev rs somet mes cal led the discr iminator.

77

l r . - ; i -
p ' . - : : . r l

h
h
F*
F

)r

-ll' r

.) r

-t-

| -.c
ryl:S
t : -
F- "1
I- .,"
,l! - -.J

,&

'r-- '

G ---

] f i ! , -_

l:

Chapter 3 Data Modeling Using the Enti ty-Relat ionship (ER) Model

3.6 Ref ining the ER Design
for the COMPANY Database

We ctrn refine the c-latabase design of Figure 3.8 by changing the attributes that rep-
resent relationsl'r ips into lelationship types. -fhe cardir-rality ratio and participation
constraint oi each relationship type are determined fiom the reqr-rirements i isted in
Section 3.2. If some cardinality ratio clr dependency cannot be determined from the
requirements, the users must be questior.red further to determine these structural
constraints.

In our example, we specify the following relationship types:

, MANAGES, a l:1 relationship type bc'nveen EMPLOYEE and DEPARTMENT.
EMPLOYEE pirrt icipation is partial. DEPARTMENT participation is not clear
from the requirements. We question the users, who say that a department
must have a mauager at a l l t i rnes, which impl ies total part ic ipat ion.13 The
zrttribr-rte Start_date is assignecl to this relationship type.
WORKS-FOR, a l :N relat ionship type between DEPARTMENT and
EMPLOYEE. Both participations are total.

' i CONTROLS, a l:N relationship type between DEPARTMENT and PROJECT.
The,rrrr i r i r ret isn 6f PROJECT is total , whereas that of DEPARTMENT is
deternrined to be partial, after consultation with the users indicates that
some deptrrtments may control no proiects.

i: SUPERVISION, a 1:N relationship type betrveen EMPLOYEE (in the supervi-
sor role) arrd EMPLOYEE (in the supervisee role). Both part ic ipat ions are
detern.rined to be partial, after the users indicate that r.rot every employee is a
supervisor and not every errrployee has a supervisor.

I WORKS_ON, determined to be an M:N relat ionship type lv i th at t r ibute
Hours, after the users indicate that a project can have several employees
working on it. Both participations are determined to be total.

, ' : DEPENDENTS_OF, a l :N relat ionship type between EMPLOYEE and
DEPENDENT, which is also the identifying relationship for the rveak entity
type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of
DEPENDENT is tot i r l .

Afler specitying the above six rehtionship types, we remove tiorn the entity types in
Figure 3.8 atl attribr-rtes that have been refined into relationships. These include
Manager and Manager-start-date front DEPARTMENT; Controll ing-department from
PROJECT; Department, Supervisor, and Works-on from EMPLOYEE; and Employee
from DEPENDENT. It is important to have the least possible redundancywhen we
design the conceptual schema of a database. If some redundancy is desired at the
storage level or at the user view level, it can be introduced later, as discussed in
Sect ion 1.6.1.

13, The rules n the m niwor ld that determ ne the conslraints are somet mes cal led the busrness ruies
srnce they are determ ned by the business or organizaton that wi l l ut i l lze the database.

3.7 ER Diagrams, Naming Conventions, and Design lssues

3.7 ER Diagrams, Naming Conventions,
and Design lssues

3.7.1 Summary of Notation for ER Diagrams
i :gures 3.9 through 3.13 i l lustrate exirmples of the participation of entity types in
:ri.rt ionship types by displaying their extensions-the individual entity instances
.i:rd relationship instances in the entity sets and relationship sets. In ER diagrams
:hc.'rnphasis is on representing the schemas rather than the instances. This is more
-... ' t ir l ir-r database design because a database schema changes rarely, whereas the
-\)ntents of the entity sets change frequently. In addition, the schema is usually eas-
.cr to display than the extension of a database, because it is much smaller.

i ieure 3.2 displays the COMPANY ER database schema as an ER diagram. We now
:cview the full ER diagram notatior.r. Entity types such as EMPLOYEE, DEPARTMENT,
.ind PROJECT are shown in recttrngular boxes. Reiationship types such as
,VORKS_FOR, MANAGES, CONTROLS, ar-rd WORKS_ON are shown in diamond-
.haped boxes at tached to the part ic ipat ing ent i ty types with straight l ines.
\ttributes are shown in ovals, and each attribute is attached by a straight l ine to its
rntity type or relationship type. Component attributes of a composite attribute are
.rttached to the oval representing the cornposite attribute, as i l lustrated by the Name
.rttribute of EMPLOYEE. Multivalued attributes are shown in double ovals, as i l lus-
trated by the Locations attribute of Of pnRtVENT. Key attributes have their names
under l ined. Der ived at t r ibutes are showrr in dotted ovals, as i l lustrated by the
Number_of_employees attribute of DEPARTMENT.

\\ 'eak entity types are distinguished by being placed in double rectangles and by
having their identifring relationship placed in double diamonds, as i l lustrated by
the DEPENDENT ent i ty type and the DEPENDENTS OF ident i fy ing relat ionship
tvpe. The partial key of the weak entity type is underlined with a dotted l ine.

ln Figure 3.2 the cardinality ratio of each binary relationship type is specified by
.r t taching a 1, M, or N on each part ic ipat ing edge. The cardinal i ty rat io of
DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas i t is l :N for
DEPARTMENT:EMPLOYEE in WORKS_FOR, ar-rd M:N for WORKS_ON. The partici-
pation constraint is specified by a single l ine for partiai participation and by double
lines for total participation (existence dependency).

In Figure 3.2 we show the role names for the SUPERVISION relat ionship type
Lrecause the EMPLOYEE entity type plays both roles in that relationship. Notice that
tl-re cardinality is 1:N fi 'orn supervisor to supervisee because each employee in the
role of supervisee has at most one direct supervisor, whereas an employee in the role
of supervisor can supervise zero or more employees.

Figure 3.14 summarizes the conventions for ER diagrams.

79

I , ' : i r€p-
G. . ' . i I lO[

; i . : :d in
| : ::r the
,* - - :ural

F' , . ' :NT.
| :, . lear
F ')ent

F The

F- lnd

F, . .Cr.
frr : ' .T is
)x- ' . :hat

) ,r..":rvi-
lb .are

F.r : . lsa

fr: rute
hr : ces

ts: rnd
} : : t tv

; r ' ' :of

:. l f l

:de
: ,)m
-,ee

:he
: in

:5.

80 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Figure 3.14
Summary of the
notation for ER
0ragrams.

Meaning

Entity

Weak Entity

Relationship

Indentifying Relationship

Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

Total Participation of E, in R

Cardinality Ratio 1 : N for E, rE, in R

Structural Constraint (min, max)
on Participation of E in R

Ll,L2 rr i l r

3.7 ER Diagrams, Naming Conventions, and Design lssues

3.7.2 Proper Naming of Schema Constructs
\r'hen designing a database scherna, the choice of names for entity types, attributes,
:c lat ionship types, and (part icular ly) ro les is not always straightforrvard. One
.hould choose names that convey, as rruch as possible, the meanings attached to the
Jif tbrent constructs in the schema. We choose to use slngulc r names for errtity types,
r.rther than plural ones, because the entity type name applies to each individual
dutity belonging to that entity type. In our ER diagrarns, rve rvil l use the convention
that entity type and relationship type names are uppercase letters, attribute names
.rr.- init ial letter capitalized, and role names are lowercase letters. We have used this
;onvention in Figure 3.2.

.\s a general prractice, giver.r a narratir,e description of the dirtabase requirements, the
'l()lr l l-s appearing in the narrative tend to give rise to entity type names, and the verbs
l! 'nd to indicate names of relationship types. Attribute names generally arrise from
.rdclit ional nor.rns that describe the nouns corresponding to entity types.

. \nother nalning consic lerat ion involves choosing binary relat ionship names to
nr;rke the ER diagram of the schema readable fiom left to right and from top to bot-
trrrrr. We have generally follorved this gLrideline in Figure 3.2.To explain this naming
.onvention further, we have one exception to the conventiorr in Fieure 3.2-the
DEPENDENTS_OF relationship type, which reads from bottom to top. When we
.lescribe this relationship, we can say that the DEPENDENT entit ies (bottom entity
tvpe) are DEPENDENTS_OF (relat ionship name) an EMPLOYEE (top ent i ty type).
'fo cl.rarnge this to read from tol-r to bottc'rm, we coulcl rename the relationship type to
HAS_DEPENDENTS, which would tl-ren read as fbllows: An EMPLOYEE entity (top
. 'nt i ty type) HAS_DEPENDENTS (relat ionship nnme) of type DEPENDENT (bottom
..ntity type). Notice that this issue arises because each binar,v relationship can be
.lcscribed starting from either of the trvo participating entitv types, as discussed in
the beginning of Section 3.4.

3.7.3 Design Choices for ER Conceptual Design
It is occasiorlally diff icult to decide rvhether a particular concept in the miniworld

'hould be modeled as an entity type, an attribute, or a relationship type. In this sec-
tion, we give some brief guidelines as to which construct should be chosen in partic-
ular s i tuat ions.

In general, the schema design process should be considered an iterative refinement
process, where an init ial design is created ar-rd then iteratively refined unti l the most
suitable design is reached. Some of the refinements that are otten used irtclude the
fbllowing:

,.,, A concept may be flrst modeled as an attribute and then refined into a rela-
tionship because it is determined that the attribute is a reference to another
entity t1'pe. It is often the case that a pair of such attrit 'rr.rtes that are ir.rverses
of one another are refined into a binarv relationship. We discussed this type
of refinement in detail in Section 3.6.

81

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

Similarly, an attribute that exists in several entity types may be elevated or
promoted to an independent entity type. For example, suppose that several
entity tvpes in a UNIVERSITY database, such as STUDENT, INSTRUCTOR, and
COURSE, each has an attribute Department in the init ial design; the designer
may then choose to create an entity type DEPARTMENT with a single attribute
Dept_name and relate it to the three entity types (STUDENT, INSTRUCTOR,
and COURSE) via appropriate relationships. Other attributes/relationships of
DEPARTMENT may be discovered later.
An inverse refinement to the previous case may be applied-for example, if
an entity type DEPARTMENT exists in the init ial design with a single attribute
Dept-name and is related to onll ' one other entity type, STUDENT. In this
case, DEPARTMENT r-r-ray be reduced or demoted to an attribute of STUDENT.
Section 3.9 discusses choices concerning the degree of a relationship. In
Chapter 4, we discuss other refinenlents concerning specialization/general-
ization. Chaplsl l2 discusses additional top-dorvn and bottom-up refine-
n-rents that are comnron in large-scale conceptual schema design.

3.7.4 Alternative Notations for ER Diagrams
There are rnan,v alternative diagrar.nmatic notatiolrs fbr displaying ER diagrams.
Appendix A give's some of the more popular notations. In Section 3.8, we introduce
the Universarl N,lodeling Language (UML) notation for class diagrams, which has
been proposed as a standard fbr conceptuirl object n-rodeling.

In this section, we describe one alternative ER notation fbr specifying structural
constraints on relationships. This notation involves associating a pair of integer
numbers (min, max) with each pnrticiptrt iott of an entity type E in a relationship
type R, where 0 (min (rnax irnd rnax) l. The numbers mean that for each entity e
in E, c mr-rst prarticipate in at least min and at u.tost max relationship instances in R
at any point irr t i trre.ln this r.nethod, min = 0 implies partial participation, whereas
min > 0 implies total participation.

Figure 3.15 displays the COMPANY database schema r-rsing the (min, max) nota-
tion.ra Usually, t lne r-rses either the cardinality ratio/single-l ine/double-line notation
or the (min, nrirx) notation. The (rnin, max) notation is more precise, and we can
use it to specify structural constraints for relationship types of any degree. However,
it is not sufficient for specifuing some ke1' constraints on higher-degree relation-
ships, as discussecl in Section -3.9.
Figure 3.15 also displays all the role names for the COMPANY database schema.

14. n some notatons, part icular ly those used in oblect rnodel ing methodologies such as UML, the (mrn,
rnax) s p aced on the opposi te srdes to the ones we have shown. For example, for the WORKS FOR rela-
tonship n Fgure 3,15, the (1,1)would be on the DEPARTMENT side, and the (4,N) would be on the
EN/PLOYEE side, Here we used the orq nal notat ion t rom Abriai (1974).

3.7 ER Diagrams, Naming Convent ions, and Desrgn lssues

., i:ed or
ri :C\'€I3l
TQ. and
:;. iqner
r : : : ibute
P_:TOR,
c----.:ps of

ru.::: le, if
rJ-::Llute
| -. this
r- r :NT.
b.' 'r. In
}g.' ' :ral-

; r ' : : :ne-

- ra l
iCl

. ̂ tT)' ' r

:. t(

- . ,JS

Figure 3.15
ER dragrams for the company

schema, with structura constra nts
specl f ied using (min, max) notatron

ano rote naTnes,

(4,N)

Control l ing
Department

l:11 s.

I dJ

(0,N)
Supervisor Supervisee

1) \ Department
Manager y \ Managed

DEPENDENTS OF

DEPENDENT

h l . i -

-Jo
tn

Dependent

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

3.8 Example of Other Notation:
UML Class Diagrams

The UML methodology is being used extensivelv in software design and has many
types of diagrams for various software design purposes. We only briefly present the
basics of UML class diagrams here, and compare them with ER diagrams. In some
ways, class diagrams can be considered as an alternative notation to ER diagrams.
Additional UML notation and concepts are presented in Section 4.6, and in Chapter
12. Figure 3.l6 shows how the COMPANY ER database schema of Figure 3.15 can be
displayed using UML class diagram notation. The entity types in Figure 3.15 are
modeled as clesses in Figure 3.16. An entity in ER corresponds to an object inUML.

In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box
(see Figure 3.16) that includes three sections: The top section gives the classname,
the middle section includes the attributes for individual objects of the class; and the
last section includes operations that can be applied to these objects. Operations are
nor speci f ied in ER diagrams. Consider the EMPLOYEE class in Figure 3.16. I ts

Figure 3.16
The COMPANY conceptual schema in UML class diagram notat ion

Aggregation
Notation in UML:

Name: Name_dom
Fname
Mini t
Lname

Ssn
Bdate: Date
Sex: {M,F}
Address
Salary

add_employee
number_of_employees
change_manager

1..1

coNrRots

Sex: iM,F)
Birth_date: Date
Relationship

Multiplicity
Notationin OMT:

------{
--------o

1 . .1
0. :
0. .1

}.!r :lJnY

F.' : the
) ' .)n le
nl- ' :ms.
f : ,r t€f
[- , : l b€
51 :Jre

l , : . ' 1L.

.3- . fox
r:3me,

.,L^
l , , -u lc

i t . , l re
T+^

0 - l t5

3.8 Example of Other Notationl UMLClass Diagrams*

attributes are Name, Ssn, Bdate, Sex, Address, and Salary. The designer can optionally
specify the domain of an attribute if desired, by placing a colon (:) followed by the
domain name or description, as i l lustrated by the Name, Sex, and Bdate attributes of
EMPLOYEE in Figure 3.16. A composite attribute is modeled as a structured
domain, as illustrated by the Name attribute of gvptOyeE. A multivalued attribute
rvil l generally be modeled as a separate class, as i l lustrated by the LOCATION class in
Figure 3.16.

Relationship types are called associations in UML terminology, and relationship
instances are called links. A binary association (binary relationship type) is repre-
sented as a l ine connecting the participating classes (entity types), and may option-
ally have a name. A relationship attribute, called a l ink attribute, is placed in a box
that is connected to the association's l ine by a dashed line. The (min, max) notation
described in Section 3.7.4 is used to specify relationship constraints, which are
called multiplicities in UML terminology. Multiplicities are specified in the form
ttr in. .max, and an aster isk (: ') indicates no maxi t . t . rurn l imi t on part ic ipat ion.
However, the multiplicities are placed on the oppttsite ends of the relationship when
compared with the notation discussed in Section 3.7.4 (compare Figures 3.15 and
3.16). In UML, a single asterisk indicates a multiplicity of 0..x, and a single I indi-
cates a mult ip l ic i ty of 1. .1. A recursive relat ionship (see Sect ion 3.4.2) is cal led a
reflexive association in UML, ar.rcl t l-re role ntrmes-like the multiplicit ies-are
placed at the opposite ends of an association when compared rvith the placing of
role names in Figure 3.15.

In UML, there are two types of re lat ionships: associat ion and aggregat ion.
Aggregation is meant to represent a relationship between a whole object and its
component parts, and it has a distinct diagrammatic notation. In Figure 3.16, we
modeled the locations of a department and the single location of a project as aggre-
gations. However, aggregation and association do not have different structural
properties, and the choice irs to which type of relatior-rship to use is somewhat sub-
jective. In the ER model, both are represeuted as relationships.

UML also distinguishes between unidirectional and bidirectional associations (or
aggregations). In the unidirectional case, the l ine connecting the classes is displayed
with an arrow to indicate thart only one direction for accessing related objects is
needed. If no arrow is displayed, the bidirectional case is assumed, which is the
default. For example, if we alwavs exPect to access the rnanager of a department
starting from a DEPARTMENT object, we would draw the association l ine represent-
ing the MANAGES association with an arrow fiorn DEPARTMENT to EMPLOYEE. In
addition, reiationshipr instances n'ray be specified to be ordered. For exalltple, we
could specify that the employee objects related to each department through the
WORKS_FOR association (relationship) should be ordered by their Bdate attribute
value. Associat ion (relat ionship) names are opt ional in UML, and relat ionship
attributes are displayed in a box attached rvith a dashecl l ine to the l ine representing
the association/aggregation (see Start-date and Hours in Figure 3.16).

The operations given in each class are derived from the functional requirements of
the application, as we discussed in Section 3.1. It is generally sufficient to specify the

86 Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

operation narr-res init ially for the logical operations that are expected to be applied
to individual objects of a class, as shown in Figure 3.16. As the design is refined,
n.rore details are added, such as the exact argulnent types (parameters) for each
operat ion, p lus a funct ional descr ipt ion of each operat ion. UML has funct ior t
t lescriptiorrs and seqtrence diagrams to specify some of the operation details, but
these are beyond the scope of our discussion. Chapter 12 wil l introduce some of
these diagrams.

Weak er-rtit ies can be modeled using the construct called qualif ied association (or
qualif ied aggregation) in UML; this can represent both the identifring relationship
and the partial ke,v, which is placed in a box attached to the owner class. This is i l lus-
trated by the DEPENDENT class and i ts qual i f ied aggregat ion to EMpLOyEE in
Figure 3.16. The partial key Dependent_name is called the discriminator in UML ter-
mir-rology, since its value distinguishes the objects associated with (related to) the
same EMPLOYEE. Qualif ied associations are not restricted to modelins weak enti-
t ies, and they can be used to n-rodel other situations in UML.

3.9 Relationship Types of Degree
Higher Than Two

In Section 3.4.2 we defined the degree of a relationship type as the number of par-
ticipating entity types and called a relatior-rship type of degre e Iwo binary and a rela-
tionship type of degree three ternary.ln this section, we elaborate on the differences
between binary and higher-degree relationships, when to choose higher-degree or
binary relationships, and constraints on higher-degree relationships.

3.9.1 Choosing between Binary and Ternary
(or Higher-Degree) Relationships

The ER diagram notation fbr a ternary relationship type is shown in Figure 3.17(a),
which displays the schema for the SUPPLY relationship type that was displayed irt
the instance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of
relationshipr instances (s, j, p), r,vhere s is a SUPPLIER who is currently supplying a
PARTp to a PROJECT.i. In general, a relationship type R of degree n wil l have ir edges
in an ER diagram, one connecting R to each participating entity type.

Figure 3.17(b) shows an ER diagrarn for the three binary relatior-rship types
CAN_SUPPLY, USES, and SUPPLIES. ln general, a ternary reiationship type repre-
ser.rts different infbrrnation than do three binary relationship types. Consider the
tl-rree binary relationship types CAN_SUPPLY, USES, and SUPPLIES. Suppose that
CAN SUPPLY, betrveen SUPPLIER and PART, includes an instance (s,p) whenever
supplier s cotr strpply partp (to any project); USES, between PROJECT and PART,
ir-rcludes an instance (.1,p) whenever project/ uses partp; and SUPPLIES, between
SUPPLIER rrnd PROJECT, includes an instance (s, j) whenever suppl ier s suppl ies
some part to project j. The existence of three relationship instances (s,p),(j,p), and
(s,7) in CAN_SUPPLY, USES, and SUPPLIES, respectively, does not necessarily imply

' (. ipplied
. : . t l r red,
' ' r each

, ' , ' tc t tot l
r - .1: , but
-- - . rnre of

l t ion (or
: . . , ' l lshiP
: . . i l lus-
P- - vEE in
r

"11-
ter-

h- - : ()) the
r : -s 8l l t i -

3.9 Relationship Types of Degree Higher Than Two-

Figure 3.17
Ternary relationship types, (a) The SUPPLY relationship. (b) Three binary relationships
"ot equivalent to SUPPLY (c) SUPPLY represented as a weak entity type.

(a)

(b)

t--

t

' l par-
.l rela-
:ences

-ree or
(c)

: r (O/;

.cd at
, set of
. ing a
cdges

tvpes
:epre-
: . r the
-l that
--never
.]ART,
,i:\\reen

_'..plies
: . alld
:ntply

that an instance (s, j, p) exists in the ternary relationship SUPPLY, because Ihe mean-
ing is differenr. It is often tricky to decide whether a particular relationship should be
represented as a relationship type of degree n or should be broken down into several
relationship types of smaller degrees. The designer must base this decision on the
semantics or meaning of the particular situation being represented. The typical solu-

Chapter 3 Data Modeling Using the Entity-Relationship (ER) Model

tion is to inclucie the ternary relationship p/rrs one or rnore o[the binarv relation-
ships, if they represent different meanir.rgs and if all are needed by the application.

Some database design tools are based on variations of the ER model that perntit
oniy bir-rary relationships. In this case, a ternary relationship such as SUPPLY must
be represented trs a weak entity type, with no partial key and rvith three identifoing
relationships. The three participating entitv types SUPPLIER, PART, and PROJECT
irre together the orvner entity types (see Figure 3. I 7 (c)). Hence, atn entity in the weak
ent i ty type SUPPLY of Figure 3.17(c) is ident i f ied bv the combinat ion of i ts three
owner entit ies ti-om SUPPLlER. PART.:rnd PROJECT.

It is also possible to represent the ternary relationship as a reguiar entity type by
introducing an artif iciai or surrogate key. In this example, a key attribute Supply_id
could be used for the supply entity type, converting it into a regular entity tytrre.
Three binary 1:N relationships relate SU PPLY to the three participating entity types.

Another example is shorvn in Figure 3.18. The ternarv relationsl-ri ir type OFFERS
represents infbrmation on instructors offering courses cluring particuiar serresters;
hence it inclucles a relationship instirnce (i, s, c) whenever INSTRUCTOR i offbrs
COURSE c dur ing SEMESTER s. Tl-re three binary relat ionship types shorvn in
Figure 4. i2 have the fol lowing meanings: CAN_TEACH relates a course to the
instructors who criri teach Iltat course, TAUGHT_DURING relirtes a semester to the
instructors who trrrrglrr sonle course during that semester, and OFFERED_DURING
relates a sen. lester to the courses of fered dur ing that semester b7,atry i t tstructor.
These ternirrv aud binary relationsl-rips represent different information, but certeiin
constraints should hold arr-rong the relat ionships. For example, a relat ionship
instance (i , s, c) should not exist in OFFERS unless an instance (i , s) exists in
TAUGHT_DURING, an instance (s, c) exists in OFFERED_DURING, and an instance
(i, c) exists in CAN_TEACH. However, the reverse is not always true; we may have
instances (i, s), (s, c), and (l, c) in the three binary relationship types with no corre-

Figure 3.18
Another example of
ternary versus brnary
rclr t inn<hin tvnec' ' i lJ r ' ' '

TAUGHT DURING

SEMESTERINSTRUCTOR

OFFERED DURINGCAN-TEACH

.3
1C

lr ,1,.r '

x - =FERS
' . : tasters;
:: trf-fers
r , \ f l l in
! l () the
n i() the
: : .JRING

-' i tc tor .
' - - r ' r ta in

r . - 'nshiP
,. : . tS in

.i ' I rt i l f lC€

r . . have
! ;trrre-

3.9 Relationship Types of Degree Higher Than Two*

sponding instance (l, s, c) in OFFERS. Note that in this example, based on the mean-
ings of the relat ionships, we can infer the instances of TAUGHT_DURING and
OFFERED_DURING from the instances in OFFERS, but we cannot infer the
instances of CAN TEACH; therefore, TAUGHT DURING and OFFERED_DURING are
redundant and can be left out.

Although in general three binary relationships cannot replace a ternary relationship,
they may do so under certain additional constraints. In our example, if the
CAN_TEACH relationship is l:1 (an instructor can teach one course, and a course
can be taught by only one instructor), then the ternary relationship OFFERS can be
left out because it can be inferred from tl-re three binary relationships CAN_TEACH,
TAUGHT_DURING, and OFFERED_DURING. The schema designer must analyze the
meaning of each specific situation to decide which of the binary and ternary rela-
tionship types are needed.

Notice that it is possible to have a weak entity type with a ternary (or n-ary) identi-
tying relationship type. In this case, the weak entity type can have several owner
entity types. An example is shown in Figure 3.19.

3.9.2 Constraints on Ternary (or Higher-Degree)
Relationships

There are two notations for specifying structural constraints on n-ary relationships,
and they specifr different constraints. They should thus both be used if it is impor-
tant to fully specif ' the structural constraints on a ternary or higher-degree rela-
tionship. The first notation is based on the cardinality ratio notation of binary
relationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each partici-
pation arc (both M and N symbols stand for many or any number).l5 Let us i l lus-
trate this constraint using the SUPPLY relationship in Figure 3.17.

Figure 3.19
A weak entity type
INTERVIEW with a
ternary identifying

rolat innchin t r rnc

i

15. This notat ion al lows us to determ ne the key ol lhe relatronshrp relat ion, as we discuss rn Chapter 7

7I
I
I

90 Chapter 3 Data Modeling Using the Enti ty-Relat ionship (ER) Model

Recall that the relationship set of SUppLy is a set of relationship instances (t, j,p),
where s is a SUPPLIER, j is a PROJECT, and p is a PART. Suppose that the constraint
exists that for a particr-rlar project-part combinatior-r, only one supplier wil l be used
(or-rly one supplier supplies a particular part to a particular project).ln this case, we
place I on the SUPPLIER participation, and M, N on the PROJECT, PART participa-
tions in Figure 3.17. This specifies the constraint that a particular (j,p) combination
can appear at most once in the relationship set because each such (PRoJECT, PART)
con-rbinat ion uniquely determines a s ingle suppl ier . Hence, any relat ionship
instance (s,J,p) is uniquely identif ied in the reiationship set by its (j,p) cornbina-
tion, which makes (j,p) a key for the relationship set. In this notation, the participa-
tions that have a one specified on them are not required to be part of the identif ir ing
key for the relatior.rship set.16

The second notatior-r is based on the (min, max) notation displayed in Figure 3.15
for binary relationships. A (mir-r, max) or.r a participation here specifies that each
entity is related to at least nin and at most nrax relationship instances in the rela-
tionship set. These constraints have no bearing on determining the key of an n-ary
relationship, where n > 2,1; but specifl, a different type of constrait-tt that places
restrictions on how many relationship instances each entity can participate in.

3 .10 Summary
In this chapter rve presented the rnodeling concepts of a high-level conceptual data
model, the Entity-Relationship (ER) model. We started by discussing the role that a
high-level data model plays in the database design process, and then we presented
an example set of database requirements for the COMPANY database, which is one
of the examples that is used throughout this book. We defined the basic ER model
concepts of entit ies and their attributes. Then we discussed NULL values and pre-
sented the various types of attributes, which can be nested arbitrari ly to produce
complex attributes:

Sinrple or atonr ic
Composite

, Multivalued

We also briefly discussed stored versus derived attributes. Then we discussed the ER
model concepts at the schema or "intension" level:

,, Entity types and their corresponding entity sets
Key attributes of entity types
Value sets (domains) of attributes
Relationship types and their corresponding relationship sets
Partici l.atiorr r oles of entity types in relationship types

16, Th s is a so t rue ior cardina ty rat ios of b nary relat ionshtps,

17 The (m n, max) constraints can determine the keys for brnary relat ionships, though

r :

t-

Ft-
I
t
T.
&-
F

,. t , p) '
. t ra int
r used
r\c, we
.. - : . -^., ! lPd-

r.rt ion
sART)
:rship
: l r ina-
' c ipa-
' t i i r ro' ' . " 'o

: -1.15
' cich
- rela-
' : - i1f y

. ' . . lces

J ata
' . r . l t a
, . : r ted
. t)11€

'.lel
' , t rg-

-:uce

Review Ouestions

We presented two methods for specifying the structural constraints on relationship
types. The first method distinguished two types of structural constraints:

r Cardinality ratios (l: l , 1:N, M:N for binary relationships)
n Participation constraints (total, partial)

We noted that, alternatively, another method of speciflring structural constraints is
to speciff minimum and maximum numbers (min, max) on the participation of
each entity type in a relationship type.We discussed weak entity types and the
related concepts of owner entity types, identiffing relationship types, and partial
key attributes.

Entity-Relationship schemas can be represented diagrarnmatically as ER diagrams.
We showed how to design an ER schema for the CoMPANY database by first defin-
ing the entity types and their attributes and then refining the design to include rela-
tionship types. We displayed the ER diagram for the COMPANY database schema.
We discussed some of the basic concepts of UML class diagrams and how they relate
to ER model concepts. We also described ternary and higher-degree relationship
types in more detail, and discussed the circumstances under lvhich they are distin-
guished from binary relationships.

The ER modeling concepts we have presented thus far-entity types, relationship
types, attributes, keys, and structural constraints-can model traditional business
data-processing database applications. However, many newer, more complex appli-
631isn5-5ush as engineering design, medical information sy.stems, or telecommu-
nications-require additional concepts if we want to model them with greater
accuracy. We discuss some advanced modeling concepts in Chapter 4 and revisit
further advanced data modeling techniques in Chapter 24.

Review Ouestions
3.'l . Discuss the role of a high-level data model in the database design process.

3.?. List the various cases where use of a NULL value would be appropriate.

3"3. Define the following terms: entity, attribute, attribute value, relationship
instance, composite attribute, multivalued attribute, derived attribute, complex
attribute, key attribute, and value set (domain).

3.4. What is an entity type? What is an entity set? Explain the differences among
an entity, an entity type, and an entity set.

3..$. Explain the difference between an attribute and a value set.

3.6. What is a relationship type? Explain the differences among a relationship
instance, a relationship type, and a relationship set.

3"7. What is a participation role? When is it necessary to use role names in the
description of relationship types?

