
lcl exprect

r nclancy?

,horvn in

r: tor the

I hold on

: ional f i le

rJnges to
1rL'nt and
rntif i, t l-re

f N, ar.rd
' . , ' l ' t . l?

include
- tratures
" i tsue of
.rnri r-r-rity

cnapter2

Database System Concepts
and Architecture

'':al$**ffir
tr he architecture of DBMS packages has evolyed
ffi from the early rnonolithii systems, where the

ivhole DBMS software package was one tightly integrated system, to the modern
DBMS packages that are rnodular in design, with a client/server system architecture.
This evolution mirrors the trends in computing, where large centralized mainframe
computers are being replaced by hundreds of distributed workstations and personal
computers connected via contntunications networks to various types of server
nrachines-Web servers, database servers, file servers, application servers, and so on.

In a basic client/server DBMS architecture, the system functionality is distributed
benveen two types of modules.r A client module is typically designed so that it rvill
run on a user workstation or personal computer. Typically, application programs
and user interfaces that access the datirbase run in the client module. Hence, the
client module handles user interaction and provides the user-friendlv interfaces
such as forms- or menu-based GUIs. The other kind of module, called a server
module, typically handles data storage, access, search, and other functions. We dis-
cuss client/server architectures in more detail in Section 2.5. First, we rnust study
more basic concepts that will give us a better understanding of moderr-r database
architectures.

In this chapter we present the terminology and basic concepts thart rvil l be used
throughout the book. Section 2.1 discusses data models and defines the concepts of

1. As we shal l see in Sect ion 2,5, there are var iat ions on this s mple lwo- l rerc l ent /server arch tecture,

29

Chapter 2 Database System Concepts and Architecture

schemas and instirnces, which are fundanrental to the study of databirse s)/stems.
Therr, we discuss the three-schema DBlvlS architecture ar.rd clata independence in
Section 2.2; this provides a user's perspectir.e or.r what a DBMS is supposed to do. Lr
Section 2.3 we describe the types of interfaces and languages that are typically pro-
vided by a DBMS. Section 2.4 discusses the database system software environrnent.
Sectior-r 2.5 gives an overview of various types of client/server architectures. Finally,
Sect ion 2.6 preser.r ts a c lassi f icat ion of the t ,vpes of DBMS packages. Sect ion 2.7
sunrmirrizes the chapter.

The r-naterial in Sections 2.4 through 2.6 provides more detailed concepts that rnav
be considered as sr-rpplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances
One fundan.rer.rtal characteristic of t l.re dirtabirse approach is t l-rat it provides some
level of data abstrirction. Data abstraction generally refers to the suppression of
details of data organization and storage and the highlighting of the essential fea-
tures for an improved understanding of clata. One of the main characteristics of the
database approach is to support data abstraction so that different users may per-
ceive data at their pref-erred level of detail. A data model-a collection of concepts
that can be used to describe the structure of a database-provides the necessary
nreans to achieve this abstract ion. l Bv strr tctr t r t : o. f a databasc we mean the data
types, relatior.rships, and constraints that should hold tbr the data. Most data ntod-
els also include a set of basic operations fbr specifing retrievirls and updates on the
database.

In addition to the basic operations provided by the data model, it is becoming more
comnon to include concepts in the data model to speciff the dynamic aspect or
behavior of a databirse appiication. This allorvs the database designer to specifr a set
ofvalid user-defined operations that are allorved on the database objects,r An exanr-
ple of a user-det' ined operation could be COMPUTE-GPA, rvl-rich can be applied to a
STUDENT object. On the other hand, generic operations to insert, delete, modiSr, or
retrieve any kind of object are often included in the Dnsic dnto nrodel operatiorts.
Concepts to specifu behavior are fundamental to object-oriented data models (see
Chapters 20 and 21) but are also being incorporated in more traditional data rnod-
els. For example, ol 'r ject-relational models (see Chapter 22) extend the basic rela-
tionirl model to incltrde such concepts, amons others. In the relational data model,
there is a provis ion to at tach behavior to the relat ions in the form of persistent
stored modules, poprularly known as stored procedures (see Chapter 9).

2, Soret 'Te) t re rrota t" , del 's u>ed to oenote d spet i ' ,c database descr ol or , o- schena for e 'arrole.
the market ing data model. We w l l not use this nierpretatron,

3.- l -e rc, . ts ioro{-orccptslooesrrbebera'ro relrecl5aTrenowrereDvoaLaDasede>rgrardso' I la 'e
oesrgl dctr" le. are r 'creds'rgl , be -g co'nb,.ed ,) lo a Srngle actrvr t l . ladr 'o la 7 s lecr 'yrrg oel^a/ro ' s
assoc ated with sof tware des qn,

\\ '5ternS.
: . icnce in
i : t r r lo. In
-.rlh prro-
lr t l l l l leDt,

. . I r rnal ly,

. l ion 2.7

::r. lt ntay

.:J. sOl l le

. . . ior t of
: t : i . r l fea-
:- . ot- the
: : r . rV per-
!() l lce Pts
r cccssary
: hc c lata

.tt. l nrod-
:a\ () l l the

. : rg r t lore
rspect or
..; it i a set
\lt L'\rtnt-
:.Ii.'ti to a
:trt l ih', or
'(' r (l I l () / ls .

'Jc ls (see
.ri.r nrod-
. i . ic re la-
.r nrociel,
'ar \ lStent

-:. : - -De,

: : . l ' S

2.1 Data Models, Schemas. and Instances

2.1.1 Categories of Data Models
\lany data models have been proposed, which rve can categorize according to the
t\.pes of concepts they use to describe the database structure. HighJevel or concep-
tual data models provide concepts that are close to the way many users perceive
data, whereas low-level or physical data models provide concepts that describe the
details of how data is stored in the computer. Concepts provided by low-level data
nrodels are generally meant for computer specialists, not for typical end users.
Between these two extremes is a class of representational (or implementation)
data models,a which provide concepts that may be understood by end users but that
.lre not too far removed from the way data is organized within the computer.
Representational data models hide sorre details of data storage but can be imple-
rnented on a computer system directly.
(-onceptual data models use concepts such as entit ies, attributes, and relationships.
.\n entity represents a real-world object or concept, such as an employee or a proj-
r 'ct that is described in the database. An attribute represents some property of inter-
cst that further describes an entity, such as the employee's name or salary. A
relat ionship among two or more eut i t ies represents un lssociat iou among two or
nrore entit ies, for example, a works-on relationship between an employee and a
project. Chapter 3 presents the Entity-Relationship model-a popular high-level
.onceptual data model. Chapter 4 describes additional abstractions used for
.rdvanced modeling, such as generalization, specialization, and categories.

Representational or implementation data models are the models Llsed most fre-
quently in traditional commercial DBMSs. These include the widely used relational
clata model, as well as the so-called legacy data models-the network and hierarchi-
cal models-that have been widely used in the past. Part 2 is devoted to the relational
data model, its operations and languages, and some of the techniques for program-
nring relational database applications.5 The SQL standard for relational databases is
described in Chapters 8 and 9. Representational data models represent data by using
record structures and hence are sometimes called record-based data models.

\\'e can regard the object data model group (ODMG) as a new family of higher-
level implementation data models that are closer to conceptual data models. We
describe the general characteristics of object databases and the ODMG proposed
standard in Chapters 20 and 21. Object darta models are also frequently uti l ized as
high-level conceptual models, particularly in the software engineering domain.

Physical data models describe how data is stored as files in the cornputer by repre-
senting information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records effi-
cient. We discuss physical storage techniques and access strlrctures in Chapters 13

J. The term implementatron data model is not a standard termi we have ntroduced t to refer to ihe avail-
acie data models in commercia database systems,

5, A summary of the network and hierarchica data models is included in Append ces E and F. They are
accessible f rom the book's Web srte,

31

Chapter 2 Database System Concepts and Architecture

and 14. An index is an example of an access path that allows direct access to data
using an index term or a key.word. It is similar to the index at the end of this book,
except that it may be organized in a l inear, hierarchical, or some other fashion.

2.1.2 Schemas, Instances, and Database State
In any data model, it is important to distinguish between the description of the data-
base and the database itself. The description of a database is called the database
schema, which is specified during database design and is not expected to change
frequently.6 Most data models have certain conventions for displaying schemas as
diagrams.T A displayed schema is called a schema diagram. Figure 2.1 shows a
schema diagram for the database shown in Figure 1.2; the diagram displays the
structure of each record type but not the actual instances of records. We call each
object in the schema-such as STUDENT or COURSE-a schema construct.

A schema diagram displays only sorre aspects of a scherna, such as the names of
record types and data items, and some types of constraints. Other aspects are not
specified in the schema diagram; fbr example, Figure 2.1 shows neither the data type
of each data itern nor the relationships among the vnrious fi les. Many types of con-
straints are not represented in schema diagrams. A constraint such as students
majoringin cornputer science must toke C51310 belbre the end of their soplrcmore)tear
is quite difficult to represent.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a student or enter a new grade.
The data in the database at a particular mornent in time is called a database state or
snapshot. It is also called the atrrent set of occurrences or instances in the data-
base. In a given database state, each scherna construct has its own current set of
instances; for example, the STUDENT construct wil l contain the set of individr"ral
student entit ies (records) as its instances. Many database states can be constructed
to correspond to a particular database schema. Every time we insert or delete a
record or change the value of a data item in a record, we change one state of the
database into another state.

The distinction between datarbase schema and database state is very important.
When we define a new database, we specif, its database schema only to the DBMS.
At this point, the corresponding database state is the entpty sfcte with no data. We
get the init ial state of the database when the database is f irst populated or loaded
with the init ial data. From then on, every time an update operatior.r is applied to the
database, we get another database state. At any point in time, the database has a
current stnte.E The DBMS is partly responsible for ensuring that every state of the

6 Srhama nhonnoc ;ro rrr a l t . , noodan e< rna renr i romonrr n{ rho norahrco :nnlrr . r in- - r ln^^ Nl^ ^"d L Jrua,, t ,u uyu,, L agp,, \ a",u,) L, a, qs, , \ rvvc

database systems include operat ions for a l lowing schema changes, a though the schema change process
i . more r lo lved l l 'an s nple daraba.e updales.

7 l r rs crsrora'y rT oaTaoase pdr arce ro L<e sLhe/r?s as t 'e plu 'a 'o ' s"hpma, e\e t l 'oJgl- . ' hcmafd i \
the orooer o ural form, The word scheme is somet imes used to refer to a schema.

B. The current staie is a so ca ed the current snapshol of the database.

to i11i l
i . book,
) 11.

rc dJta-
atabase
. i r . rnge

r' : l l . l5 i lS
. :) () \ \ 'S i l

. . r ' , r the

.r , l cach

.i : l lcs of
. i :c I tot

. l l . l t |Pe
\) [col l -
: ; r r / r ' t t f -s
. ' f i . l 'c{ l r -

:c t lata-
\ qracle.
state ()r
:c t l i t ta-
: : - i r ' l Of
i i r i t iual
' r ructed
-:c lcte a
-' oi the

'() r t i l I l t .
I)B\ lS.
.rt.r. \Ve
loaded
. l to the
'c h;:s it
: oi t l .re

2.2 Three-Schema Architecture and Data lndeoendence

database is a valid state-that is, a state that satisfies the structure and constraints
specified in the schema. Hence, specifying a correct schema to the DBMS is
c'rtremely important and the schema must be designed with utmost care. The
DBMS stores the descriptions of the schema constructs and constraints-also called
the meta-data-in the DBMS catalog so that DBMS software can refer to the
schema whenever it needs to. The schema is sometimes called the intension, and a
database state is called an extension of the schema.

,\lthough, as mentioned earlier, the schema is not supposed to change frequently, it
is r.rot uncommon that changes occasionally need to be applied to the schema as the
.rpplication requirements change. For example, we may decide that another data
item needs to be stored for each record in a file, such as adding the Date_of_birth to
the STUDENT schema in Figure 2.1. This is known as schema evolution. Most mod-
ern DBMSs include some operations for schema evolution that can be applied
rlhile the database is operational.

2.2 Three-Schema Architecture
and Data Independence

Three of the four important characteristics of the database approach, l isted in
Section 1.3, are (1) insulation of programs and data (program-data and program-
operation independence), (2) support of multiple user views, and (3) use of a cata-
log to store the database description (schema). In this section we specify an
architecture for database systems, called the three-schema architecture,q that was

:. .er
-. SS

:. i l S

STUDENT
Name Student number Class Maior

COURSE
Course name Course number Credit hours Department

PREREOUISITE
Course number I Prerequisite number

GRADE REPORT
Student_number I Section_identif ier I Grade

9 Th s is also known as the ANSI/SPARC architecture, after the committee that proposed rt (Ts chrtzis
and Kluo 1978),

Figure 2.1
Schema diagram for the

datehacp rn Finrrrp 1 9

SECTION
Section identi f ier Course number Semester Year Instructor

Chapter 2 Database System Concepts and Architecture

proposed to help achieve and visualize these characteristics. Then we discuss the
concept of data independence further.

2.2.1 The Three-Schema Architecture
The goal of the three-schema architecture, i l lustrated in Figure 2.2, is to separate the
user applications and the physical database. In this architecture, schemas can be
defined at the follorving three levels:

The internal level has an internal schema, which describes the physical stor-
age structure of the database. The internal schema uses a physical data rnodel
and describes the complete details of data storage and access paths for the
database.
The conceptual level has a conceptual schema, which describes the struc-
ture of the whoie database for a comrnunity of users. The conceptual schema
hides the details of physical storage structures and concentrates on describ-
ing ent i t ies, d i . r ta types, relat ionships, user operat ions, and constraints.
Usually, a representational data model is used to describe the conceptual
schema when a database system is implernented. This intplenrentatiotr corr-
ceptual schenrn is often based on a conceptual sclrcmo design in a high-level
data n-rodel.

: The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that

Figure 2,2
The three-schema
arch i tectu re. *

End Users

External Level

External/Conceptu al
Mapping

Conceptual Level

Conceptual/ Inte rnal
Mapping

Internal Level

\

Internal Schema

Stored Database

, .uss the

.tr. ltc the

. .. ln be

..r i stor-
:.1 lnr)del
. t i r r the

la \ t l 'L lC-

.chema
.:crcr ib-
. i r . l ints.
t . r .p tual
:.r l l 11)r l -

sh- level

r) f usef
. ,-

- -c;^r [' (l l r t l -

\) l t l that

2.2 Three-Schema Architecture and Data Independence

user group. As in the previous case, each external schema is typically imple-
mented using a representational derta rnodel, possibly based on an external
schema design in a high-ler.el data model.

The three-schema architecture is a convenient tool with which the user can visualize
the schema levels in a database systerr. Most DBMSs do not separate the three levels
completely and explicitly, but support the three-schema architecture to some extent.
Some DBMSs may include physical-level details in the conceptual schema. The
three-level ANSI architecture has an ir-nportant place in clatabase technology devel-
opment because it clearly separates the users'external level, the system's conceptual
level, and the internal storage level for designing a database. It is very much applica-
ble in the design of DBMSs, even today. In most DBMSs that support user views,
external schemas are speci f ied in the same data model that descr ibes the
conceptual-level information (for example, a relational DBMS like Oracle uses SQL
tbr this). Some DBMSs allow different data rnodels to be used at the conceptual and
external levels. An example is Universal Data Base (UDB), a DBMS from IBM,
rvhich uses the relational model to describe the conceptual schema, but may use an
object-oriented model to describe an external schema.

Notice that the three schemas are only descriptions of data; the stored data that
octually exists is at the physical level. In a DBMS based on the three-schema archi-
tecture, each user group refers only to its orvn external schema. Hence, the DBMS
must transform a request specified on an external schema into a request against the
conceptual schema, and then into a request on the internal schema for processing
over the stored database. If the request is a database retrieval, the data extracted
from the stored database must be reformatted to match the user's external view. The
processes of transforming requests and results between levels are called mappings.
These mappings may be time-consuming, so some DBMSs-especially those that
are meant to support small databases-do not support external views. Even in such
systems, however, a certain arnount of mapping is necessary to transform requests
between the conceptual and internal levels.

2.2.2 Data I ndependence
The three-schema architecture can be used to further explain the cor-rcept of data
independence, which can be defined as the capacity to change the schema at one
level of a database system without having to change the schema at the next higher
level. We can define two types of data independence:

r Logical data independence is the capacity to charrge the conceptual schema
without having to change externtrl schemas or application programs. We
may change the conceptual schema to expand the database (by adding a
record type or data item), to change constraints, or to reduce the database
(by removing a record type or data item). In the last case, external schemas
that refer only to the remaining data should not be affected. For example, the
external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT f i le (or record type) shown in Figure 1.2 into the one

36 Chapter 2 Database System Concepts and Architecrure

shown in Figure L6(a). onlv the vierv definit ion and the mappings need be
changed in a DBMS that supports logical data independence. After the con-
ceptual schema undergoes a logical reorganization, applicatiou progriuus
thert reference the external schema constructs must work as betore. Chanses
to constraints can be applied to the conceptual schema without affecting the
external schemas or irpplication programs.

l.,', Physical data independence is the capacity to change the internal schena
without having to change the conceptual schema. Hence, the external
schentas need not be changed as well. Changes to the internal schen.ra ntay be
needed because some physicirl files were reorganized-[or example, by creat-
ing additional access structures-to improve the performance of retrieval or
update. If the same data as before remains in the database, tve should not
have to change the conceptual scherna. For example, providing an access
path to improve retrieval speed of section records (Figure 1.2) by semester
and year should not require a querv such as l ist oll sectiotts oJJbred in fnlt 2004
to be changed, although the query would be e-xecuted .rore efficiently by the
DBMS by uti l izing the new access patl 'r.

Generally, physical data independence exists in most databases and tl le environ-
nlents in which the exact location of data on disk, hardware details of storage
encoding, placement, compression, splitt ing, merging of records, and so or-r are hid-
den from the user. Applicirt ions renrain unil ivare of these details. On the other hanj,
logical data independence is very hard to come by because it allorvs structural and
constraint changes without af fect ing appl icat ion programs-a much str icter
requirement.

whenever we have a multiple-level DBMS, its catalog must be expanded to include
infbrmation on how to ntap reqLlests and data alrons the various levels. Tl-re DBIVIS
uses additional sotiware to accomplish these mappings by ret'erring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at t l.re next higher level remains unchanged; on11,
the mapping between the trvo levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

The three-schenta architecture cirn make it easier to achieve true clata indepen-
dence, both physical and logical. Horvever, the two levels of mappings create an
overhead during cornpilation or executiorr of i.r query or progrirm, leading to ineffi-
ciencies in the DBMS. Beciruse of this, few DBMSs have implemented the full three-
schema architecture.

2.3 Database Languages and Interfaces
In section 1.4 we discussed the variety of users supported bv a DBNIS. The DBlvtS
must provide appropriate languages and ir.rterfaces fbr each category of users. In this
section we discuss the types of languages and interfaces provided by a DBMS and
the user categories targeted by each interfirce.

2.3 Database Lanouaoes and Interfaces

2.3.1 DBMS Languages
Once the design of a database is completed and a DBMS is chosen to implenrent the
tl ltabase, the first step is to specif ' conceptual and internal schemas for the database
.rncl any mappings between the two. In marry DBMSs where no strict separation of
lc.r'els is maintained, one language, calied the data definition language (DDL), is
Lrsed by the DBA and by database designers to define both schemas. The DBMS will
h.u.e a DDL compiler whose function is to process DDL statements in order to iden-
tif\ 'descriptions of the schema constructs and to store the scher.na description in the
l)BMS catalog.

ln DBMSs where a clear separation is maintained between the conceptual and inter-
nal levels, the DDL is used to specify the conceptual schema only. Another l iu-rguage,
the storage definition language (SDL), is used to specif' the internal scl-rer.ntr. The
nrirppings between the two schemas may be specified in either one of these lan-
quages. In most relational DBMSs today, there is no specific language that perfbrms
the role of SDL. Instead, the internal schema is specified by a cor-r-rbinatior.r of
parameters and specifications related to storage-the DBA staff typically controls
inclexing and mapping of data to storage. For a true three-schema architecture, rve
rvould need a third language, the view definition language (VDL), to specify user
viervs and their mappings to the conceptual schema, but in most DBMSs the DDL is
used to define both conceptual and external schemas. In relational DBMSs, SQL is
used in the role of VDL to define user or application views as results of predefined
qLreries (see Chapters 8 and 9).
()nce the database schemas are compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
r ides a set of operations or a language called the data manipulation language
DML) for these purposes.

ln current DBMSs, the preceding types of languages are usually not considered dis-
tirrct languages; rather, a comprehensive integrated language is used that includes
constructs for conceptual schema definit ion, view definit ion, and data manipr-rla-
tion. Storage definit ior-r is typically kept septrrate, since it is used for defining phvsi-
cal storage structures to fine-tune the performance of the database system, lvl-rich is
tusr"rally done by the DBA staff. A typical exarnple of a cornprehensive database lan-
guage is the SQL relational database language (see Chapters 8 and 9), rvhich repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint
specification, schema evoiution, and other features. The SDL was a component in
early versions of SQL but has been rernoved fror.n the language to keep it at the con-
ceptual and external levels only.
'fhere are two main types of DMLs. A high-level or nonprocedural DML can be
used on its own to specif, complex database operations concisely. Many DBMSs
allow high-level DML statements either to be entered interactively from a display
rnonitor or terminal or to be en-rbedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identif ied within the program so

37

cci be
' col l -
I r.l l11s
.r nges
rg the

hcma
crnal
i.rv be
. rcilt-
r . r l 0r
.l trot
icccss
raster
. :004
.r the

iron-
() rirge
: hicl-
hand,
rl .rr.rd
r ic ter

c lude
)B\IS
ppil lg
nt.l ls
: onlv
rc fe r-

- 'Pe11-
. tc al l
nt'fll-
h r.-e -

) IJ\ IS
n tl.r is
: . rncl

Chapter 2 Database System Concepts and Architecture

that they can be extracted by a precornpiler and processed by the DBMS. A low-
level or procedural DML rrrrr-sr be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from
the database and processes each seprarately. Therefore, it needs to rlse progranrming
language constructs, such as looping, to retrieve and process each record from a set
of records. Low-level DMLs are erlso called record-at-a-time DMLs because of this
property. DL/1, a DML designed for the hierarchical model, is a lol-level DML that
uses commands such as GET UNIOUE, GET NEXT, or GET NEXT WITHIN PARENT, to
navigate from record to record rvithin a hierarchy of records in the database. High-
level DMLs, such as SQL, can specifl, and retrieve many records in a single DML
statement; therefbre, they.are called set-at-a-time or set-oriented DMLs. A qr-rery in
a high-level Divll often specifies rl l ich data to retrieve lather than lrcw lo retrieve it;
therefore, sr.rch languages are also called declarative.

Whenever DML comn-rands, whether high level or lorv level, are embedded in a
ger-reral-purpose progran-uning language, that language is called the host language
and the DN4L is called the data sublanguage.r0 On the other hand, a high-level
DML used in a standalone interactive manner is called a querylanguage. In general,
both retrieval and update commands of a high-level DML may be used interactively
and are hence coi'rsidered part of t l-re query language.rl

Casual end users typically use a high-level query language to specifr their requests,
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usuallv irre user-friendly interfaces for interacting with the data-
base; these can also be used by cirsual users or others lvho do not want to learn the
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-Based Interfaces for Web Clients or Browsing, These interfaces present
the user with l ists of options (called menus) that lead the user through the formula-
tion of a reqlrest. Menus do away rvith the need to mernorize the specific commands
and syntax of a query language; rather, the query is con-rposed step-by-step by pick-
ing options from a menu that is displayed by the system. Pull-down menus are a
very popular technique in Web-based user interfaces. They are also often used in
browsing interfaces, which allow a user to look through the contents of a database
in an exploratory and unstructured manner.

10. l r oblect oalaoases, t re rost a1d odta srbaaguages [yoical ly 'orrr o1e .r leQrarer i tar^guage-fo '
example, C++ with some extensions to support database funct onal i ty, Some relat ional systems a so pro-
v de integrated languages-for example, Orac e 's PLISOL,

1 1. Accordrng to the Engl ish meaning of the worcj query, i i should real ly be used to descr be retr ieva s only,
not updates.

-{ low-
rnrming
.ts fiom
rn.rming
)m a set
: oi this
\ lL that
IENT, tO
:. High-
lc DML
luery in
: riL'\'e iU

lcd in a
rnguage
ih- level
!c-n€f ?1,
.rctively

r 'QU€StS,
. iramet-
tc' data-
- 'arn the

present
rrmula-
rmands
:rv pick-
JS are a
used in
l.rtabase

2.3 Database Lanouaoes and Interfaces

Forms-Based Interfac€s. A forrns-based ir-rterface displays a fbrm to each user.
L-sers can fi l l out all of the form entries to insert new data, or they can fi l l out only
ccrtain entries, in which case the DBMS will retrieve rnatching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
tirces to canned transactions. Many DBMSs have forms specification languages,
rvhich are special languages that help programmers specify sucl-r fbrms. SQL*Forms
is ir form-based language that specifies queries using a form designed in conjunc-
t ion rv i th the relat ional database schema. Oracle Forms is a component of the
L)racle product suite that provides an extensive set of features to design and build
.rpplications using forrns. Some systems have uti l i t ies that define a form by letting
the end user interactivelv construct a sample forrn on the screen.

Graphical User Interfaces. A GUI tl,pically displays a schena to the user in dia-
qrammatic form. The user then can specify a query by manipulating the diagram. It-t
nri iny cases, GUIs uti l ize both menus and forrns. Most GUIs use a pointing device,
\uch els a mouse, to pick certair.r parts of the displayed schema diagram.

Natural Language Interfaces. These interfaces accept requests rvritten in English
()r some other language and attempt to ruulerstotrd them. A natural language inter-
l.rce usually has its own schenra, which is similar to the database conceptual schema,
.rs rvell as a dictionary of important words. The natural language interface refers to
the rvords ir-r its schema, as rvell as to the set of standard words in its dictionary, to
interpret the request. lf the interpretation is successful, the ir.rterface generates a
high-level query corresponding to the natural language request and submits it to
the DBMS for processing; otherrvise, a dialogue is started with the user to clarif l ' the
rcquest. The capabil it ies of natural language interfaces have not advanced rapidly.
l irclal ', we see search engir.res that accept strings of ntrtural language (l ike English or
:panish) words and match them u'ith docurnents at specific sites (for local search
cngines) or Web pages on the Web at large (for engines l ike Google or AskJeeves).
' l 'hev use predefined indexes on rvords and use ranking functions to retrieve and
prr-sent resulting documents in a decreasing degree of match. Such "free form" tex-
ttral query interfaces are not common on structured relational or legacv r.r.roclel
databases.

Speech Input and Output. Limited use of speech as an ir-rput querv and speech as
. ln answer to a quest ion or resul t of a request is becoming cornmonplace.
,\pplications with l imitecl vocabularies such as inquiries for telephor-re directory,
t ' l ight arrival/departure, and bank account inforrnation are allowing speech for
inpr-rt and output to enable ordir-rary folks to access this inforrnation. The speech
input is detected using a l ibrary of predefined words and used to set up the param-
t.ters that are supplied to the queries. For output, a similar conversion from text or
nr.rmbers into speech takes place.

Interfaces for Parametric Users. Parametric users, such as bank tellers, ofterr
have a small set of operations that they must perform repeatedly. For example, a

Chapter 2 Database System Concepts and Architecrure

teller is able to use single- function keys to invoke routine and repetitive transactions
such as deposits or withdrawals into accounts, or balance inquiries. S),stems analysts
and programmers design and implement a special interface for each known class ofnaive. users. Usually a small set of abbreviated commands is included, with the goal
of minimizing the number of keystrokes required for each request. For example,
function keys in a terminal can be p.og.un-r-.d to initiate,nurious commands. Thisallows the parametric user to proceed with a minirnal number of keystrokes.

Interfaces for the DBA. Most database systems contain privileged commands thatcan.be used only by the DBAs staff. These include .o,rr-u.,d, foi creating accounrs,
setting system parameters, granting account authorization, changi'g a schema, andreorganizing the storage structures of a database.

2.4 The Database System Environment
A DBMS is a complex software system. In this sectio.r we discuss the types of soft-ware components that constitute a DBMS and the types of computer system soft_ware with which the DBMS interacts.

2.4.1 DBMS Component Modules
Figure 2.3 i l lustrates, in a simplif ied form, the typical DBMS components. The fig_
ure is divided into two halves. The top half of the hgure refers to the various users ofthe database environment and their interfaces. Thelower half shows the internals ofthe DBMS responsible for storage of data and processing of transactions.
The database and the DBMS catalog are usually stored on disk. Access to the disk iscontrolled primarily by the operating system (os), rvhich schedules disk
input/output. A higher-level stored data manager module of the DBMS controls
access to DBMS information that is stored on disk, whether it is part of the database
or the catalog.

Let us consider the top half of the figure first. It shows interf'aces for the DBA staff,
casual users who work with interactive interfaces to formulate queries, applicationprogrammers who program using some host languages, atrd paiametric users whodo data entry work by supplying parameters to predefined tia.sactions. The DBAstaff works on defining the databaie and tuning it by making changes to its defini_
tion using the DDL and other privileged commands.

lhe DDr compiler processe.s schema definitions, specified i' the DDL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of f i les, names and dita types of data items,
storage details of each file, mapping infbrmation among schemas, and constraints,
in addition to many other types of information rhar are ireeded by the DBMS rnod_
ules. DBMS software modules then look up the catalog informatio' as .eeded.
Casuai users and persons with occasional need fbr infbrmation from the database
interact using some form of interface, which we show, as interactive query inter-

I rons
rh'sts
lss of
'goal
nple,
This

; that
unts,
. and

soft-
soft-

r f ' lo-

r'rs Of
. i ls of

isk is
disk

rtrols
rbase

stafl
at ion
. rr'ho
I)BA
etrni-

! tores
Iudes
tcnts,
r i nts,
nrod-

abase
lnter-

2.4 The Database System Environment 41

Parametric UsersApplication
Programmers+

Casual Users

IV
f-h-;,^^-l
I Ouery)--T--
l--:---__l
I uuery l
I Compiler I--T--

,/,
IDDLI
I Stalpmonlq It - ' - ' " " ' " " ' " J-----T-----

V
IDDLI
I Compi ler It l--------r-------

i
I
I

I

I
V

/
I System l,
l^, ,1
I uatarog/ r
] Data l-*,
I Dictionary I\- -/

DBA Commands,
Oueries, and Transactions

Ouery and Transaction
Execution

Figure 2.3
Cnmnnnent nrndrr lec nf : DBMS and their nteractons.

Concurrency Control/
Backup/Recovery

Subsystems

tirce. We have not explicit l l- shown any r.t.te'nu-btrsed or form-based interaction that
may be Lised to gel lerate the interact ive query ar,r tomat ical ly. These quer ies are
parsed, analyzecl for correctness of the operations for the model, the names of data
elements, and so on by a query compiler that compiles them into irn internal form.
This internal query is subjected to query optirnization that we discuss in Chapter

42 Chapter 2 Database System Concepts and Architecture

15. Among other things, the query optimizer is concerned with rearrangement and
possible reordering of operations, elimination of redundancies, and use of correct
algorithms and indexes during execution. It consults the system catalog for statisti-
cal and other physical information about the stored data and generates executable
code that performs the necessary operations for the query and makes calls on the
runtime processor.

Application programmers write programs in host languages such as fava, C, or
COBOL that are subn-ritted to a precompiler. The precompiler extracts DML com-
mands from an application program written in a host programming language.
These commands are sent to the DML compiler for compilation into object code for
database access. The rest of the program is sent to the host language compiler. The
object codes for the DML commands and the rest of the program are linked, form-
ing a canned transaction whose executable code includes calls to the runtime data-
base processor. These canned transactions are useful to parametric users who
simply supply the parameters to these canned transactions so they can be run
repeatedly as separate transactions. An example is a bank withdrawal transaction
where the account number and the amount may be supplied as parameters.

In the lower half of Figure 2.3, the runtime database processor is shown to execute
(l) the privileged commands, (2) the executable query plans, and (3) the canned
transactions with runtime parameters. It works with the system dictionary and may
update it with statistics. It works with the stored data manager, which in turn uses
basic operating system services for carrying out low-level input/output operations
between disk and main memory. It handles other aspects of data transfer such as
management of buffers in main memory. Some DBMSs have their own buffer man-
agement module while others depend on the OS for buffer management. We have
shown concurrency control and backup and recovery systems separately as a mod-
ule in this figure. They are integrated into the working of the run-time database
processor for purposes of transaction management.

It is now common to have the client program that accesses the DBMS running on a
separate computer from the computer on which the database resides. The former is
called the client computer running a DBMS client and the latter is called the data-
base server. In some cases, the client accesses a middle computer, called the applica-
tion server, which in turn accesses the database server. We elaborate on this topic in
Sect ion 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it i l lustrates typical
DBMS modules. The DBMS interacts with the operating system when disk
accesses-to the database or to the catalog-are needed. If the computer system is
shared by many users, the OS will schedule DBMS disk access requests and DBMS
processing along with other processes. On the other hand, if the computer system is
mainly dedicated to running the database server, the DBMS will control main mem-
ory buffering of disk pages. The DBMS also interfaces with compilers for general-
purpose host programming languages, and rvith application servers and client
programs running on separate machines through the system network interface.

nt and
orrect
:at ist i -
utable
rn the

C, or
L(r l l l -

tuage.
,de for
'r. The
form-
. - l^+^ud td-

j \fho
)e run
action

\ecute
anned
d may
N USCS

ations
lch as
man-

.' have
mod-

tabase

gona
mer is
data-

'plica-
rpic in

vpical
r d isk
tem is
)BMS
tem is
ntem-
neral-
c l ient

,c' ,

2.4 The Database Svstem Environmenr

2.4.2 Database System Utilities
ln addition to possessing the softrvare modules just described, most DBMSs have
database uti l i t ies that help the DBA manage the database system. Common uti l i t ies
hai'e the following types of functions:

Loading. A loading utility is used to load existing data files-such as text files
or sequential files-into the database. Usually, the current (source) format of
the data file and the desired (target) database file structure are specified to the
util i ty, which then automatically reformats the clata and stores it in the data-
base. With the proliferation of DBMSs, transferring data frorn one DBMS to
another is becoming colnllrolt in many organizations. Some vendors are
offering products that generate the appropriate loading programs, given the
existing source and target database storage descriptions (internal schernas).
Such tools are also called conversion tools. For the hierarchical DBMS called
IMS (lBM) and for many network DBMSs including IDMS (Cornputer
Associates), SUPRA (Cincorr), or IMAGE (HP), the vendors or third party
companies are rnaking a variety of conversion tools available (e.g., Cincom's
SUPRA Server SQL) to transform data into the relational model.
Backup. A backup uti l i ty creates a backup copy of the database, usually by
dumping the entire database onto tape. The backup copy can be used to
restore the database in case of catastrophic failure. Incremental backups are
also often used, where only changes since the previous backup are recorded.
Incremental backup is r.nore complex, but saves space.
Database storage reorganization. This utility can be used to reorganize a set
of database fi les into a different f i le organization to inrprove performance.
Performance monitoring. Such a uti l i ty monitors database usage and pro-
vides statistics to the DBA. The DtsA uses the statistics in making decisions
such as whether or not to reorganize fi les or whether to add or drop indexes
to improve performarnce.

t)ther uti l i t ies may be available for sorting fi les, handling data compression, moni-
toring access by users, interf 'acing with the network, and performing other functions.

2.4.3 Tools, Application Environments,
and Communications Facil it ies

Other tools are often avaiiable to database designers, users, and DBMS. CASE toolsrr
.rre used in the design phase of database systerns. Another tool that can be quite use-
tirl in large organizations is an expanded data dictionary (or data repository) sys-
tem. In addition to storing catalog inforr.nation about schemas and constraints, the
riata dictionary stores other ir.rformation, such as design decisions, usage standards,

L Arthouga CASE staros io 'corpute-a oed so' t" la e e-g ' lee rng. nary CASf too 5 dre L5eo p rq-dr y
r database design,

Chapter 2 Database System Concepts and Architecture

application program descriptions, and user information. Such a system is also caiied
an information repository. This information can be accessed directly by users or
the DBA when needed. A data dictionary uti l i ty is similar to the DBMS catalog, but
it includes a wider variety of information and is accessed mainly by users rather
than by the DBMS software.

Application development environments, such as the PowerBuilder (Sybase) or
JBuilder (Borland) system, are becoming quite popular. These systerns provide an
environment for developing database applications and include facilities that help in
many facets of database systems, including database design, GUI development,
querying and updating, and application program development.

The DBMS also needs to interface with communications softI^/are, whose function
is to allow users at locations remote frorn the database system site to access the data-
base through computer terminals, workstations, or their local personal computers.
These are connected to the database site through data communications hardware
such as phone lines, long-haul networks, local netlvorks, or satell i te communication
devices. Many commercial database systenls have communication packages that
work with the DBMS. The integrated DBMS and data communications systern is
called a DB/DC system.ln addition, some distributed DBMSs are physically distrib-
uted over multiple machines. In this case, communications networks are needed to
connect the machines. These are often local area networks (LANs), but they can
also be other types of networks.

2.5 Centralized and Client/Server
Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture
Architectures for DBMSs have fbllowed trends sirrilar to those for general com-
puter system architectures. Earlier architectures used mainframe computers to
provide the main processing for all system functions, including user application
programs and user interface programs, as well as all the DBMS functionality. The
reason was that most users accessed such systems via computer terminals that did
not have processing power and only provided display capabil it ies. Therefore, all
processing was performed remotely on the computer system, and only display
information and controls were sent from the computer to the display terminals,
which were connected to the central computer via various types of communica-
tions networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations. At f irst, database systens used these computers similarly to how they
had used display terminals, so that the DBMS itself was still a centralized DBMS in
which all the DBMS functionality, application program execution, and user inter-
face processing were carried out on one machine. Figure 2.4 i l lustrates the physical

\r) called
uscrs or
r log, but
': rather

rJsc) or
,r ide an
t hpln in

)Pntent,

inct ion
ne data-
:l p U ters.
r rd\\'are
l ic.r t ion
cc.s that
, \ tem iS
.i istrib-
:cded to
hcl can

2.5 Centralized and Client/Server Architectures for DBMSs

iomponents in a central ized archi tecture. Gradual ly, DBMS systems started to
trploit the available processing power at the user side, which led to client/server
l)BNIS architectures.

2.5.2 Basic Client/Server Architectures
Irirst, we discuss client/server architecture in general, then we see how it is applied to
I)llN4Ss. The client/server architecture was developed to deal with computing envi-
r()nments in which a large number of PCs, workstations, f i le servers, printers, data-
l..rse servers, Web servers, and other equipment are connected via a network. The
idea is to define specialized servers with specific functionalities. For example, it is
possible to connect a number of PCs or small workstations as clients to a fi le server
that maintains the fi les of the client machines. Another machine can be designated
.is a printer server by being connected to various printers; thereafter, all print
rr.quests by the clients are forwarded to this machine. Web servers or e-mail servers
.rlso fall into the specialized server category. In this way, the resources provided by
.pecialized servers can be accessed by many client machines. The client machines
l.rovide the user with the appropriate interfaces to uti l ize these servers, as well as
rvith local processing power to run local applications. This concept cnn be carried
()\ 'cr to software, with specialized prograrns-such as a DBMS or a CAD (computer-
.rrded design) package-being stored on specific server machines and being made
.rccessible to multiple clients. Figure 2.5 i l lustrates client/server architecture at the

45

l l com-
r lers to
l icat ion
rtr . The
h.rt did
ore, a i l
i isplay
.-. : . - . ,1 ̂r l l l l ld lJt

r unica-

(-s and
rrr ' they
u.\ ls in
r lnter-
'hr sical

Operating System

l/O Devices
(Printers,

TapeDrives, . . .)

t Apdb"ti*l t t
I Programs | fDisp

t pBMSI
Software

Terminal
Display Control

Figure 2.4
A physical centralized

arch itectu re.

Chapter 2 Database System Concepts and Architecrure

logical level; Figure 2.6 is a simplified diagram that shows the physical architecture.
Some machines would be client sites only (for example, diskless workstations or
workstations/PCs rvith disks that have only clieni software installed). other
machines would be dedicated servers, and others would have both client and server
functionality.

The concept of client/server architecture assumes an underlying framework that
consists of rnany PCs and workstations as well as a smaller tru-b., of mainframe
machines, connected via LANs and other types of computer networks. A client in
this framework is typically a user machine that providei user interface capabilities
and loca-l processing. When a client requires access to additional functionality-
such as database access-that does not exist at that machine, it connects to a server
that provides the needed functionality. A server is a system containing both hard-
ware and software that can provide services to the client machines, such as fi le

Figure 2.5
Logical two-tier
client/server
architecture.

Figure 2.6
Physical two-tier
client,/server
architecture,

Diskless
Client

Cl ient
with Disk

tilf
Site 1

'cture.
)ns or
Other
server

k that
trame
ent in
ri l i t ies
lin'-
server
hard-
as fi le

2.5 Centralized and Client/Server Architectures for DBMSs

.l.ccss, printing, archiving, or database access. In the general case, some machines
install only client software, others only server softrvare, and sti l l others may include
iroth client and server softrvare, as i l lustrated ir-r Figure 2.6. However, it is more com-
nron that client and server softrvare usually run on separate machines. TWo main
lvpes of basic DBMS architectures rvere created on this underlying client/server
il ' irnrework: two-tier and three-tier.1r We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs
I'hc' client/server architecture is increasingly being incorporated into commercial
l)BN,{S packages. In relational database management systems (RDBMSs), many of
rr hich started as centralized systen-rs, the s1'stern components that were first moved
:o the client side were the user interface and application programs. Because SQL
sce Chapters 8 and 9) provided a standard language for RDBMSs, this created a

l,rgical dividing point between client and server. Hence, the query and transaction
:irnctionaiity related to SQL processing remained on the server side. In such archi-
iccture, the server is often called a query server or transaction server because it
r.ror.ides these two functionalit ies. In an RDBMS the server is also often called ar-r
SQL server.

in such a client/server architecture, the r-rser interface programs and application
prosrams can run on the client side. When DBMS access is required, the program
c:tablishes a connection to the DBMS (rvhich is on the server side); once the con-
ncction is created, the client program can communicate with the DBMS. A standard
..rlled Open Database Connectivity (ODBC) provides an application program-
ming interface (API), which allows client-side programs to call the DBMS, as long
ls both client and server machines have the necessary software installed. Most
l)BMS vendors provide ODBC drivers for their systems. A client program can actu-
.rl lv connect to several RDBMSs and send query and transaction requests using the
t)DBC API, which are then processed at the server sites. Any querv results are sent
b.rck to the client program, rvhich can process or display the results as needed. A
rclated standard for the lava programming language, called JDBC, has also been
.lt-t lned. This allows Java client programs to access the DtsMS through a standard
i rlterface.

fhe second approach to c l ient /server archi tecture lvas taken by some object-
oriented DBMSs, where the softrvare moduies of the DBMS were divided between
clicnt and server in a more integrated way. For example, the server level may
include the part of the DBN{S software responsible fbr handling data storage on disk
p.rges, local collcurrency control and recovery, buffering and caching of disk pages,
.rnd other such functions. N'leanwhile, the client level may handle the user interface;
clata dictionary functions; DBMS interactions with programming language compil-
t 'rs; global query optimization. concrlrrency control, and recovery across multiple
\crvers; structuring of comprlex objects from the data in the buffers; and other such

3 There are many other var iat ons of c l ient /server archrtectures. We d scuss ihe two most basic ones
,.Te,

47

48 Chapter 2 Database System Concepts and Architecture

functions. In this approach, the client/server interaction is more tightly coupled and
is done internally by the DBMS modules-some of which reside on the client and
some on the server-rather than by the users. The exact division of functionalitv
varies from system to system. In such a client/server architecture, the server has
been called a data seryer because it provides data in disk pages to the client. This
data can then be structured into objects for the client programs by the client-side
DBMS software itself.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing
systems. The emergence of the Web changed the roles of clients and server, Ieading
to the three-tier architecture.

2.5.4 Three-Tier and n-Tier Architectures for Web Applications
Many Web applications use an architecture called the three-tier architecture, which
adds an intermediate layer between the client and the database server, as illustrated
in Figure 2.7(a).

This intermediate layer or middle tier is sometimes called the application server
and sometimes the Web server, depending on the application. This server plays an
intermediary role by storing business rules (procedures or constraints) that are used
to access data from the database server. It can also improve database security by
checking a client's credentials before forwarding a request to the database server.
Clients contain GUI interfaces and some additional application-specific business
rules. The intermediate server accepts requests from the client, processes the request
and sends database commands to the database server. and then acts as a conduit for

Figure 2.7
I onical ihree-t ier Cl ient
cl ient/server arch itecture,
wi th a couple of commonl,
used nomenclatures.;iw

Application Server
or

Web Server

Database
Server

pl. 'd and
l icnt and
t ionir l i ty

. 'rr.er has
crt . This
:cnt-s ide

:hc sof t -
c .rdvan-
: er ist ing
-. 1c'ading

tions
re. rr 'hich
, -: rt rated

In Server
l ' la\-s an
irc used

. rr in ' by

.! \! ' fvef.

: . u: ineSS
r lc'tlU€St
::Juit for

2.6 Classification of Database Management Systems

passing (partially) processed data from the database server to the clients, where it
nrrry be processed further and filtered to be presented to users in GUI format. Thus,
tlrc lser interface, applicttt iott rules, a'nd data nccess act as the three tiers. Figure
l.l(b) shows another architecture used by database and other application package
\r'ndors. The presentation layer displays information to the user and allows data
cntry. The business logic layer handles intermediate rules and constraints before
tl.rta is passed up to the user or down to the DBMS. The bottom layer includes all
Jrta management services. If the bottom layer is split into two layers (a Web server
.urcl a database server), then this becomes a four-tier architecture. It is custornary to
.l ivide the layers between the user and the stored data further into finer compo-
ncnts, thereby giving rise to n-tier architectures where n may be four or f ive.
I\ picaily, the business logic layer is divided into rnultiple layers. Besides distributing
i)rogramming and data throughout a netrvork, r-t ier applications afford the advan-
: . rqe that any one t ier can run on an appropr iate processor or operat ing systenr plat-
tirrrn and can be handled independently. Another layer typically used by vendors of
I :RP (enterpr ise resource plannir-rg), and CRM (customer relat ionship mauage-
rrrent) packages is the rniddleware lnyer which, accounts for the front-end modules
.ommunicating with a number of back-end databases.

\clvances in encryption and decryption technology make it safer to transfer sensi-
rive data from server to client in encrypted form, where it wil l be decrypted. The lat-
Ir.r con be done by the hardware or by advanced software. This technology gives
hieher levels of data security, but the network security issues remain a major con-
cr.rn. Various technologies for data compression also help to transfer iarge amounts
tri data from servers to clients over wired altd wireless networks.

2.6 Classification of Database
Management Systems

Several criteria are normally used to classify DBMSs. The first is the data model or-r
rvhich the DBMS is based. The main data model used in many current commerciirl
l)BMSs is the relational data model. The object data model has been implementecl
in some commercial systems but has not had widespread use. Many legacy applica-
tions sti l l run on database systems based on the hierarchical and network data
models. Examples of Hierarchical DBMSs include IMS (lBM) and some other sys-
tcms like System 2K (SAS Inc.) or TDMS, which did not succeed much commer-
cially. IMS continues to be a very dominant player among the DBMSs in use at
sovernmental and industrial installations, including hospitals and banks. The net-
rvork data model was used by many vendors and the resulting products l ike IDMS
rCullinet-now Computer Associates), DMS 1100 (Univac-now Unisys), IMAGE
, Hewlett-Packard), VAX-DBMS (Digital-now Compaq), and SUPRA (Cincom)
sti l l have a following and their user groups have their own active organizations. If
rve add IBM's popular VSAM fi le system to these, we can easily say that (at the time
of writ ing), more than 50% of the worldwide-computerized data is in these so-
called legary database systems.

Chapter 2 Database System Concepts and Architecture

The relational DBMSs arre evolving continuously, and, in particular, have been
incorporating n-rany of the concepts that were developed in object databases. This
has led to a new class of DBMSs called object-relational DBMSs. We can categorize
DBMSs based on the data model: relational, obiect, object-relational, hierarchical,
network, and other.

The second criterion used to classify DBMSs is the number of users supported bv
the system. Single-user systems support only one user at a time and are mostly used
with PCs. Multiuser systems, which include the majority of DBMSs, support con-
current multiple users.

The third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized
DBMS can support mr-i lt iple users, but the DBlv{S and the database reside totally at
a single computer site. A distributed DBMS (DDBMS) can have the actual database
and DBMS softrvare distributed over many sites, connected by a computer network.
Homogeneous DDBMSs use the same DBMS softrvare at multiple sites. A recent
trend is to develop softwirre to access several autonomous preexisting databases
stored under heterogeneous DBMSs. This leads to a federated DBMS (or multi-
database system), in which the participating DBMSs irre loosely coupled and have a
degree of local autonomy. Many DDBMSs use a client-server architecture.

The fourth criterion continues to be cost. But it is very difficult to propose any type
of classiflcation of DBlv{Ss based orl cost. Today we have open source (free) DBMS
products l ike N'IYSQL and PostgreSQl that are supported by third-party vendors
with additional services. The main RDBMS products are available as free examina-
tion 30-da1,copy'r,ersions as u'ell as personal versious, rvhich may cost under $100
and allow a fair amourrt of functionality. The giant systems are being sold in modu-
lar form with components to handle distribution, replication, parallel processing,
n-robile capabil ity, and so on, with a l irrge nurnber of parirmeters that rnust be defined
for the configuration. Furthermore, they are sold in the tbrm of l icenses-site
licenses allow unlimited use of the database system rvith any number of copies run-
ning at the customer site. Another type of l icense limits the number of concurrent
users or the nurnber of user seats at a location. Standalone single user versions of
some systems like ACCESS are sold per copy or ir-rcluded in the overall configuration
of a desktop or laptop. In irddition, data warehousing and mining features, as well as
support for aclclit ional clata types, are made available at extra cost. It is quite common
to pay in millions for the installation and maintenance of database systems annualll'.

We can also classifr a DBI\{S on tbe basis of the types of access path options for
storing fi les. One well-known tamily of DBMSs is based on inverted fi le structures.
Finall,v, a DBMS can be general purpose or special purpose. When performance is
a primary consideration, a special-prurpose DBMS can be designed and built for a
specitic applicirt ior-r; sr-rch a system canrlot be used for other applications without
major changes. Many airl ine reservations and telephone directory systems devel-
oped in the pirst are special purpose DBMSs. These fall into the category of online
transaction processing (OITP) systems, which rnust support a large number of
concurrent transactions without imposing excessive delays.

2.6 Classification of Database Manaoement Svstems

l.et us briefly elaborate on the n-rain criterion for classiS,ing DBMSs: the data model.
t 'he basic relational data model represents a database as a collection of tables, rvhere
cach table can be stored irs a separate fl le. The database in Figure 1.2 resen.rbles a
rc-lational representation. Nlost relational databases use the high-level query lan-
*uage called SQL and support a l imited form of user views. We discuss the relational
rrrodel, its languages irnd operatiol. ls, 2urd techniques [or programming relational
.rpplications in Chtrpters 5 through 9.

l 'he object data model defines a database in terrns of objects, their properties, and
their operations. Objects with the same stnlcture and behavior belong to a class,
.rr.rd classes are organized into hierarchies (or acyclic graphs). The operations of
cach class are specified in terms of predefined procedures called methods.
l{clational DBMSs hzrve been extending their models to incorporate object database
concepts and other capabil it ies; these systems are referred to as object-relational or
extended relational systems. We discuss object databases and oL'rject-relational sys-
tcrns in Chapters 20 to 22.

Trvo older, historically important data rnodels, r-row known as legacy data moclels, iire
the network and hierarchical rnodels. The network model represents data as record
tvpes and also represents a l imited type of l:N relationship, called a set t)?e. A 1:N,
or one-to-many, relat ionship relates one instance of a record to many record
instances using some pointer l inking mechanism in these rnodels. Figure 2.8 shorvs a
rretrvork schema di:rgram for the datirbase of Figure 1.2, where record types are
.hown as rectangles and set tvpes are shown as labeled directed arrows. The network
nrodel, also known as the CODASYL DBTG modei,la has an associated record-at-a-
time language that rnust be embedded in a host prograrnming language. The net-
n'ork DML was proposed in tl-re 1971 Database Task Group (DBTG) Repe11 35 ur't
crtensiorr of the COBOL language. It provides commands for locating records

51

rave been
ases. This
:Jtegorize
'rarchical,

rtrrtc'd bY
. ' r t lv used
;.r)rt COn-

- ihuted. A
.'nt ralized
I() I r l lV at

i Jatabase
nctu'ork.
.\ recent

J.rtabases
\)r multi-
ntl have a

j rnv type
r DBN{S
, r'endors
cramina-
:Jcr S100
::' i mcldu-
1, r;g5sing,
'c dct-tned
..ss-si te

'p ics run-
)ncurrent
: : . ions of
:lguration
.r: rr'ell as
aonltnon
.innually.

r l ions for
tnrctures.
rnrance is
.ui l t for a
\ \\ ' i thout
:rs devel-
,ri online
unrber of

Figure 2.8
The schema of

Frgure 2, 1 in network
model notat ion.COU RSE_OFFERINGS

STUDENT GRADES

ISA

SECTION GRADES

14, CODASYL DBTG stands for Con{erence on Data Systems Languages Database Task Group, which s
the commit tee that spec { ed the net ' lork mode and ts anguage.

PREREOUISITE

GRADE_REPORT

Chapter 2 Database System Concepts and Architecture

direct ly (e.g. , FIND ANY (record-type> USING <f ie ld- l is t>, or FIND DUPLICATE
<record-type> USING <field-l ist>). It has commands to support traversals within
set-types (e.g., GET OWNER, GET {FlRST, NEXT, LAST} MEMBER WITHIN <set-type>
WHERE lcondition)).It also has commands to store new data (e.g., STORE <record-
type>) and to make it part of a set type (e.g., CONNECT <record-type> TO <set-
type>). The language also handles many additional considerations such as the
currency of record types and set types, which are defined by the current position of
the navigation process within the database. It is prominently used by IDMS, IMAGE,
and SUPRA DBMSs today. The hierarchical model represents data as hierarchical
tree structures. Each hierarchy represents a number of related records. There is no
standard language for the hierirrchical rnodel. A popular hierarchical DML is DL/l of
the IMS system. It dominated the DBMS market for over 20 years between 1965 and
1985 and is a very widely used DBMS u'orldwide even today and holds a very high
percentage of data in governmental, health care, and banking and insurance data-
bases. Its DML called DL/ 1 was a de facto industry standard for a long time. DL/ I has
commands to locate a record (e.g., GET {UNIOUE, NEXT} <record-type> WHERE,
<condition>). It has navigational facilities to navigate within hierarchies (e.g., GET
NEXT WITHIN PARENT or GET {FlRST, NEXT} PATH <hierarchical-path-specification)
WHERE <condition>). It has appropriate facil i t ies to store and update records (e.g.,
INSERT (record-type>, REPLACE <record-type>). Currency issues during naviga-
tion are also handled with acldit ional features in the language. We give a brief
overview of the network and hierarchical models in Appendices E and F.rs

The eXtended Markup Language (XML) model, now considered the standard for
data interchange over the Internet, also uses hierarchical tree structLlres. It combines
database concepts with concepts from docurnent representation models. Data is
represented as elements; with the use of tags, data can be nested to create complex
hierarchical structures. This model conceptually reser.nbles the object rnodel, but
uses different terminology. We discuss XML irnd how it is related to databases in
Chapter 27.

2.7 Summary
In this chapter we introduced the main concepts used in database systems. We
defined a data model and we clistinguished three main categories:

xs High-level or conceptual data rnodels (based on entit ies and relationships)
s Low-level or physical drrta models
$s Representational or irnplementation data models (record-based, object-

oriented)

1 5. The ful l chaoters on the network and hierarchical models f rom the second edi t ion of th s book are
avai lable over the Internet f rom this book's Companion Websi te at ht tp: , / /www.aw,com/elnrasr i ,

)LICATE
i \\'ithin
t- tvPe>
rccord-
O (set-
r as the
. i t ion of
\ IAGE,
.rrchical
rc ls no
I)L/1 of
965 and
- 'n 'h igh
cc data-
) l /1 has
I/HERE,
.9. , GET
cation)
'ds (e.9. ,
nin'iga-
a br ief

Jard for
rmbines
Data is

--omplex
,del, but
bases in

-'r.ns. We

rships)

trbiect-

2.7 Summarv

\\'e distinguished the schema, or description of a database, from the database itself.
I'he schema does not change very often, whereas the database state changes every
time data is inserted, deleted, or modified. Then we described the three-schema
l)BMS architecture, which allows three schema levels:

.r' An internal schema describes the physical storage structure of the database.
',' A conceptual schema is a high-level description of the whole database.
,,r External schemas describe the views of different user groups.

.\ DBMS that cleanly separates the three levels must have mappings between the
\chemas to transform requests and results from one level to the next. Most DBMSs
do not separate the three levels completely. We used the three-schema architecture
to define the concepts oflogical and physical data independence.
' l-hen we discussed the main types of languages and interfaces that DBMSs support.
.\ data definit ion language (DDL) is used to define the database conceptual schema.
ln most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages (VDL, SDL) may exist for specifying
r i*vs and storage structures. This distinction is fading away in today's relational
implementations with SQL serving as a catchall language to perform multiple roles,
including view definit ion. The storage definit ion part (SDL) was included in SQL
()\ 'er many versions, but has now been relegated to special commands for the DBA
in relational DBMSs. The DBMS compiles all schema definit ions and stores their
descriptions in the DBMS catalog. A data manipulation language (DML) is used for
speci$ing database retrievals and updates. DMLs can be high level (set-oriented,
nonprocedural) or low level (record-oriented, procedural). A high-level DML can
bc' embedded in a host programming language, or it can be used as a standalone
i.rnguage; in the latter case it is often called a query language,

\\ 'e discussed different types of interfaces provided by DBMSs, and the types of
l)BMS users with which each ir.rterface is associated. Then we discussed the database
:\'st€rrr environment, typical DBMS software modules, and DBMS uti l i t ies for help-
ing users and the DBA perform their tasks. We continued with an overvierv of the
nvo-tier and three-tier architectures for database applications, progressively moving
torvard n-tier, which are now very common in most modern applications, particu-
l.rrly Web database applications.

I-inally, we classified DBMSs according to several criteria: data model, number of
users, number of sites, types of access paths, and generality. We discussed the avail-
.rbil i ty of DBMSs and additional modules-frorn no cost in the form of open source
software, to configurations that annually cost mill ions to maintain. \Ve also pointed
out the variety of licensing arrangements for DBMS and related products. The main
classification of DBMSs is based on the data model. We briefly discussed the main
data models used in current commercial DBMSs and provided an example of the
network data model.

53

