Id expect
andancy?
‘hown in
s tor the
{ hold on

-tonal file

langes to
nent and
entify the

ON, and
pdated?

include
- teatures
~ issue of
and may

chapter

Database System Concepts
and Architecture

gii%j he architecture of DBMS packages has evolved

& from the early monolithic systems, where the
whole DBMS software package was one tightly integrated system, to the modern
DBMS packages that are modular in design, with a client/server system architecture.
This evolution mirrors the trends in computing, where large centralized mainframe
computers are being replaced by hundreds of distributed workstations and personal
computers connected via communications networks to various types of server
machines—Web servers, database servers, file servers, application servers, and so on.

In a basic client/server DBMS architecture, the system functionality is distributed
between two types of modules.! A client module is typically designed so that it will
run on a user workstation or personal computer. Typically, application programs
and user interfaces that access the database run in the client module. Hence, the
client module handles user interaction and provides the user-friendly interfaces
such as forms- or menu-based GUIs. The other kind of module, called a server
module, typically handles data storage, access, search, and other functions. We dis-
cuss client/server architectures in more detail in Section 2.5. First, we must study
more basic concepts that will give us a better understanding of modern database
architectures.

In this chapter we present the terminology and basic concepts that will be used
throughout the book. Section 2.1 discusses data models and defines the concepts of

1. As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.

29

30 Chapter 2 Database System Concepts and Architecture

schemas and instances, which are fundamental to the study of database systems.
Then, we discuss the three-schema DBMS architecture and data independence in
Section 2.2; this provides a user’s perspective on what a DBMS is supposed to do. In
Section 2.3 we describe the types of interfaces and languages that are typically pro-
vided by a DBMS. Section 2.4 discusses the database system software environment.
Section 2.5 gives an overview of various types of client/server architectures. Finally,
Section 2.6 presents a classification of the types of DBMS packages. Section 2.7
summarizes the chapter.

The material in Sections 2.4 through 2.6 provides more detailed concepts that may
be considered as supplementary to the basic introductory material.

2.1 Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some
level of data abstraction. Data abstraction generally refers to the suppression of
details of data organization and storage and the highlighting of the essential fea-
tures for an improved understanding of data. One of the main characteristics of the
database approach is to support data abstraction so that different users may per-
ceive data at their preferred level of detail. A data model—a collection of concepts
that can be used to describe the structure of a database—provides the necessary
means to achieve this abstraction.” By structure of a database we mean the data
types, relationships, and constraints that should hold for the data. Most data mod-
els also include a set of basic operations for specifying retrievals and updates on the
database.

In addition to the basic operations provided by the data model, it is becoming more
common to include concepts in the data model to specity the dynamic aspect or
behavior of a database application. This allows the database designer to specify a set
of valid user-defined operations that are allowed on the database objects.” An exam-
ple of a user-defined operation could be COMPUTE_GPA, which can be applied to a
STUDENT object. On the other hand, generic operations to insert, delete, modify, or
retrieve any kind of object are often included in the basic data model operations.
Concepts to specify behavior are fundamental to object-oriented data models (see
Chapters 20 and 21) but are also being incorporated in more traditional data mod-
els. For example, object-relational models (see Chapter 22) extend the basic rela-
tional model to include such concepts, among others. In the relational data model,
there is a provision to attach behavior to the relations in the form of persistent
stored modules, popularly known as stored procedures (see Chapter 9).

2. Sometimes the word model is used to denote a specific database description, or schema—for example,
the marketing data model, We will not use this interpretation.

3. The inclusion of concepts to describe behavior reflects a trend whereby database design and software
design activities are increasingly being combined into a single actlivity. Traditionally. specifying behavior is
associated with software design.

“swstems.
~dence in
‘rodo.In
<ally pro-
ronment.
~. Finally,
Juon 2.7

Tnat may

U some
e~ion of
~tal tea-
o~ of the
v per-
congcepts
tecessary
the data
ata mod-
s on the

g more
aspect or
21ty a set
An exam-
oliedtoa
‘.Odify, or
SCrations.
wdels (see
212 mod-
asic rela-
a model,
ersistent

=z ple,

2.1 Data Models, Schemas, and Instances

2.1.1 Categories of Data Models

Many data models have been proposed, which we can categorize according to the
tvpes of concepts they use to describe the database structure. High-level or concep-
tual data models provide concepts that are close to the way many users perceive
data, whereas low-level or physical data models provide concepts that describe the
details of how data is stored in the computer. Concepts provided by low-level data
models are generally meant for computer specialists, not for typical end users.
Between these two extremes is a class of representational (or implementation)
data models,* which provide concepts that may be understood by end users but that
are not too far removed from the way data is organized within the computer.
Representational data models hide some details of data storage but can be imple-
mented on a computer system directly.

Conceptual data models use concepts such as entities, attributes, and relationships.
An entity represents a real-world object or concept, such as an employee or a proj-
ect that is described in the database. An attribute represents some property of inter-
est that further describes an entity, such as the employee’s name or salary. A
relationship among two or more entities represents an association among two or
more entities, for example, a works-on relationship between an employee and a
project. Chapter 3 presents the Entity-Relationship model—a popular high-level
conceptual data model. Chapter 4 describes additional abstractions used for
advanced modeling, such as generalization, specialization, and categories.

Representational or implementation data models are the models used most fre-
quently in traditional commercial DBMSs. These include the widely used relational
data model, as well as the so-called legacy data models—the network and hierarchi-
cal models—that have been widely used in the past. Part 2 is devoted to the relational
data model, its operations and languages, and some of the techniques for program-
ming relational database applications.> The SQL standard for relational databases is
described in Chapters 8 and 9. Representational data models represent data by using
record structures and hence are sometimes called record-based data models.

We can regard the object data model group (ODMG) as a new family of higher-
level implementation data models that are closer to conceptual data models. We
describe the general characteristics of object databases and the ODMG proposed
standard in Chapters 20 and 21. Object data models are also frequently utilized as
high-level conceptual models, particularly in the software engineering domain.

Physical data models describe how data is stored as files in the computer by repre-
senting information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records effi-
cient. We discuss physical storage techniques and access structures in Chapters 13

4. The term implementation data model is not a standard term; we have introduced it to refer to the avail-
anle data models in commercial database systems.

5. A summary of the network and hierarchical data models is included in Appendices E and F. They are
accessible from the book's Web site.

31

32 Chapter 2 Database System Concepts and Architecture

and 14. An index is an example of an access path that allows direct access to data
using an index term or a keyword. It is similar to the index at the end of this book,
except that it may be organized in a linear, hierarchical, or some other fashion.

2.1.2 Schemas, Instances, and Database State

In any data model, it is important to distinguish between the description of the data-
base and the database itself. The description of a database is called the database
schema, which is specified during database design and is not expected to change
frequently.® Most data models have certain conventions for displaying schemas as
diagrams.” A displayed schema is called a schema diagram. Figure 2.1 shows a
schema diagram for the database shown in Figure 1.2; the diagram displays the
structure of each record type but not the actual instances of records. We call each
object in the schema—such as STUDENT or COURSE—a schema construct.

A schema diagram displays only some aspects of a schema, such as the names of
record types and data items, and some types of constraints. Other aspects are not
specified in the schema diagram; for example, Figure 2.1 shows neither the data type
of each data item nor the relationships among the various files. Many types of con-
straints are not represented in schema diagrams. A constraint such as students
majoring in computer science must take CS1310 before the end of their sophomore year
is quite difficult to represent.

The actual data in a database may change quite frequently. For example, the data-
base shown in Figure 1.2 changes every time we add a student or enter a new grade.
The data in the database at a particular moment in time is called a database state or
snapshot. It is also called the current set of occurrences or instances in the data-
base. In a given database state, each schema construct has its own current ser of
instances; for example, the STUDENT construct will contain the set of individual
student entities (records) as its instances. Many database states can be constructed
to correspond to a particular database schema. Every time we insert or delete a
record or change the value of a data item in a record, we change one state of the
database into another state.

The distinction between database schema and database state is very important.
When we define a new database, we specify its database schema only to the DBMS.
At this point, the corresponding database state is the empty state with no data. We
get the initial state of the database when the database is first populated or loaded
with the initial data. From then on, every time an update operation is applied to the
database, we get another database state. At any point in time, the database has a
current state. The DBMS is partly responsible for ensuring that every state of the

6. Schema changes are usually needed as the requirements of the database applications change. Newer
database systems include operations for allowing schema changes, although the schema change process
is more involved than simple database updates.

7.1t is customary in database parlance to use schemas as the plural for schema, even though schemata is
the proper plural form. The word scheme is sometimes used to refer to a schema.

8. The current state is also called the current snapshot of the database.

2.2 Three-Schema Architecture and Data Independence 33

to data database is a valid state—that is, a state that satisfies the structure and constraints
i~ book, specified in the schema. Hence, specifying a correct schema to the DBMS is
mn. extremely important and the schema must be designed with utmost care. The
DBMS stores the descriptions of the schema constructs and constraints—also called
the meta-data—in the DBMS catalog so that DBMS software can refer to the
schema whenever it needs to. The schema is sometimes called the intension, and a

1e data- database state is called an extension of the schema.

af.i ?:i: :xlthough, as mentioned earlier, the thema is not supposed.to change frequently, it
. 35 is not uncommon that changes occasionally need to be apphed to the schema as the
“hows a t1pp11cat10n requirements change. For e.xample, we may degde that another data
‘s the item needs to be storgd fo.r each recorq ina file, such as adding the.Date_of_birth to
1 each the STU DENT schema in Figure 2. L. This is known as schema evolution. Most mod-
ern DBMSs include some operations for schema evolution that can be applied
while the database is operational.
imes of
ire not
e 2.2 Three-Schema Architecture
ol con-
codents and Data Independence
reyear Three of the four important characteristics of the database approach, listed in
Section 1.3, are (1) insulation of programs and data (program-data and program-
-¢ data- operation independence), (2) support of multiple user views, and (3) use of a cata-
« erade. log to store the database description (schema). In this section we specify an
state or architecture for database systems, called the three-schema architecture,” that was
e data-
;0 set of
:Yn'lquaci STUDENT Figure 2.1
:K:tfd ! Name 1Student_number I Class [Major I Sccjhema diagram for the
atabase in Figure 1.2.
> of the
COURSE
ant l Course_name l Course_number | Credit_hours! Department
raortant.
i:‘li‘\\l\?e' PREREQUISITE
loaded l Course_number l Prerequisite_number |
Jd 1o the
« has a SECTION
¢ of the | Section_identifier| Course_number] Semester | Year l Instructor
wer GRADE_REPORT
255 \ Student_number] Section_identifierl Grade l
1S

9. This is also known as the ANSI/SPARC architecture, after the committee that proposed it (Tsichritzis
and Klug 1978).

34 Chapter 2 Database System Concepts and Architecture

proposed to help achieve and visualize these characteristics. Then we discuss the
concept of data independence further.

2.2.1 The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate the
user applications and the physical database. In this architecture, schemas can be
defined at the following three levels:

The internal level has an internal schema, which describes the physical stor-
age structure of the database. The internal schema uses a physical data model
and describes the complete details of data storage and access paths for the
database.

The conceptual level has a conceptual schema, which describes the struc-
ture of the whole database for a community of users. The conceptual schema
hides the details of physical storage structures and concentrates on describ-
ing entities, data types, relationships, user operations, and constraints,
Usually, a representational data model is used to describe the conceptual
schema when a database system is implemented. This implementation con-
ceptual schema is often based on a conceptual schema design in a high-level
data model.

The external or view level includes a number of external schemas or user
views. Each external schema describes the part of the database that a partic-
ular user group is interested in and hides the rest of the database from that

Figure 2.2
The three-schema End Users
architecture.

External External
View o View

External Level

External/Conceptual
Mapping

Conceptual Level | Conceptual Schema 1
A

Conceptual/Internal
Mapping

Y
Internal Level ‘ Internal Schema W

Stored Database

«uss the

arate the
~ can be

«al stor-
2 model
~ tor the

¢ struc-
~chema
Jescrib-
straints,
weptual
SONcon-
sh-level

or user
i partic-
om that

2.2 Three-Schema Architecture and Data Independence

user group. As in the previous case, each external schema is typically imple-
mented using a representational data model, possibly based on an external
schema design in a high-level data model.

The three-schema architecture is a convenient tool with which the user can visualize
the schema levels in a database system. Most DBMSs do not separate the three levels
completely and explicitly, but support the three-schema architecture to some extent.
Some DBMSs may include physical-level details in the conceptual schema. The
three-level ANSI architecture has an important place in database technology devel-
opment because it clearly separates the users’ external level, the system’s conceptual
level, and the internal storage level for designing a database. It is very much applica-
ble in the design of DBMSs, even today. In most DBMSs that support user views,
external schemas are specified in the same data model that describes the
conceptual-level information (for example, a relational DBMS like Oracle uses SQL
for this). Some DBMSs allow different data models to be used at the conceptual and
external levels. An example is Universal Data Base (UDB), a DBMS from IBM,
which uses the relational model to describe the conceptual schema, but may use an
object-oriented model to describe an external schema.

Notice that the three schemas are only descriptions of data; the stored data that
actually exists is at the physical level. In a DBMS based on the three-schema archi-
tecture, each user group refers only to its own external schema. Hence, the DBMS
must transform a request specified on an external schema into a request against the
conceptual schema, and then into a request on the internal schema for processing
over the stored database. If the request is a database retrieval, the data extracted
from the stored database must be reformatted to match the user’s external view. The
processes of transforming requests and results between levels are called mappings.
These mappings may be time-consuming, so some DBMSs—especially those that
are meant to support small databases—do not support external views. Even in such
systems, however, a certain amount of mapping is necessary to transform requests
between the conceptual and internal levels.

2.2.2 Data Independence

The three-schema architecture can be used to further explain the concept of data
independence, which can be defined as the capacity to change the schema at one
level of a database system without having to change the schema at the next higher
level. We can define two types of data independence:

i. Logical data independence is the capacity to change the conceptual schema
without having to change external schemas or application programs. We
may change the conceptual schema to expand the database (by adding a
record type or data item), to change constraints, or to reduce the database
(by removing a record type or data item). In the last case, external schemas
that refer only to the remaining data should not be affected. For example, the
external schema of Figure 1.5(a) should not be affected by changing the
GRADE_REPORT file (or record type) shown in Figure 1.2 into the one

35

36 Chapter 2 Database System Concepts and Architecture

shown in Figure 1.6(a). Only the view definition and the mappings need be
changed in a DBMS that supports logical data independence. After the con-
ceptual schema undergoes a logical reorganization, application programs
that reference the external schema constructs must work as before. Changes
to constraints can be applied to the conceptual schema without affecting the
external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema
without having to change the conceptual schema. Hence, the external
schemas need not be changed as well. Changes to the internal schema may be
needed because some physical files were reorganized—for example, by creat-
ing additional access structures—to improve the performance of retrieval or
update. If the same data as before remains in the database, we should not
have to change the conceptual schema. For example, providing an access
path to improve retrieval speed of section records (Figure 1.2) by semester
and year should not require a query such as list all sections offered in fall 2004
to be changed, although the query would be executed more efficiently by the
DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environ-
ments in which the exact location of data on disk, hardware details of storage
encoding, placement, compression, splitting, merging of records, and so on are hid-
den from the user. Applications remain unaware of these details. On the other hand,
logical data independence is very hard to come by because it allows structural and
constraint changes without affecting application programs—a much stricter
requirement.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include
information on how to map requests and data among the various levels. The DBMS
uses additional software to accomplish these mappings by referring to the mapping
information in the catalog. Data independence occurs because when the schema is
changed at some level, the schema at the next higher level remains unchanged; only
the mapping between the two levels is changed. Hence, application programs refer-
ring to the higher-level schema need not be changed.

The three-schema architecture can make it easier to achieve true data indepen-
dence, both physical and logical. However, the two levels of mappings create an
overhead during compilation or execution of a query or program, leading to ineffi-
ciencies in the DBMS. Because of this, few DBMSs have implemented the full three-
schema architecture.

2.3 Database Languages and Interfaces

In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS
must provide appropriate languages and interfaces for each category of users. In this
section we discuss the types of languages and interfaces provided by a DBMS and
the user categories targeted by each interface.

<d be
oon-
rams
anges
1¢ the

hema
ernal
1av be
creat-
val or
d not
1ester
C2004
w the

‘ron-
orage
< hid-
hand,
i and
ricter

Jlude
YBNIS
pping
ma is
only
refer-

Jpen-
e an
netti-
hree-

WBMS
n this
s and

2.3 Database Languages and Interfaces

2.3.1 DBMS Languages

Omnce the design of a database is completed and a DBMS is chosen to implement the
database, the first step is to specify conceptual and internal schemas for the database
and any mappings between the two. In many DBMSs where no strict separation of
levels is maintained, one language, called the data definition language (DDL), is
used by the DBA and by database designers to define both schemas. The DBMS will
have a DDL compiler whose function is to process DDL statements in order to iden-
tity descriptions of the schema constructs and to store the schema description in the
DBMS catalog.

In DBMSs where a clear separation is maintained between the conceptual and inter-
nal levels, the DDL is used to specify the conceptual schema only. Another language,
the storage definition language (SDL), is used to specify the internal schema. The
mappings between the two schemas may be specified in either one of these lan-
suages. In most relational DBMSs today, there is no specific language that performs
the role of SDL. Instead, the internal schema is specified by a combination of
parameters and specifications related to storage—the DBA staff typically controls
indexing and mapping of data to storage. For a true three-schema architecture, we
would need a third language, the view definition language (VDL), to specity user
views and their mappings to the conceptual schema, but in most DBMSs the DDL is
used to define both conceptual and external schemas. In relational DBMSs, SQL is
used in the role of VDL to define user or application views as results of predefined
queries (see Chapters 8 and 9).

Once the database schemas are compiled and the database is populated with data,
users must have some means to manipulate the database. Typical manipulations
include retrieval, insertion, deletion, and modification of the data. The DBMS pro-
vides a set of operations or a language called the data manipulation language
1DML) for these purposes.

In current DBMSs, the preceding types of languages are usually not considered dis-
tinct languages; rather, a comprehensive integrated language is used that includes
constructs for conceptual schema definition, view definition, and data manipula-
tion. Storage definition is typically kept separate, since it is used for defining physi-
cal storage structures to fine-tune the performance of the database system, which is
usually done by the DBA staff. A typical example of a comprehensive database lan-
guage is the SQL relational database language (see Chapters 8 and 9), which repre-
sents a combination of DDL, VDL, and DML, as well as statements for constraint
specification, schema evolution, and other features. The SDL was a component in
early versions of SQL but has been removed from the language to keep it at the con-
ceptual and external levels only.

There are two main types of DMLs. A high-level or nonprocedural DML can be
used on its own to specify complex database operations concisely. Many DBMSs
allow high-level DML statements either to be entered interactively from a display
monitor or terminal or to be embedded in a general-purpose programming lan-
guage. In the latter case, DML statements must be identified within the program so

37

38 Chapter 2 Database System Concepts and Architecture

that they can be extracted by a precompiler and processed by the DBMS. A low-
level or procedural DML must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from
the database and processes each separately. Therefore, it needs to use programming
language constructs, such as looping, to retrieve and process each record from a set
of records. Low-level DMLs are also called record-at-a-time DMLs because of this
property. DL/1, a DML designed for the hierarchical model, is a low-level DML that
uses commands such as GET UNIQUE, GET NEXT, or GET NEXT WITHIN PARENT, to
navigate from record to record within a hierarchy of records in the database. High-
level DMLs, such as SQL, can specify and retrieve many records in a single DML
statement; therefore, they are called set-at-a-time or set-oriented DMLs. A query in
a high-level DML often specifies which data to retrieve rather than how to retrieve it;
therefore, such languages are also called declarative.

Whenever DML commands, whether high level or low level, are embedded in a
general-purpose programming language, that language is called the host language
and the DML is called the data sublanguage.!” On the other hand, a high-level
DML used in a standalone interactive manner is called a query language. In general,
both retrieval and update commands of a high-level DML may be used interactively
and are hence considered part of the query language.'!

Casual end users typically use a high-level query language to specify their requests,
whereas programmers use the DML in its embedded form. For naive and paramet-
ric users, there usually are user-friendly interfaces for interacting with the data-
base; these can also be used by casual users or others who do not want to learn the
details of a high-level query language. We discuss these types of interfaces next.

2.3.2 DBMS Interfaces
User-friendly interfaces provided by a DBMS may include the following:

Menu-Based Interfaces for Web Clients or Browsing. These interfaces present
the user with lists of options (called menus) that lead the user through the formula-
tion of a request. Menus do away with the need to memorize the specific commands
and syntax of a query language; rather, the query is composed step-by-step by pick-
ing options from a menu that is displayed by the system. Pull-down menus are a
very popular technique in Web-based user interfaces. They are also often used in
browsing interfaces, which allow a user to look through the contents of a database
in an exploratory and unstructured manner.

10. In object databases, the host and data sublanguages typically form one integrated language—for
example, C++ with some extensions to support database functionality. Some relational systems also pro-
vide integrated languages—for example, Oracle's PL/SQL.

11. According to the English meaning of the word guery, it should really be used to describe retrievals only,
not updates.

A low-
imming
its from
imming
m a set
2 of this
ML that
RENT, to
> High-
le DML
jueryin
rieve it;

led in a
inguage
zh-level
general,
actively

equests,
iramet-
1e data-
:arn the
eXxt.

present
>rmula-
1mands
w pick-
Js are a
used in
{atabase

2.3 Database Languages and Interfaces

Forms-Based Interfaces. A forms-based interface displays a form to each user.
Users can fill out all of the form entries to insert new data, or they can fill out only
certain entries, in which case the DBMS will retrieve matching data for the remain-
ing entries. Forms are usually designed and programmed for naive users as inter-
faces to canned transactions. Many DBMSs have forms specification languages,
which are special languages that help programmers specify such forms. SQL*Forms
is a form-based language that specifies queries using a form designed in conjunc-
tion with the relational database schema. Oracle Forms is a component of the
Oracle product suite that provides an extensive set of features to design and build
applications using forms. Some systems have utilities that define a form by letting
the end user interactively construct a sample form on the screen.

Graphical User Interfaces. A GUI typically displays a schema to the user in dia-
grammatic form. The user then can specify a query by manipulating the diagram. In
many cases, GUIs utilize both menus and forms. Most GUIs use a pointing device,
such as a mouse, to pick certain parts of the displayed schema diagram.

Natural Language Interfaces. These interfaces accept requests written in English
or some other language and attempt to understand them. A natural language inter-
face usually has its own schema, which is similar to the database conceptual schema,
as well as a dictionary of important words. The natural language interface refers to
the words in its schema, as well as to the set of standard words in its dictionary, to
interpret the request. If the interpretation is successful, the interface generates a
high-level query corresponding to the natural language request and submits it to
the DBMS for processing; otherwise, a dialogue is started with the user to clarify the
request. The capabilities of natural language interfaces have not advanced rapidly.
Today, we see search engines that accept strings of natural language (like English or
spanish) words and match them with documents at specific sites (for local search
engines) or Web pages on the Web at large (for engines like Google or AskJeeves).
They use predefined indexes on words and use ranking functions to retrieve and
present resulting documents in a decreasing degree of match. Such “free form” tex-
tual query interfaces are not common on structured relational or legacy model
Jatabases.

Speech Input and Output. Limited use of speech as an input query and speech as
an answer to a question or result of a request is becoming commonplace.
Applications with limited vocabularies such as inquiries for telephone directory,
flight arrival/departure, and bank account information are allowing speech for
input and output to enable ordinary folks to access this information. The speech
input is detected using a library of predefined words and used to set up the param-
cters that are supplied to the queries. For output, a similar conversion from text or
numbers into speech takes place.

Interfaces for Parametric Users. Parametric users, such as bank tellers, often
have a small set of operations that they must perform repeatedly. For example, a

39

40 Chapter 2 Database System Concepts and Architecture

teller is able to use single function keys to invoke routine and repetitive transactions
such as deposits or withdrawals into accounts, or balance inquiries. Systems analysts
and programmers design and implement a special interface for each known class of
naive users. Usually a small set of abbreviated commands is included, with the goal
of minimizing the number of keystrokes required for each request. For example,
function keys in a terminal can be programmed to initiate various commands. This
allows the parametric user to proceed with a minimal number of keystrokes.

Interfaces for the DBA. Most database systems contain privileged commands that
can be used only by the DBA's staff. These include commands for creating accounts,
setting system parameters, granting account authorization, changing a schema, and
reorganizing the storage structures of a database.

2.4 The Database System Environment

A DBMS is a complex software system. In this section we discuss the types of soft-
ware components that constitute a DBMS and the types of computer system soft-
ware with which the DBMS interacts.

2.4.1 DBMS Component Modules

Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The fig-
ure is divided into two halves. The top half of the figure refers to the various users of
the database environment and their interfaces. The lower half shows the internals of
the DBMS responsible for storage of data and processing of transactions.

The database and the DBMS catalog are usually stored on disk. Access to the disk is
controlled primarily by the operating system (OS), which schedules disk
input/output. A higher-level stored data manager module of the DBMS controls
access to DBMS information that is stored on disk, whether it is part of the database
or the catalog.

Let us consider the top half of the figure first. It shows interfaces for the DBA staff,
casual users who work with interactive interfaces to formulate queries, application
programmers who program using some host languages, and parametric users who
do data entry work by supplying parameters to predefined transactions. The DBA
staff works on defining the database and tuning it by making changes to its defini-
tion using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores
descriptions of the schemas (meta-data) in the DBMS catalog. The catalog includes
information such as the names and sizes of files, names and data types of data items,
storage details of each file, mapping information among schemas, and constraints,
in addition to many other types of information that are needed by the DBMS mod-
ules. DBMS software modules then look up the catalog information as needed.

Casual users and persons with occasional need for information from the database
interact using some form of interface, which we show, as interactive query inter-

tions
alvsts
135 of
rgoal
nple,
This

5 that
unts,
.and

soft-
soft-

e fig-
ors of
als of

isk is

disk
1trols
ibase

staff,
ation
.who
DBA
etini-

\tores
ludes
tems,
aints,
mod-

abase
inter-

2.4 The Database System Environment 41

Users: DBA Staff Casual Users Application Parametric Users
/ \ i Programmers
(DDL Privileged Interactive ‘ Application
Statements Commands Query Programs
Y '
DDL a Y Host
: uery :,_> Language
Compiler Compiler Precompiler Compiler
T
: \ Y ‘ J
: Query DML Compiled
| Optimizer Compiler Transactions
: 4
| -
| ~
|
] -
|
]
I e 7 DBA Commands,
: e Queries, and Transactions
Y L ’ o :
p - Runtime Stored
e Database [> Data
Catalog/ P Proc?ssor Concurrency Control/ Manager
Data - - Backup/Recovery A
Dictionary Subsystems
Stored Database Input/Output
Query and Transaction from Database
Execution
Figure 2.3

Component modules of a DBMS and their interactions.

face. We have not explicitly shown any menu-based or form-based interaction that
may be used to generate the interactive query automatically. These queries are
parsed, analyzed for correctness of the operations for the model, the names of data
elements, and so on by a query compiler that compiles them into an internal form.
This internal query is subjected to query optimization that we discuss in Chapter

42 Chapter 2 Database System Concepts and Architecture

15. Among other things, the query optimizer is concerned with rearrangement and
possible reordering of operations, elimination of redundancies, and use of correct
algorithms and indexes during execution. It consults the system catalog for statisti-
cal and other physical information about the stored data and generates executable
code that performs the necessary operations for the query and makes calls on the
runtime processor.

Application programmers write programs in host languages such as Java, C, or
COBOL that are submitted to a precompiler. The precompiler extracts DML com-
mands from an application program written in a host programming language.
These commands are sent to the DML compiler for compilation into object code for
database access. The rest of the program is sent to the host language compiler. The
object codes for the DML commands and the rest of the program are linked, form-
ing a canned transaction whose executable code includes calls to the runtime data-
base processor. These canned transactions are useful to parametric users who
simply supply the parameters to these canned transactions so they can be run
repeatedly as separate transactions. An example is a bank withdrawal transaction
where the account number and the amount may be supplied as parameters.

In the lower half of Figure 2.3, the runtime database processor is shown to execute
(1) the privileged commands, (2) the executable query plans, and (3) the canned
transactions with runtime parameters. It works with the system dictionary and may
update it with statistics. It works with the stored data manager, which in turn uses
basic operating system services for carrying out low-level input/output operations
between disk and main memory. It handles other aspects of data transfer such as
management of buffers in main memory. Some DBMSs have their own buffer man-
agement module while others depend on the OS for buffer management. We have
shown concurrency control and backup and recovery systems separately as a mod-
ule in this figure. They are integrated into the working of the run-time database
processor for purposes of transaction management.

It is now common to have the client program that accesses the DBMS running on a
separate computer from the computer on which the database resides. The former is
called the client computer running a DBMS client and the latter is called the data-
base server. In some cases, the client accesses a middle computer, called the applica-
tion server, which in turn accesses the database server. We elaborate on this topic in
Section 2.5.

Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical
DBMS modules. The DBMS interacts with the operating system when disk
accesses—to the database or to the catalog—are needed. If the computer system is
shared by many users, the OS will schedule DBMS disk access requests and DBMS
processing along with other processes. On the other hand, if the computer system is
mainly dedicated to running the database server, the DBMS will control main mem-
ory buffering of disk pages. The DBMS also interfaces with compilers for general-
purpose host programming languages, and with application servers and client
programs running on separate machines through the system network interface.

nt and
orrect
satisti-
utable
on the

C, or
com-
juage.
de for
. The
form-
- data-
s who
e run
action

ecute
anned
d may
n uses
ations
ach as
man-
¢ have
mod-
tabase

gona
mer is
data-
splica-
picin

vpical
1 disk
tem 1s
DBMS
tem is
mem-
neral-
client

ey

.

2.4 The Database System Environment

2.4.2 Database System Utilities

In addition to possessing the software modules just described, most DBMSs have
database utilities that help the DBA manage the database system. Common utilities
have the following types of functions:

Loading. A loading utility is used to load existing data files—such as text files
or sequential files—into the database. Usually, the current (source) format of
the data file and the desired (target) database file structure are specified to the
utility, which then automatically reformats the data and stores it in the data-
base. With the proliferation of DBMSs, transferring data from one DBMS to
another is becoming common in many organizations. Some vendors are
offering products that generate the appropriate loading programs, given the
existing source and target database storage descriptions (internal schemas).
Such tools are also called conversion tools. For the hierarchical DBMS called
IMS (IBM) and for many network DBMSs including IDMS (Computer
Associates), SUPRA (Cincom), or IMAGE (HP), the vendors or third party
companies are making a variety of conversion tools available (e.g., Cincom’s
SUPRA Server SQL) to transform data into the relational model.

Backup. A backup utility creates a backup copy of the database, usually by
dumping the entire database onto tape. The backup copy can be used to
restore the database in case of catastrophic failure. Incremental backups are
also often used, where only changes since the previous backup are recorded.
Incremental backup is more complex, but saves space.

Database storage reorganization. This utility can be used to reorganize a set
of database files into a different file organization to improve performance.

Performance monitoring. Such a utility monitors database usage and pro-
vides statistics to the DBA. The DBA uses the statistics in making decisions
such as whether or not to reorganize files or whether to add or drop indexes
to improve performance.

Other utilities may be available for sorting files, handling data compression, moni-
toring access by users, interfacing with the network, and performing other functions.

2.4.3 Tools, Application Environments,
and Communications Facilities

Other tools are often available to database designers, users, and DBMS. CASE tools!?
are used in the design phase of database systems. Another tool that can be quite use-
tul in large organizations is an expanded data dictionary (or data repository) sys-
tem. In addition to storing catalog information about schemas and constraints, the
data dictionary stores other information, such as design decisions, usage standards,

* 2. Although CASE stands for computer-aided software engineering, many CASE tools are used primarily
“»r database design.

43

44 Chapter 2 Database System Concepts and Architecture

application program descriptions, and user information. Such a system is also called
an information repository. This information can be accessed directly by users or
the DBA when needed. A data dictionary utility is similar to the DBMS catalog, but
it includes a wider variety of information and is accessed mainly by users rather
than by the DBMS software.

Application development environments, such as the PowerBuilder (Sybase) or
JBuilder (Borland) system, are becoming quite popular. These systems provide an
environment for developing database applications and include facilities that help in
many facets of database systems, including database design, GUI development,
querying and updating, and application program development.

The DBMS also needs to interface with communications software, whose function
is to allow users at locations remote from the database system site to access the data-
base through computer terminals, workstations, or their local personal computers.
These are connected to the database site through data communications hardware
such as phone lines, long-haul networks, local networks, or satellite communication
devices. Many commercial database systems have communication packages that
work with the DBMS. The integrated DBMS and data communications system is
called a DB/DC system. In addition, some distributed DBMSs are physically distrib-
uted over multiple machines. In this case, communications networks are needed to
connect the machines. These are often local area networks (LANs), but they can
also be other types of networks.

2.5 Centralized and Client/Server
Architectures for DBMSs

2.5.1 Centralized DBMSs Architecture

Architectures for DBMSs have followed trends similar to those for general com-
puter system architectures. Earlier architectures used mainframe computers to
provide the main processing for all system functions, including user application
programs and user interface programs, as well as all the DBMS functionality. The
reason was that most users accessed such systems via computer terminals that did

. not have processing power and only provided display capabilities. Therefore, all
processing was performed remotely on the computer system, and only display
information and controls were sent from the computer to the display terminals,
which were connected to the central computer via various types of communica-
tions networks.

As prices of hardware declined, most users replaced their terminals with PCs and
workstations. At first, database systems used these computers similarly to how they
had used display terminals, so that the DBMS itself was still a centralized DBMS in
which all the DBMS functionality, application program execution, and user inter-
face processing were carried out on one machine. Figure 2.4 illustrates the physical

so called
users or
ilog, but
s rather

nase) or
wide an
t help in

pment,

unction
he data-
aputers.
ardware
nigation
ges that
Sstem 1s
distrib-
eded to

Nev can

il com-
iters to
lication
itv. The
hat did
ore, all
display
minals,
wunica-

Cs and
"y they
BMNS in
r inter-
rhvsical

2.5 Centralized and Client/Server Architectures for DBMSs 45

components in a centralized architecture. Gradually, DBMS systems started to
exploit the available processing power at the user side, which led to client/server
DBMS architectures.

2.5.2 Basic Client/Server Architectures

First, we discuss client/server architecture in general, then we see how it is applied to
DBMSs. The client/server architecture was developed to deal with computing envi-
ronments in which a large number of PCs, workstations, file servers, printers, data-
base servers, Web servers, and other equipment are connected via a network. The
idea is to define specialized servers with specific functionalities. For example, it is
possible to connect a number of PCs or small workstations as clients to a file server
that maintains the files of the client machines. Another machine can be designated
as a printer server by being connected to various printers; thereafter, all print
requests by the clients are forwarded to this machine. Web servers or e-mail servers
also fall into the specialized server category. In this way, the resources provided by
speciatized servers can be accessed by many client machines. The client machines
provide the user with the appropriate interfaces to utilize these servers, as well as
with local processing power to run local applications. This concept can be carried
over to software, with specialized programs—such as a DBMS or a CAD (computer-
aided design) package—being stored on specific server machines and being made
accessible to multiple clients. Figure 2.5 illustrates client/server architecture at the

Terminals Displlay Displlay o Disp‘lay
Monitor Monitor Monitor
Network |
Application Terminal Text
Programs Display Control Editors
DBMS 1 E)ompilers I e
Software
Operating System
System Bus
I I
‘ Controller ‘ ‘ Controllerw 1 Controller ‘ ce
@ ‘ ’ I/0O Devices
Memory ‘ ‘ Disk ‘ (Printers,
Hardware/Firmware Tape Drives, . .)

N /

Figure 2.4
A physical centralized
architecture.

46 Chapter 2 Database System Concepts and Architecture

logical level; Figure 2.6 is a simplified diagram that shows the physical architecture.
Some machines would be client sites only (for example, diskless workstations or
workstations/PCs with disks that have only client software installed). Other
machines would be dedicated servers, and others would have both client and server
functionality.

The concept of client/server architecture assumes an underlying framework that
consists of many PCs and workstations as well as a smaller number of mainframe
machines, connected via LANs and other types of computer networks. A client in
this framework is typically a user machine that provides user interface capabilities
and local processing. When a client requires access to additional functionality—
such as database access—that does not exist at that machine, it connects to a server
that provides the needed functionality. A server is a system containing both hard-
ware and software that can provide services to the client machines, such as file

Figure 2.5
Logical two-tier

| Client | [Client | [Clent]---

client/server ‘ l Network]
architecture. { ‘
Print File DBMS
Server Server Server
Figure 2.6 , Diskless Client Server
Physical two-tier Client with Disk Server and Client
client/server
architecture. II Il
[Gient]| | [Giemt |
Site 1 Site 2 Site 3 Site n

Communication
Network

cture,
ns or
Other
server

k that
trame
ent in
rilities
lityv—
server
hard-
as file

2.5 Centralized and Client/Server Architectures for DBMSs

access, printing, archiving, or database access. In the general case, some machines
install only client software, others only server software, and still others may include
both client and server software, as illustrated in Figure 2.6. However, it is more com-
mon that client and server software usually run on separate machines. Two main
twpes of basic DBMS architectures were created on this underlying client/server
rramework: two-tier and three-tier.!* We discuss them next.

2.5.3 Two-Tier Client/Server Architectures for DBMSs

'he client/server architecture is increasingly being incorporated into commercial
DBMS packages. In relational database management systems (RDBMSs), many of
which started as centralized systems, the system components that were first moved
to the client side were the user interface and application programs. Because SQL
see Chapters 8 and 9) provided a standard language for RDBMSs, this created a
logical dividing point between client and server. Hence, the query and transaction
runctionality related to SQL processing remained on the server side. In such archi-
tecture, the server is often called a query server or transaction server because it
provides these two functionalities. In an RDBMS the server is also often called an
SQL server.

In such a client/server architecture, the user interface programs and application
programs can run on the client side. When DBMS access is required, the program
establishes a connection to the DBMS (which is on the server side); once the con-
nection is created, the client program can communicate with the DBMS. A standard
Jalled Open Database Connectivity (ODBC) provides an application program-
ming interface (API), which allows client-side programs to call the DBMS, as long
as both client and server machines have the necessary software installed. Most
DBMS vendors provide ODBC drivers for their systems. A client program can actu-
ally connect to several RDBMSs and send query and transaction requests using the
ODBC API, which are then processed at the server sites. Any query results are sent
back to the client program, which can process or display the results as needed. A
related standard for the Java programming language, called JDBC, has also been
defined. This allows Java client programs to access the DBMS through a standard
terface.

The second approach to client/server architecture was taken by some object-
oriented DBMSs, where the software modules of the DBMS were divided between
client and server in a more integrated way. For example, the server level may
include the part of the DBMS software responsible for handling data storage on disk
pages, local concurrency control and recovery, buffering and caching of disk pages,
and other such functions. Meanwhile, the client level may handle the user interface;
data dictionary functions; DBMS interactions with programming language compil-
ers; global query optimization, concurrency control, and recovery across multiple
servers; structuring of complex objects from the data in the buffers; and other such

3. There are many other variations of client/server architectures. We discuss the two most basic ones
“ere,

47

i

48 Chapter 2 Database System Concepts and Architecture

functions. In this approach, the client/server interaction is more tightly coupled and
is done internally by the DBMS modules—some of which reside on the client and
some on the server—rather than by the users. The exact division of functionality
varies from system to system. In such a client/server architecture, the server has
been called a data server because it provides data in disk pages to the client. This

data can then be structured into objects for the client programs by the client-side
DBMS software itself.

The architectures described here are called two-tier architectures because the soft-
ware components are distributed over two systems: client and server. The advan-
tages of this architecture are its simplicity and seamless compatibility with existing
systems. The emergence of the Web changed the roles of clients and server, leading
to the three-tier architecture.

2.5.4 Three-Tier and n-Tier Architectures for Web Applications

Many Web applications use an architecture called the three-tier architecture, which
adds an intermediate layer between the client and the database server, as illustrated
in Figure 2.7(a).

This intermediate layer or middle tier is sometimes called the application server
and sometimes the Web server, depending on the application. This server plays an
intermediary role by storing business rules (procedures or constraints) that are used
to access data from the database server. It can also improve database security by
checking a client’s credentials before forwarding a request to the database server.
Clients contain GUI interfaces and some additional application-specific business
rules. The intermediate server accepts requests from the client, processes the request
and sends database commands to the database server, and then acts as a conduit for

Figure 2.7)
Logical three-tier Client {W bGIUI'rf ‘ Presentation J
client/server architecture, eb Interface Layer
with a couple of commonly A A
used nomenclatures.]
Y
Application Server Application Business
or Programs, Logic Layer
Web Server Web Pages y
A
A
Y Y
Database Database Datat.)ase
Server Management Services
System Layer

(a (b)

pled and
lient and
‘tionality
:rver has
ent. This
:ent-side

he soft-
¢ advan-
; existing
- leading

tions

re. which
“ustrated

n server
plavs an
are used

_aritv by
& server.
husiness
¢ request
~duit for

2.6 Classification of Database Management Systems

passing (partially) processed data from the database server to the clients, where it
may be processed further and filtered to be presented to users in GUI format. Thus,
the user interface, application rules, and data access act as the three tiers. Figure
2.7(b) shows another architecture used by database and other application package
vendors. The presentation layer displays information to the user and allows data
entry. The business logic layer handles intermediate rules and constraints before
data is passed up to the user or down to the DBMS. The bottom layer includes all
Jata management services. If the bottom layer is split into two layers (a Web server
and a database server), then this becomes a four-tier architecture. It is customary to
divide the layers between the user and the stored data further into finer compo-
nents, thereby giving rise to n-tier architectures where n may be four or five.
Tvpically, the business logic layer is divided into multiple layers. Besides distributing
programming and data throughout a network, n-tier applications afford the advan-
tage that any one tier can run on an appropriate processor or operating system plat-
torm and can be handled independently. Another layer typically used by vendors of
ERP (enterprise resource planning), and CRM (customer relationship manage-
ment) packages is the middleware layer which accounts for the front-end modules
communicating with a number of back-end databases.

Advances in encryption and decryption technology make it safer to transfer sensi-
tive data from server to client in encrypted form, where it will be decrypted. The lat-
ter can be done by the hardware or by advanced software. This technology gives
higher levels of data security, but the network security issues remain a major con-
cern. Various technologies for data compression also help to transfer large amounts
of data from servers to clients over wired and wireless networks.

2.6 Classification of Database
Management Systems

several criteria are normally used to classity DBMSs. The first is the data model on
which the DBMS is based. The main data model used in many current commercial
DBMSs is the relational data model. The object data model has been implemented
in some commercial systems but has not had widespread use. Many legacy applica-
tions still run on database systems based on the hierarchical and network data
models. Examples of Hierarchical DBMSs include IMS (IBM) and some other sys-
tems like System 2K (SAS Inc.) or TDMS, which did not succeed much commer-
cially. IMS continues to be a very dominant player among the DBMSs in use at
governmental and industrial installations, including hospitals and banks. The net-
work data model was used by many vendors and the resulting products like IDMS
(Cullinet—now Computer Associates), DMS 1100 (Univac—now Unisys), IMAGE
Hewlett-Packard), VAX-DBMS (Digital—now Compagq), and SUPRA (Cincom)
still have a following and their user groups have their own active organizations. If
we add IBM’s popular VSAM file system to these, we can easily say that (at the time
of writing), more than 50% of the worldwide-computerized data is in these so-
called legacy database systems.

49

50 Chapter 2 Database System Concepts and Architecture

The relational DBMSs are evolving continuously, and, in particular, have been
incorporating many of the concepts that were developed in object databases. This
has led to a new class of DBMSs called object-relational DBMSs. We can categorize
DBMSs based on the data model: relational, object, object-relational, hierarchical,
network, and other.

The second criterion used to classify DBMSs is the number of users supported by
the system. Single-user systems support only one user at a time and are mostly used
with PCs. Multiuser systems, which include the majority of DBMSs, support con-
current multiple users.

The third criterion is the number of sites over which the database is distributed. A
DBMS is centralized if the data is stored at a single computer site. A centralized
DBMS can support multiple users, but the DBMS and the database reside totally at
a single computer site. A distributed DBMS (DDBMS) can have the actual database
and DBMS software distributed over many sites, connected by a computer network.
Homogeneous DDBMSs use the same DBMS software at multiple sites. A recent
trend is to develop software to access several autonomous preexisting databases
stored under heterogeneous DBMSs. This leads to a federated DBMS (or multi-
database system), in which the participating DBMSs are loosely coupled and have a
degree of local autonomy. Many DDBMSs use a client-server architecture.

The fourth criterion continues to be cost. But it is very difficult to propose any type
of classification of DBMSs based on cost. Today we have open source (free) DBMS
products like MYSQL and PostgreSQL that are supported by third-party vendors
with additional services. The main RDBMS products are available as free examina-
tion 30-day copy versions as well as personal versions, which may cost under $100
and allow a fair amount of functionality. The giant systems are being sold in modu-
lar form with components to handle distribution, replication, parallel processing,
mobile capability, and so on, with a large number of parameters that must be defined
for the configuration. Furthermore, they are sold in the form of licenses—site
licenses allow unlimited use of the database system with any number of copies run-
ning at the customer site. Another type of license limits the number of concurrent
users or the number of user seats at a location. Standalone single user versions of
some systems like ACCESS are sold per copy or included in the overall configuration
of a desktop or laptop. In addition, data warehousing and mining features, as well as
support for additional data types, are made available at extra cost. It is quite common
to pay in millions for the installation and maintenance of database systems annually.

We can also classify a DBMS on the basis of the types of access path options for
storing files. One well-known family of DBMSs is based on inverted file structures.
Finally, a DBMS can be general purpose or special purpose. When performance is
a primary consideration, a special-purpose DBMS can be designed and built for a
specific application; such a system cannot be used for other applications without
major changes. Many airline reservations and telephone directory systems devel-
oped in the past are special purpose DBMSs. These fall into the category of online
transaction processing (OLTP) systems, which must support a large number of
concurrent transactions without imposing excessive delays.

1ave been
ases. This
sategorize
‘rarchical,

ported by
ostly used
port con-

-ihuted. A
>ntralized
totally at
i database
network.
A recent
Jdatabases
or multi-
nd havea

:anv type
<+ DBMS
. vendors
examina-
~der $100
1 modu-
rocessing,
se detined
Tes—site
ples run-
ncurrent
ersions of
yuration
as well as
common
annually.

stions for
tructures.
rmance is
»uilt for a
~ without
ms devel-
ot online
umber of

2.6 Classification of Database Management Systems 51

Let us briefly elaborate on the main criterion for classifying DBMSs: the data model.
The basic relational data model represents a database as a collection of tables, where
cach table can be stored as a separate file. The database in Figure 1.2 resembles a
relational representation. Most relational databases use the high-level query lan-
vuage called SQL and support a limited form of user views. We discuss the relational
model, its languages and operations, and techniques for programming relational
applications in Chapters 5 through 9.

The object data model defines a database in terms of objects, their properties, and
their operations. Objects with the same structure and behavior belong to a class,
and classes are organized into hierarchies (or acyclic graphs). The operations of
cach class are specified in terms of predefined procedures called methods.
Relational DBMSs have been extending their models to incorporate object database
concepts and other capabilities; these systems are referred to as object-relational or
extended relational systems. We discuss object databases and object-relational sys-
tems in Chapters 20 to 22.

Two older, historically important data models, now known as legacy data models, are
the network and hierarchical models. The network model represents data as record
tvpes and also represents a limited type of 1:N relationship, called a set type. A 1:N,
or one-to-many, relationship relates one instance of a record to many record
instances using some pointer linking mechanism in these models. Figure 2.8 shows a
network schema diagram for the database of Figure 1.2, where record types are
shown as rectangles and set types are shown as labeled directed arrows. The network
model, also known as the CODASYL DBTG model,' has an associated record-at-a-
time language that must be embedded in a host programming language. The net-
work DML was proposed in the 1971 Database Task Group (DBTG) Report as an
extension of the COBOL language. It provides commands for locating records

STUDENT

COURSE

COURSE_OFFERINGS IS_A

HAS_A

STUDENT GRADES \
[section | [PREREQUISITE |

SECTION_GRADES

GRADE_REPORT

14. CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is
the committee that specified the network model and its language.

Figure 2.8

The schema of
Figure 2.1 in network
model notation.

52 Chapter 2 Database System Concepts and Architecture

directly (e.g., FIND ANY <record-type> USING <field-list>, or FIND DUPLICATE
<record-type> USING <field-list>). It has commands to support traversals within
set-types (e.g., GET OWNER, GET {FIRST, NEXT, LAST} MEMBER WITHIN <set-type>
WHERE <condition>). It also has commands to store new data (e.g., STORE <record-
type>) and to make it part of a set type (e.g., CONNECT <record-type> TO <set-
type>). The language also handles many additional considerations such as the
currency of record types and set types, which are defined by the current position of
the navigation process within the database. It is prominently used by IDMS, IMAGE,
and SUPRA DBMSs today. The hierarchical model represents data as hierarchical
tree structures. Each hierarchy represents a number of related records. There is no
standard language for the hierarchical model. A popular hierarchical DML is DL/1 of
the IMS system. It dominated the DBMS market for over 20 years between 1965 and
1985 and is a very widely used DBMS worldwide even today and holds a very high
percentage of data in governmental, health care, and banking and insurance data-
bases. Its DML called DL/1 was a de facto industry standard for a long time. DL/1 has
commands to locate a record (e.g., GET {UNIQUE, NEXT} <record-type> WHERE,
<condition>). It has navigational facilities to navigate within hierarchies (e.g., GET
NEXT WITHIN PARENT or GET {FIRST, NEXT} PATH <hierarchical-path-specification>
WHERE <condition>). It has appropriate facilities to store and update records (e.g.,
INSERT <record-type>, REPLACE <record-type>). Currency issues during naviga-
tion are also handled with additional features in the language. We give a brief
overview of the network and hierarchical models in Appendices E and E°

The eXtended Markup Language (XML) model, now considered the standard for
data interchange over the Internet, also uses hierarchical tree structures. It combines
database concepts with concepts from document representation models. Data is
represented as elements; with the use of tags, data can be nested to create complex
hierarchical structures. This model conceptually resembles the object model, but
uses different terminology. We discuss XML and how it is related to databases in
Chapter 27.

2.7 Summary

In this chapter we introduced the main concepts used in database systems. We
defined a data model and we distinguished three main categories:

High-level or conceptual data models (based on entities and relationships)
& Low-level or physical data models

Representational or implementation data models (record-based, object-
oriented)

15. The full chapters on the network and hierarchical models from the second edition of this book are
available over the Internet from this book’s Companion Website at hitp://www.aw.com/elmasri,

2LICATE
; within
t-tvpe>
record-
O <set-
1 as the
Jtion of
MAGE,
archical
re 1S no
DL/1of
965 and
arv high
ce data-
)L/1 has
NHERE,
.., GET
cation>
ds (e.g.,
naviga-

- a brief

dard for
»mbines
Data is
somplex
Jel, but
bases in

>ms. We
1ships)

object-

c ZICK are

2.7 Summary

We distinguished the schema, or description of a database, from the database itself.
The schema does not change very often, whereas the database state changes every
time data is inserted, deleted, or modified. Then we described the three-schema
DBMS architecture, which allows three schema levels:

An internal schema describes the physical storage structure of the database.
¢ A conceptual schema is a high-level description of the whole database.

External schemas describe the views of different user groups.

A DBMS that cleanly separates the three levels must have mappings between the
schemas to transform requests and results from one level to the next. Most DBMSs
do not separate the three levels completely. We used the three-schema architecture
to define the concepts of logical and physical data independence.

Then we discussed the main types of languages and interfaces that DBMSs support.
A data definition language (DDL) is used to define the database conceptual schema.
In most DBMSs, the DDL also defines user views and, sometimes, storage struc-
tures; in other DBMSs, separate languages (VDL, SDL) may exist for specifying
views and storage structures. This distinction is fading away in today’s relational
implementations with SQL serving as a catchall language to perform multiple roles,
including view definition. The storage definition part (SDL) was included in SQL
over many versions, but has now been relegated to special commands for the DBA
in relational DBMSs. The DBMS compiles all schema definitions and stores their
descriptions in the DBMS catalog. A data manipulation language (DML) is used for
specifying database retrievals and updates. DMLs can be high level (set-oriented,
nonprocedural) or low level (record-oriented, procedural). A high-level DML can
be embedded in a host programming language, or it can be used as a standalone
language; in the latter case it is often called a query language.

We discussed different types of interfaces provided by DBMSs, and the types of
DBMS users with which each interface is associated. Then we discussed the database
svstem environment, typical DBMS software modules, and DBMS utilities for help-
ing users and the DBA perform their tasks. We continued with an overview of the
two-tier and three-tier architectures for database applications, progressively moving
toward n-tier, which are now very common in most modern applications, particu-
larly Web database applications.

Finally, we classified DBMSs according to several criteria: data model, number of
users, number of sites, types of access paths, and generality. We discussed the avail-
ability of DBMSs and additional modules—from no cost in the form of open source
software, to configurations that annually cost millions to maintain. We also pointed
out the variety of licensing arrangements for DBMS and related products. The main
classification of DBMSs is based on the data model. We briefly discussed the main
data models used in current commercial DBMSs and provided an example of the
network data model.

53

