chapter

Databases and
Database Users

atabases and database systems are an essential
component of everyday life in modern society.
Daily, most of us encounter several activities that involve some interaction with a
database. For example, if we go to the bank to deposit or withdraw funds, if we make
a hotel or airline reservation, if we access a computerized library catalog to search
for a bibliographic item, or if we purchase something online—such as a book, toy,
or computer—chances are that our activities will involve someone or some com-
puter program accessing a database. Even purchasing items at a supermarket in
many cases, automatically updates the database that holds the inventory of grocery
items.

These interactions are examples of what we may call traditional database applica-
tions, in which most of the information that is stored and accessed is either textual
or numeric. In the past few years, advances in technology have led to exciting new
applications of database systems. New media technology has made it possible to
store images, audio clips, and video streams digitally. These types of files are becom-
ing an important component of multimedia databases. Geographic information
systems (GIS) can store and analyze maps, weather data, and satellite images. Data
warehouses and online analytical processing (OLAP) systems are used in many
companies to extract and analyze useful information from very large databases to
support decision making. Real-time and active database technology is used to con-
trol industrial and manufacturing processes. And database search techniques are
being applied to the World Wide Web to improve the search for information that is
needed by users browsing the Internet.

Chapter 1 Databases and Database Users

To understand the fundamentals of database technology, however, we must start
from the basics of traditional database applications. In Section 1.1 we start by defin-
ing a database, and then we explain other basic terms. In Section 1.2, we provide a
simple UNIVERSITY database example to illustrate our discussion. Section 1.3
describes some of the main characteristics of database systems, and Sections 1.4 and
1.5 categorize the types of personnel whose jobs involve using and interacting with
database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion of the
various capabilities provided by database systems and discuss some typical database
applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems only can study
Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and
go on to Chapter 2. :

1.1 Introduction

Databases and database technology have a major impact on the growing use of
computers. It is fair to say that databases play a critical role in almost all areas where
computers are used, including business, electronic commerce, engineering, medi-
cine, law, education, and library science. The word database is so commonly used
that we must begin by defining what a database is. Our initial definition is quite
general.

A database is a collection of related data.! By data, we mean known facts that can be
recorded and that have implicit meaning. For example, consider the names, tele-
phone numbers, and addresses of the people you know. You may have recorded this
data in an indexed address book or you may have stored it on a hard drive, using a
personal computer and software such as Microsoft Access or Excel. This collection
of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider
the collection of words that make up this page of text to be related data and hence to
constitute a database. However, the common use of the term database is usually
more restricted. A database has the following implicit properties:

A database represents some aspect of the real world, sometimes called the
miniworld or the universe of discourse (UoD). Changes to the miniworld
are reflected in the database.

A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a
database.

A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in
which these users are interested.

1. We will use the word data as both singular and plural, as is common in database literature; context will
determine whether it is singular or plural. In standard English, data is used for plural; datum is used for sin-
gular.

ust start
ww defin-
rovide a
tion 1.3
~l.4and
ing with
i of the
Jatabase

in study
. 1.8 and

< use of
i~ where
<. medi-
aivoused
i~ quite

it can be
w8, tele-
-ded this
. using a
lection

consider
nence to

- usually

illed the
iniworld

nherent
dtoasa

surpose.
itions in

1.1

In other words, a database has some source from which data is derived, some degree
of interaction with events in the real world, and an audience that is actively inter-
ested in its contents. The end users of a database may perform business transactions
(for example, a customer buys a camera) or events may happen (for example, an
employee has a baby) that cause the information in the database to change. In order
for a database to be accurate and reliable at all times, it must be a true reflection of
the miniworld that it represents; therefore, changes must be reflected in the database
as soon as possible.

A database can be of any size and complexity. For example, the list of names and
addresses referred to earlier may consist of only a few hundred records, each with a
simple structure. On the other hand, the computerized catalog of a large library
may contain half a million entries organized under different categories—by pri-
mary author’s last name, by subject, by book title—with each category organized
alphabetically. A database of even greater size and complexity is maintained by the
Internal Revenue Service (IRS) to monitor tax forms filed by U.S. taxpayers. If we
assume that there are 100 million taxpayers and each taxpayer files an average of five
forms with approximately 400 characters of information per form, we would have a
database of 100 x 10° x 400 x 5 characters (bytes) of information. If the IRS keeps
the past three returns of each taxpayer in addition to the current return, we would
have a database of 8 x 10'! bytes (800 gigabyvtes). This huge amount of information
must be organized and managed so that users can search for, retrieve, and update
the data as needed. An example of a large commercial database is Amazon.com. It
contains data for over 20 million books, CDs, videos, DVDs, games, electronics,
apparel, and other items. The database occupies over 2 terabytes (a terabyte is 10"
bytes worth of storage) and is stored on 200 different computers (called servers).
About 15 million visitors access Amazon.com each day and use the database to
make purchases. The database is continually updated as new books and other items
are added to the inventory and stock quantities are updated as purchases are trans-
acted. About 100 people are responsible for keeping the Amazon database up-to-
date.

A database may be generated and maintained manually or it may be computerized.
For example, a library card catalog is a database that may be created and maintained
manually. A computerized database may be created and maintained either by a
group of application programs written specifically for that task or by a database
management system. We are only concerned with computerized databases in this
book.

A database management system (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is a general-purpose software sys-
tem that facilitates the processes of defining, constructing, manipulating, and sharing
databases among various users and applications. Defining a database involves spec-
ifying the data types, structures, and constraints of the data to be stored in the data-
base. The database definition or descriptive information is also stored in the
database in the form of a database catalog or dictionarys it is called meta-data.
Constructing the database is the process of storing the data on some storage
medium that is controlled by the DBMS. Manipulating a database includes func-

Introduction

5

Chapter 1 Databases and Database Users

tions such as querying the database to retrieve specific data, updating the database
to reflect changes in the miniworld, and generating reports from the data. Sharing a
database allows multiple users and programs to access the database simultaneously.

An application program accesses the database by sending queries or requests for
data to the DBMS. A query? typically causes some data to be retrieved; a transac-
tion may cause some data to be read and some data to be written into the database.

Other important functions provided by the DBMS include protecting the database
and maintaining it over a long period of time. Protection includes system protection
against hardware or software malfunction (or crashes) and security protection
against unauthorized or malicious access. A typical large database may have a life
cycle of many years, so the DBMS must be able to maintain the database system by
allowing the system to evolve as requirements change over time.

It is not necessary to use general-purpose DBMS software to implement a comput-
erized database. We could write our own set of programs to create and maintain the
database, in effect creating our own special-purpose DBMS software. In either case—
whether we use a general-purpose DBMS or not—we usually have to deploy a con-

siderable amount of complex software. In fact, most DBMSs are very complex
software systems.

To complete our initial definitions, we will call the database and DBMS software

together a database system. Figure 1.1 illustrates some of the concepts we have dis-
cussed so far.

1.2 An Example

Let us consider a simple example that most readers may be familiar with: a
UNIVERSITY database for maintaining information concerning students, courses,
and grades in a university environment. Figure 1.2 shows the database structure and
some sample data for such a database. The database is organized as five files, each of
which stores data records of the same type.? The STUDENT file stores data on each
student, the COURSE file stores data on each course, the SECTION file stores data
on each section of a course, the GRADE_REPORT file stores the grades that students

receive in the various sections they have completed, and the PREREQUISITE file
stores the prerequisites of each course.

To define this database, we must specify the structure of the records of each file by
specifying the different types of data elements to be stored in each record. In Figure
1.2, each STUDENT record includes data to represent the student’s Name,
Student_number, Class (such as freshman or ‘1, sophomore or 2’ and so forth), and

2. The term query, originally meaning a question or an inquiry, is loosely used for all types of interactions
with databases, including modifying the data.

3. We use the term file informally here. At a conceptual level, a file is a collection of records that may or
may not be ordered.

latabase
aring a
weously.

.osts for
ransac-
atabase.

iatabase
Srection
Credtion
ve a life
~em by

cmput-
1a:n the

MRt ET

L aoon-
omplex

oftware
Ve diS-

with: a
Jourses,
ure and
cach of
on cach
res data
<udents
STE file

2 file by
1 Figure
Name,

th, and

1.2 An Example 7

Users/Programmers
Database
System Y
[Application Programs/Queries w
DBMS Y
Software Software to Process
Queries/Programs
Y

Software to Access
Stored Data

Stored Database
Definition Stored Database
(Meta-Data)

Figure 1.1
A simplified database
system environment.

Major (such as mathematics or MATH and computer science or ‘CS’); each COURSE
record includes data to represent the Course_name, Course_number, Credit_hours, and
Department (the department that offers the course); and so on. We must also specify a
data type for each data element within a record. For example, we can specify that
Name of STUDENT is a string of alphabetic characters, Student_number of STUDENT
is an integer, and Grade of GRADE_REPORT is a single character from the set {‘A} ‘B,
‘C}, D), ‘F, ‘T'}. We may also use a coding scheme to represent the values of a data
item. For example, in Figure 1.2 we represent the Class of a STUDENT as 1 for fresh-
man, 2 for sophomore, 3 for junior, 4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student,
course, section, grade report, and prerequisite as a record in the appropriate file.
Notice that records in the various files may be related. For example, the record for
Smith in the STUDENT file is related to two records in the GRADE_REPORT file that
specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE
file relates two course records: one representing the course and the other represent-
ing the prerequisite. Most medium-size and large databases include many types of
records and have many relationships among the records.

8 Chapter 1 Databases and Database Users

STUDENT
Name Student_number Class Major
Smith 17 1 (O]
Brown 8 2 CS
COURSE
Course_name Course_number | Credit_hours | Department
Intro to Computer Science CS1310 4 CS
Data Structures CS3320 4 CS
Discrete Mathematics MATH2410 3 MATH
Database CS3380 3 CS
SECTION
Section_identifier | Course_number | Semester Year Instructor
85 MATH2410 Fall 04 King
92 CS1310 Fall 04 Anderson
102 CS3320 Spring 05 Knuth
112 MATH2410 Fall 05 Chang
119 CS1310 Fall 05 Anderson
135 CS83380 Fall 05 Stone

GRADE_REPORT

Student_number Section_identifier Grade
17 112 B
17 119 C
8 85 A
8 92 A
8 102 B
8 135 A
PREREQUISITE
Course_number Prerequisite_number
Figure 1.2 CS3380 CS83320
A database that stores CS3380 MATH2410
;tudent gnd course CS3320 CS1310
information.

1.8 Characteristics of the Database Approach

Database manipulation involves querying and updating. Examples of queries are as
follows:

Retrieve the transcript—a list of all courses and grades—of ‘Smith’

List the names of students who took the section of the ‘Database’ course
offered in fall 2005 and their grades in that section

List the prerequisites of the ‘Database’ course
Examples of updates include the following:

Change the class of ‘Smith’ to sophomore
Create a new section for the ‘Database’ course for this semester

Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester.

These informal queries and updates must be specified precisely in the query lan-
guage of the DBMS before they can be processed.

At this stage, it is useful to describe the database as a part of a larger undertaking
known as an information system within any organization. The Information
Technology (IT) department within a company designs and maintains an informa-
tion system consisting of various computers, storage systems, application software,
and databases. Design of a new application for an existing database or design of a
new database starts off with a phase called requirements definition and analysis.
These requirements are documented in detail and transformed into a conceptual
design that can be represented and manipulated using some computerized tools so
that it can be easily maintained, modified, and transformed into a database imple-
mentation. We will introduce a model called the Entity-Relationship model in
Chapter 3 that is used for this purpose. The design is then translated to a logical
design that can be expressed in a data model implemented in a commercial DBMS,
In this book we will emphasize a data model known as the Relational Data model
from Chapter 5 onward. This is currently the most popular approach for designing
and implementing databases using (relational) DBMSs. The final stage is physical
design, during which further specifications are provided for storing and accessing
the database. The database design is implemented, populated with actual data and
continuously maintained to reflect the state of the miniworld.

1.3 Characteristics of the Database Approach

A number of characteristics distinguish the database approach from the traditional
approach of programming with files. In traditional file processing, each user
defines and implements the files needed for a specific software application as part of
programming the application. For example, one user, the grade reporting office, may
keep a file on students and their grades. Programs to print a student’s transcript and
to enter new grades into the file are implemented as part of the application. A sec-
ond user, the accounting office, may keep track of students’ fees and their payments.
Although both users are interested in data about students, each user maintains sep-
arate files—and programs to manipulate these files—because each requires some

10 Chapter 1 Databases and Database Users

data not available from the other user’s files. This redundancy in defining and stor-
ing data results in wasted storage space and in redundant efforts to maintain com-
mon up-to-date data.

In the database approach, a single repository of data is maintained that is defined
once and then accessed by various users. In file systems, each application is free to
name data elements independently. In contrast, in a database, the names or labels of
data are defined once, and used repeatedly by queries, transactions, and applica-
tions. The main characteristics of the database approach versus the file-processing
approach are the following:

Self-describing nature of a database system
Insulation between programs and data, and data abstraction
Support of multiple views of the data

Sharing of data and multiuser transaction processing

We describe each of these characteristics in a separate section. We will discuss addi-
tional characteristics of database systems in Sections 1.6 through 1.8.

1.3.1 Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system
contains not only the database itself but also a complete definition or description of
the database structure and constraints. This definition is stored in the DBMS cata-
log, which contains information such as the structure of each file, the type and stor-
age format of each data item, and various constraints on the data. The information
stored in the catalog is called meta-data, and it describes the structure of the pri-
mary database (Figure 1.1).

The catalog is used by the DBMS software and also by database users who need infor-
mation about the database structure. A general-purpose DBMS software package is
not written for a specific database application. Therefore, it must refer to the catalog
to know the structure of the files in a specific database, such as the type and format of
data it will access. The DBMS software must work equally well with any number of
database applications—for example, a university database, a banking database, or a
company database—as long as the database definition is stored in the catalog.

In traditional file processing, data definition is typically part of the application pro-
grams themselves. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. For
example, an application program written in C++ may have struct or class declara-
tions, and a COBOL program has data division statements to define its files.
Whereas file-processing software can access only specific databases, DBMS software
can access diverse databases by extracting the database definitions from the catalog
and then using these definitions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of
all the files shown. Figure 1.3 shows some sample entries in a database catalog. These

1 stor-
com-

etined
‘ree to
aels of
plica-
essing

-addi-

Sstem
on of
\ cata-
1 stor-
aation
12 pri-

intor-
age 18
atalog
mat of
iber of

¢, ora

n pro-
Iv one
s. For
>clara-
+ files.
ftware
atalog

ons of
These

1.3 Characteristics of the Database Approach 11

definitions are specitied by the database designer prior to creating the actual database
and are stored in the catalog. Whenever a request is made to access, say, the Name of a
STUDENT record, the DBMS software refers to the catalog to determine the structure
of the STUDENT file and the position and size of the Name data item within a
STUDENT record. By contrast, in a typical file-processing application, the file struc-
ture and, in the extreme case, the exact location of Name within a STUDENT record
are already coded within each program that accesses this data item.

1.3.2 Insulation between Programs and Data,
and Data Abstraction

In traditional file processing, the structure of data files is embedded in the applica-
tion programs, so any changes to the structure of a file may require changing all pro-
grams that access that file. By contrast, DBMS access programs do not require such
changes in most cases. The structure of data files is stored in the DBMS catalog sepa-
rately from the access programs. We call this property program-data independence.

RELATIONS
Relation_name No_of_columns

STUDENT 4

COURSE 4

SECTION 5

GRADE_REPORT 3

PREREQUISITE 2
COLUMNS

Column_name Data_type Belongs_to_relation

Name Character (30) STUDENT
Student_number Character (4) STUDENT
Class Integer (1) STUDENT
Major Major_type STUDENT
Course_name Character (10) COURSE
Course_number XXXXNNNN COURSE
Prerequisite_number XXXXNNNN PREREQUISITE

Note: Major_type is defined as an enumerared type with all known majors. XXXXNNNN
is used to define a type with four alpha characters followed by four digits

Figure 1.3
An example of a

database catalog for the

database in Figure 1.2,

12 Chapter 1 Databases and Database Users

For example, a file access program may be written in such a way that it can access
only STUDENT records of the structure shown in Figure 1.4. If we want to add
another piece of data to each STUDENT record, say the Birth_date, such a program will
no longer work and must be changed. By contrast, in a DBMS environment, we only
need to change the description of STUDENT records in the catalog (Figure 1.3) to
reflect the inclusion of the new data item Birth_date; no programs are changed. The
next time a DBMS program refers to the catalog, the new structure of STUDENT
records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational
systems (see Chapters 20 through 22), users can define operations on data as part of
the database definitions. An operation (also called a function or method) is specified
in two parts. The interface (or signature) of an operation includes the operation
name and the data types of its arguments (or parameters). The implementation (or
method) of the operation is specified separately and can be changed without affect-
ing the interface. User application programs can operate on the data by invoking
these operations through their names and arguments, regardless of how the opera-
tions are implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction. A DBMS provides users with a conceptual
representation of data that does not include many of the details of how the data is
stored or how the operations are implemented. Informally, a data model is a type of
data abstraction that is used to provide this conceptual representation. The data
model uses logical concepts, such as objects, their properties, and their interrela-
tionships, that may be easier for most users to understand than computer storage
concepts. Hence, the data model hides storage and implementation details that are
not of interest to most database users.

For example, reconsider Figures 1.2 and 1.3. The internal implementation of a file
may be defined by its record length—the number of characters (bytes) in each
record—and each data item may be specified by its starting byte within a record and
its length in bytes. The STUDENT record would thus be represented as shown in
Figure 1.4. But a typical database user is not concerned with the location of each data
item within a record or its length; rather, the user is concerned that when a reference
is made to Name of STUDENT, the correct value is returned. A conceptual representa-
tion of the STUDENT records is shown in Figure 1.2. Many other details of file storage
organization—such as the access paths specified on a file—can be hidden from data-
base users by the DBMS; we discuss storage details in Chapters 13 and 14.

Figure 1.4

Internal storage format
for a STUDENT
record, based on the
database catalog in
Figure 1.3.

Data ltem Name Starting Position in Record Length in Characters (bytes)

Name 1 30
Student_number 31 4
Class 35

Major 36 4

n access
t to add
ram will
we only
> 1.3) to
zed. The
TUDENT

‘lational
~ part of
pecified
seration
tion (or
t affect-
nvoking
> opera-
2nce.

seration
iceptual
o data is
1 type of
‘he data
iterrela-
storage
that are

of a file
in each
ord and
1own in
ich data
Aerence
resenta-
storage
m data-

Jytes)

1.8 Characteristics of the Database Approach

In the database approach, the detailed structure and organization of each file are
stored in the catalog. Database users and application programs refer to the concep-
tual representation of the files, and the DBMS extracts the details of file storage
tfrom the catalog when these are needed by the DBMS file access modules. Many
data models can be used to provide this data abstraction to database users. A major
part of this book is devoted to presenting various data models and the concepts they
use to abstract the representation of data.

In object-oriented and object-relational databases, the abstraction process includes
not only the data structure but also the operations on the data. These operations
provide an abstraction of miniworld activities commonly understood by the users.
For example, an operation CALCULATE_GPA can be applied to a STUDENT object to
calculate the grade point average. Such operations can be invoked by the user
queries or application programs without having to know the details of how the
operations are implemented. In that sense, an abstraction of the miniworld activity
is made available to the user as an abstract operation.

1.3.3 Support of Multiple Views of the Data

A database typically has many users, each of whom may require a different perspec-
tive or view of the database. A view may be a subset of the database or it may con-
tain virtual data that is derived from the database files but is not explicitly stored.
Some users may not need to be aware of whether the data they refer to is stored or
derived. A multiuser DBMS whose users have a variety of distinct applications must
provide facilities for defining multiple views. For example, one user of the database
of Figure 1.2 may be interested only in accessing and printing the transcript of each
student; the view for this user is shown in Figure 1.5(a}. A second user, who is inter-
ested only in checking that students have taken all the prerequisites of each course
for which they register, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the data-
base at the same time. This is essential if data for multiple applications is to be inte-
grated and maintained in a single database. The DBMS must include concurrency
control software to ensure that several users trying to update the same data do so in
a controlled manner so that the result of the updates is correct. For example, when
several reservation clerks try to assign a seat on an airline flight, the DBMS should
ensure that each seat can be accessed by only one clerk at a time for assignment to a
passenger. These types of applications are generally called online transaction pro-
cessing (OLTP) applications. A fundamental role of multiuser DBMS software is to
ensure that concurrent transactions operate correctly and efficiently.

The concept of a transaction has become central to many database applications. A
transaction is an executing program or process that includes one or more database
accesses, such as reading or updating of database records. Each transaction is sup-
posed to execute a logically correct database access if executed in its entirety without
interference from other transactions. The DBMS must enforce several transaction

13

14 Chapter 1 Databases and Database Users

(a)

(b)

Figure 1.5

TRANSCRIPT
Student_transcript
Student_name :
Course_number Grade Semester Year Section_id
) CS1310 C Fall 05 119
Smith
MATH2410 B Fall 05 112
MATH2410 A Fall 04 85
CS1310 A Fall 04 92
Brown -
CS3320 B Spring 05 102
CS3380 A Fall 05 135

COURSE_PREREQUISITES

Course_name Course_number Prerequisites
CS83320
Database CS3380
MATH2410
Data Structures CS3320 CS1310

Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view.
(b) The COURSE_PREREQUISITES view.

properties. The isolation property ensures that each transaction appears to execute
in isolation from other transactions, even though hundreds of transactions may be
executing concurrently. The atomicity property ensures that either all the database
operations in a transaction are executed or none are. We discuss transactions in
detail in Part 5.

The preceding characteristics are most important in distinguishing a DBMS from
traditional file-processing software. In Section 1.6 we discuss additional features
that characterize a DBMS. First, however, we categorize the different types of people
who work in a database system environment.

1.4 Actors on the Scene

For a small personal database, such as the list of addresses discussed in Section 1.1,
one person typically defines, constructs, and manipulates the database, and there is
no sharing. However, in large organizations, many people are involved in the design,
use, and maintenance of a large database with hundreds of users. In this section we
identify the people whose jobs involve the day-to-day use of a large database; we call
them the actors on the scene. In Section 1.5 we consider people who may be called
workers behind the scene—those who work to maintain the database system envi-
ronment but who are not actively interested in the database itself.

sion_id

execute
may be
latabase
tions in

1S from
teatures
f people

on 1.1,
there is
design,
‘tion we
swe call
¢ called

m envi-

1.4 Actors on the Scene

1.4.1 Database Administrators

In any organization where many people use the same resources, there is a need for a
chief administrator to oversee and manage these resources. In a database environ-
ment, the primary resource is the database itself, and the secondary resource is the
DBMS and related software. Administering these resources is the responsibility of
the database administrator (DBA). The DBA is responsible for authorizing access
to the database, coordinating and monitoring its use, and acquiring software and
hardware resources as needed. The DBA is accountable for problems such as breach
of security or poor system response time. In large organizations, the DBA is assisted
by a staff that carries out these functions.

1.4.2 Database Designers

Database designers are responsible for identifying the data to be stored in the data-
base and for choosing appropriate structures to represent and store this data. These
tasks are mostly undertaken before the database is actually implemented and popu-
lated with data. It is the responsibility of database designers to communicate with
all prospective database users in order to understand their requirements and to cre-
ate a design that meets these requirements. In many cases, the designers are on the
staff of the DBA and may be assigned other staff responsibilities after the database
design is completed. Database designers typically interact with each potential group
of users and develop views of the database that meet the data and processing
requirements of these groups. Each view is then analyzed and integrated with the
views of other user groups. The final database design must be capable of supporting
the requirements of all user groups.

1.4.3 End Users

End users are the people whose jobs require access to the database for querying,
updating, and generating reports; the database primarily exists for their use. There
are several categories of end users:

Casual end users occasionally access the database, but they may need differ-
ent information each time. They use a sophisticated database query language
to specify their requests and are typically middle- or high-level managers or
other occasional browsers.

* Naive or parametric end users make up a sizable portion of database end
users. Their main job function revolves around constantly querying and
updating the database, using standard types of queries and updates—called
canned transactions—that have been carefully programmed and tested. The
tasks that such users perform are varied:

Bank tellers check account balances and post withdrawals and deposits.

Reservation clerks for airlines, hotels, and car rental companies check
availability for a given request and make reservations.

15

16 Chapter 1 Databases and Database Users

@ Clerks at receiving stations for shipping companies enter package identi-
fications via bar codes and descriptive information through buttons to
update a central database of received and in-transit packages.

& Sophisticated end users include engineers, scientists, business analysts, and
others who thoroughly familiarize themselves with the facilities of the
DBMS in order to implement their applications to meet their complex
requirements.

& Standalone users maintain personal databases by using ready-made pro-
gram packages that provide easy-to-use menu-based or graphics-based
interfaces. An example is the user of a tax package that stores a variety of per-
sonal financial data for tax purposes.

A typical DBMS provides multiple facilities to access a database. Naive end users
need to learn very little about the facilities provided by the DBMS; they simply have
to understand the user interfaces of the standard transactions designed and imple-
mented for their use. Casual users learn only a few facilities that they may use
repeatedly. Sophisticated users try to learn most of the DBMS facilities in order to
achieve their complex requirements. Standalone users typically become very profi-
cient in using a specific software package.

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive and
parametric end users, and develop specifications for canned transactions that meet
these requirements. Application programmers implement these specifications as
programs; then they test, debug, document, and maintain these canned transac-
tions. Such analysts and programmers—commonly referred to as software devel-
opers or software engineers—should be familiar with the full range of capabilities
provided by the DBMS to accomplish their tasks.

1.5 Workers behind the Scene

In addition to those who design, use, and administer a database, others are associ-
ated with the design, development, and operation of the DBMS software and system
environment. These persons are typically not interested in the database itself. We call
them the workers behind the scene, and they include the following categories:

& DBMS system designers and implementers design and implement the
DBMS modules and interfaces as a software package. A DBMS is a very com-
plex software system that consists of many components, or modules, includ-
ing modules for implementing the catalog, processing query language,
processing the interface, accessing and buffering data, controlling concur-
rency, and handling data recovery and security. The DBMS must interface
with other system software such as the operating system and compilers for
various programming languages.

i QU s % - ol

{enti-
ns to

5, and
t the
1plex

pro-
vased
T per-

users
have
nple-
v use
fer to
rrofi-

-and
meet
ns as
15ac-
evel-
lities

50Ci-
stem
2call

t the
:om-
Jlud-
1age,
cur-
rface
s for

1.6 Advantages of Using the DBMS Approach

Tool developers design and implement tools—the software packages that
facilitate database modeling and design, database system design, and
improved performance. Tools are optional packages that are often purchased
separately. They include packages for database design, performance moni-
toring, natural language or graphical interfaces, prototyping, simulation,
and test data generation. In many cases, independent software vendors
develop and market these tools.

Operators and maintenance personnel (system administration personnel)
are responsible for the actual running and maintenance of the hardware and
software environment for the database system.

Although these categories of workers behind the scene are instrumental in making
the database system available to end users, they typically do not use the database for
their own purposes.

1.6 Advantages of Using the DBMS Approach

In this section we discuss some of the advantages of using a DBMS and the capabil-
ities that a good DBMS should possess. These capabilities are in addition to the four
main characteristics discussed in Section 1.3. The DBA must utilize these capabili-
ties to accomplish a variety of objectives related to the design, administration, and
use of a large multiuser database.

1.6.1 Controlling Redundancy

In traditional software development utilizing file processing, every user group
maintains its own files for handling its data-processing applications. For example,
consider the UNIVERSITY database example of Section 1.2; here, two groups of users
might be the course registration personnel and the accounting office. In the tradi-
tional approach, each group independently keeps files on students. The accounting
office keeps data on registration and related billing information, whereas the regis-
tration office keeps track of student courses and grades. Other groups may further
duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several problems.
First, there is the need to perform a single logical update—such as entering data on
a new student—multiple times: once for each file where student data is recorded.
This leads to duplication of effort. Second, storage space is wasted when the same data
is stored repeatedly, and this problem may be serious for large databases. Third, files
that represent the same data may become inconsistent. This may happen because an
update is applied to some of the files but not to others. Even if an update—such as
adding a new student—is applied to all the appropriate files, the data concerning
the student may still be inconsistent because the updates are applied independently
by each user group. For example, one user group may enter a student’s birthdate
erroneously as ‘JAN-19-1988’, whereas the other user groups may enter the correct
value of JAN-29-1988..

17

18

Chapter 1 Databases and Database Users

In the database approach, the views of different user groups are integrated during
database design. Ideally, we should have a database design that stores each logical
data item—such as a student’s name or birthdate—in only one place in the database.
This ensures consistency and saves storage space. However, in practice, it is some-
times necessary to use controlled redundancy to improve the performance
of queries. For example, we may store Student_name and Course_number redundantly
in a GRADE_REPORT file (Figure 1.6(a}) because whenever we retrieve a
GRADE_REPORT record, we want to retrieve the student name and course number
along with the grade, student number, and section identifier. By placing all the data
together, we do not have to search multiple files to collect this data. In such cases,
the DBMS should have the capability to control this redundancy in order to prohibit
inconsistencies among the files. This may be done by automatically checking that
the Student_name-Student_number values in any GRADE_REPORT record in Figure
1.6(a) match one of the Name-Student_number values of a STUDENT record (Figure
1.2). Similarly, the Section_identifier—Course_number values in GRADE_REPORT can
be checked against SECTION records. Such checks can be specified to the DBMS
during database design and automatically enforced by the DBMS whenever the
GRADE_REPORT file is updated. Figure 1.6(b) shows a GRADE_REPORT record that
is inconsistent with the STUDENT file of Figure 1.2, which may be entered erro-
neously if the redundancy is not controlled.

1.6.2 Restricting Unauthorized Access

When multiple users share a large database, it is likely that most users will not be
authorized to access all information in the database. For example, financial data is

Figure 1.6

Redundant storage of Student_name and Course_name in GRADE_REPORT.
(a) Consistent data, (b) Inconsistent record.

(a)

)

GRADE_REPORT

Student_number | Student_name | Section_identifier| Course_number Grade
17 Smith 112 MATH2410 B
17 Smith 119 CS1310 C
8 Brown 85 MATH2410 A
8 Brown 92 CS1310 A
8 Brown 102 CS83320 B
8 Brown 135 CS3380 A
GRADE_REPORT
Student_number | Student_name | Section_identifier| Course_number Grade
17 Brown 112 MATH2410 B

during
logical
tabase.
some-
mance
dantly
ieve a
umber
1e data
Cases,
-ohibit
1¢ that
Figure
Figure
T ¢can
JBMS
er the
-d that

erro-

10t be
lata is

e

le

1.6 Advantages of Using the DBMS Approach

often considered confidential, and only authorized persons are allowed to access
such data. In addition, some users may only be permitted to retrieve data, whereas
others are allowed to retrieve and update. Hence, the type of access operation—
retrieval or update—must also be controlled. Typically, users or user groups are
given account numbers protected by passwords, which they can use to gain access to
the database. A DBMS should provide a security and authorization subsystem,
which the DBA uses to create accounts and to specify account restrictions. Then, the
DBMS should enforce these restrictions automatically. Notice that we can apply
similar controls to the DBMS software. For example, only the DBA’s staff may be
allowed to use certain privileged software, such as the software for creating new
accounts, Similarly, parametric users may be allowed to access the database only
through the canned transactions developed for their use.

1.6.3 Providing Persistent Storage for Program Obijects

Databases can be used to provide persistent storage for program objects and data
structures. This is one of the main reasons for object-oriented database systems.
Programming languages typically have complex data structures, such as record
types in Pascal or class definitions in C++ or Java. The values of program variables
are discarded once a program terminates, unless the programmer explicitly stores
them in permanent files, which often involves converting these complex structures
into a format suitable for file storage. When the need arises to read this data once
more, the programmer must convert from the file format to the program variable
structure. Object-oriented database systems are compatible with programming lan-
guages such as C++ and Java, and the DBMS software automatically performs any
necessary conversions. Hence, a complex object in C++ can be stored permanently
i an object-oriented DBMS. Such an object is said to be persistent, since it survives
the termination of program execution and can later be directly retrieved by another
C++ program.

The persistent storage of program objects and data structures is an important func-
tion of database systems. Traditional database systems often suffered from the so-
called impedance mismatch problem, since the data structures provided by the
DBMS were incompatible with the programming language’s data structures.
Object-oriented database systems typically offer data structure compatibility with
one or more object-oriented programming languages.

1.6.4 Providing Storage Structures for Efficient
Query Processing

Database systems must provide capabilities for efficiently executing queries and
updates. Because the database is typically stored on disk, the DBMS must provide
specialized data structures to speed up disk search for the desired records. Auxiliary
files called indexes are used for this purpose. Indexes are typically based on tree data
structures or hash data structures, suitably modified for disk search. In order to
process the database records needed by a particular query, those records must be

19

20

Chapter 1 Databases and Database Users

copied from disk to memory. Therefore, the DBMS often has a buffering module
that maintains parts of the database in main memory buffers. In other cases, the
DBMS may use the operating system to do the buffering of disk data.

The query processing and optimization module of the DBMS is responsible for
choosing an efficient query execution plan for each query based on the existing stor-
age structures. The choice of which indexes to create and maintain is part of physi-
cal database design and tuning, which is one of the responsibilities of the DBA staff.
We discuss the query processing, optimization, and tuning in detail in Chapters 15
and 16.

1.6.5 Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software failures.
The backup and recovery subsystem of the DBMS is responsible for recovery. For
example, if the computer system fails in the middle of a complex update transac-
tion, the recovery subsystem is responsible for making sure that the database is
restored to the state it was in before the transaction started executing. Alternatively,
the recovery subsystem could ensure that the transaction is resumed from the point
at which it was interrupted so that its full effect is recorded in the database.

1.6.6 Providing Multiple User Interfaces

Because many types of users with varying levels of technical knowledge use a data-
base, a DBMS should provide a variety of user interfaces. These include query lan-
guages for casual users, programming language interfaces for application
programmers, forms and command codes for parametric users, and menu-driven
interfaces and natural language interfaces for standalone users. Both forms-style
interfaces and menu-driven interfaces are commonly known as graphical user
interfaces (GUIs). Many specialized languages and environments exist for specify-
ing GUIs. Capabilities for providing Web GUI interfaces to a database—or Web-
enabling a database—are also quite common.

1.6.7 Representing Complex Relationships among Data

A database may include numerous varieties of data that are interrelated in many
ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the
STUDENT file is related to four records in the GRADE_REPORT file. Similarly, each
section record is related to one course record and to a number of GRADE_REPORT
records—one for each student who completed that section. A DBMS must have the
capability to represent a variety of complex relationships among the data, to define
new relationships as they arise, and to retrieve and update related data easily and
efficiently.

1.6.8 Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must hold for
the data. A DBMS should provide capabilities for defining and enforcing these con-

3 module
-ases, the

1sible for
‘ing stor-
ot physi-
'BA staff.
ipters 15

railures.
verv. For
transac-
tabase is
natively,
he point

¢ a data-
:erv lan-
lication
a-driven
ms-style
cal user
specify-

or Web-

in many
1 in the
rlv, each
REPORT
have the
o define
sihv and

1old for
ose con-

1.6 Advantages of Using the DBMS Approach

straints. The simplest type of integrity constraint involves specifying a data type for
each data item. For example, in Figure 1.3, we specified that the value of the Class
data item within each STUDENT record must be a one digit integer and that the
value of Name must be a string of no more than 30 alphabetic characters. To restrict
the value of Class between 1 and 5 would be an additional constraint that is not
shown in the current catalog. A more complex type of constraint that frequently
occurs involves specifying that a record in one file must be related to records in
other files. For example, in Figure 1.2, we can specify that every section record must
be related to a course record. Another type of constraint specifies uniqueness on data
item values, such as every course record must have a unique value for Course_number.
These constraints are derived from the meaning or semantics of the data and of the
miniworld it represents. It is the responsibility of the database designers to identify
integrity constraints during database design. Some constraints can be specified to
the DBMS and automatically enforced. Other constraints may have to be checked by
update programs or at the time of data entry. For typical large applications, it is cus-
tomary to call such constraints as business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-
straints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered
in the database, the DBMS cannot discover this error automatically because ‘C’ is a
valid value for the Grade data type. Such data entry errors can only be discovered
manually (when the student receives the grade and complains) and corrected later
by updating the database. However, a grade of *Z” would be rejected automatically
by the DBMS because ‘Z’ is not a valid value for the Grade data type. When we dis-
cuss each data model in subsequent chapters, we will introduce rules that pertain to
that model implicitly. For example, in the Entity-Relationship model in Chapter 3, a
relationship must involve at least two entities. Such rules are inherent rules of the
data model and are automatically assumed to guarantee the validity of the model.

1.6.9 Permitting Inferencing and Actions Using Rules

Some database systems provide capabilities for defining deduction rules for inferenc-
ing new information from the stored database facts. Such systems are called deduc-
tive database systems. For example, there may be complex rules in the miniworld
application for determining when a student is on probation. These can be specified
declaratively as rules, which when compiled and maintained by the DBMS can deter-
mine all students on probation. In a traditional DBMS, an explicit procedural program
code would have to be written to support such applications. But if the miniworld rules
change, it is generally more convenient to change the declared deduction rules than to
recode procedural programs. In today’s relational database systems, it is possible to
associate triggers with tables. A trigger is a form of a rule activated by updates to the
table, which results in performing some additional operations to some other tables,
sending messages, and so on. More involved procedures to enforce rules are popularly
called stored procedures; they become a part of the overall database definition and
are invoked appropriately when certain conditions are met. More powerful function-
ality is provided by active database systems, which provide active rules that can auto-
matically initiate actions when certain events and conditions occur.

21

22 Chapter 1 Databases and Database Users

1.6.10 Additional Implications of Using
the Database Approach

This section discusses some additional implications of using the database approach
that can benefit most organizations.

Potential for Enforcing Standards. The database approach permits the DBA to
define and enforce standards among database users in a large organization. This
facilitates communication and cooperation among various departments, projects,
and users within the organization. Standards can be defined for names and formats
of data elements, display formats, report structures, terminology, and so on. The
DBA can enforce standards in a centralized database environment more easily than
in an environment where each user group has control of its own files and software.

Reduced Application Development Time. A prime selling feature of the data-
base approach is that developing a new application—such as the retrieval of certain
data from the database for printing a new report—takes very little time. Designing
and implementing a new database from scratch may take more time than writing a
single specialized file application. However, once a database is up and running, sub-
stantially less time is generally required to create new applications using DBMS
facilities. Development time using a DBMS is estimated to be one-sixth to one-
fourth of that for a traditional file system.

Flexibility. It may be necessary to change the structure of a database as require-
ments change. For example, a new user group may emerge that needs information
not currently in the database. In response, it may be necessary to add a file to the
database or to extend the data elements in an existing file. Modern DBMSs allow
certain types of evolutionary changes to the structure of the database without
affecting the stored data and the existing application programs.

Availability of Up-to-Date Information. A DBMS makes the database available to
all users. As soon as one user’s update is applied to the database, all other users can
immediately see this update. This availability of up-to-date information is essential
for many transaction-processing applications, such as reservation systems or bank-
ing databases, and it is made possible by the concurrency control and recovery sub-
systems of a DBMS.

Economies of Scale. The DBMS approach permits consolidation of data and
applications, thus reducing the amount of wasteful overlap between activities of
data-processing personnel in different projects or departments as well as redundan-
cles among applications. This enables the whole organization to invest in more
powerful processors, storage devices, or communication gear, rather than having
each department purchase its own (weaker) equipment. This reduces overall costs
of operation and management.

»roach

YBA to
1. This
wlects,
rmats
=, The
v than
tware.

N ddt'd‘
ertain
wning
ting a
2. sub-
OBMS
r one-

quire-
aation
to the
allow
ithout

ible to
T~ Can
wential
bank-

vsub-

1 and
ties of
ndan-
more
aving

| costs

1.7 A Brief History of Database Applications

1.7 A Brief History of Database Applications

We now give a brief historical overview of the applications that use DBMSs and how
these applications provided the impetus for new types of database systems.

1.71 Early Database Applications Using
Hierarchical and Network Systems

Many early database applications maintained records in large organzations such as
corporations, universities, hospitals, and banks. In many of these applications, there
were large numbers of records of similar structure. For example, in a university
application, similar information would be kept for each student, each course, each
grade record, and so on. There were also many types of records and many interrela-
tionships among them.

One of the main problems with early database systems was the intermixing of con-
ceptual relationships with the physical storage and placement of records on disk.
For example, the grade records of a particular student could be physically stored
next to the student record. Although this provided very efficient access for the orig-
inal queries and transactions that the database was designed to handle, it did not
provide enough flexibility to access records efficiently when new queries and trans-
actions were identified. In particular, new queries that required a different storage
organization for efficient processing were quite difficult to implement efficiently. It
was also laborious to reorganize the database when changes were made to the
requirements of the application.

Another shortcoming of early systems was that they provided only programming
language interfaces. This made it time-consuming and expensive to implement new
queries and transactions, since new programs had to be written, tested, and
debugged. Most of these database systems were implemented on large and expensive
mainframe computers starting in the mid-1960s and continuing through the 1970s
and 1980s. The main types of early systems were based on three main paradigms:
hierarchical systems, network model based systems, and inverted file systems.

1.72 Providing Application Flexibility
with Relational Databases

Relational databases were originally proposed to separate the physical storage of
data from its conceptual representation and to provide a mathematical foundation
for content storage. The relational data model also introduced high-level query lan-
guages that provided an alternative to programming language interfaces; hence, it
was a lot quicker to write new queries. Relational representation of data somewhat
resembles the example we presented in Figure 1.2. Relational systems were initially
targeted to the same applications as earlier systems, but were meant to provide flex-
ibility to develop new queries quickly and to reorganize the database as require-
ments changed.

23

24 Chapter 1 Databases and Database Users

Early experimental relational systems developed in the late 1970s and the commer-
cial relational database management systems (RDBMS) introduced in the early
19805 were quite slow, since they did not use physical storage pointers or record
placement to access related data records. With the development of new storage and
indexing techniques and better query processing and optimization, their perfor-
mance improved. Eventually, relational databases became the dominant type of
database system for traditional database applications. Relational databases now exist
on almost all types of computers, from small personal computers to large servers.

1.7.3 Object-Oriented Applications and the Need
for More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the
need to store and share complex-structured objects led to the development of
object-oriented databases (OODB). Initially, OODB were considered a competitor
to relational databases, since they provided more general data structures. They also
incorporated many of the useful object-oriented paradigms, such as abstract data
types, encapsulation of operations, inheritance, and object identity. However, the
complexity of the model and the lack of an early standard contributed to their lim-
ited use. They are now mainly used in specialized applications, such as engineering
design, multimedia publishing, and manufacturing systems. Despite expectations
that they will make a big impact, their overall penetration into the database prod-
ucts market remains under 5% today.

1.74 Interchanging Data on the Web for E-Commerce

The World Wide Web provides a large network of interconnected computers. Users
can create documents using a Web publishing language, such as HyperText Markup
Language (HTML), and store these documents on Web servers where other users
(clients) can access them. Documents can be linked through hyperlinks, which are
pointers to other documents. In the 1990s, electronic commerce (e-commerce)
emerged as a major application on the Web. It quickly became apparent that parts of
the information on e-commerce Web pages were often dynamically extracted data
from DBMSs. A variety of techniques were developed to allow the interchange of
data on the Web. Currently, eXtended Markup Language (XML) is considered to be
the primary standard for interchanging data among various types of databases and
Web pages. XML combines concepts from the models used in document systems
with database modeling concepts. Chapter 27 is devoted to the discussion of XML.

1.7.5 Extending Database Capabilities for New Applications

The success of database systems in traditional applications encouraged developers
of other types of applications to attempt to use them. Such applications tradition-
ally used their own specialized file and data structures. The following are examples
of these applications:

ymnier-
e early
record
e and
perfor-
tvpe of
ny exist

VTS,

nd the
wnt of
vetitor
evalso
<t data
er, the
‘ir hhm-
eering
rations
- prod-

. Users
tarkup
r users
ich are
nerce)
arts of
d data
nge of
1tobe
¢s and
vstems
XML

- -~

2

lopers
lition-
mples

1.7 A Brief History of Database Applications

Scientific applications that store large amounts of data resulting from scien-
tific experiments in areas such as high-energy physics or the mapping of the
human genome.

s Storage and retrieval of images, from scanned news or personal photo-
graphs, to satellite photograph images and images from medical procedures
such as x-rays or MRI (magnetic resonance imaging).

Storage and retrieval of videos such as movies, or video clips from news or
personal digital cameras.

Data mining applications that analyze large amounts of data searching for
the occurrences of specific patterns or relationships.

Spatial applications that store spatial locations of data such as weather infor-
mation or maps used in geographical information systems.

Time series applications that store information such as economic data at
regular points in time (for example, daily sales or monthly gross national
product figures).

It was quickly apparent that basic relational systems were not very suitable for many
of these applications, usually for one or more of the following reasons:

More complex data structures were needed for modeling the application
than the simple relational representation.

New data types were needed in addition to the basic numeric and character
string types.

New operations and query language constructs were necessary to manipu-
late the new data types.

New storage and indexing structures were needed.

This led DBMS developers to add functionality to their systems. Some functionality
was general purpose, such as incorporating concepts from object-oriented data-
bases into relational systems. Other functionality was special purpose, in the form
of optional modules that could be used for specific applications. For example, users
could buy a time series module to use with their relational DBMS for their time
series application.

Today, most large organizations use a variety of software application packages that
work closely with database back-ends. The database back-end represents one or
more databases, possibly from different vendors and different data models that
maintain the data that is manipulated by these packages for supporting transac-
tions, generating reports, and answering ad-hoc queries. One of the most com-
monly used systems includes Enterprise Resource Planning (ERP) used to
consolidate a variety of functional areas within an organization, including produc-
tion, sales, distribution, marketing, finance, human resources, and so on. Another
popular type of system is Customer Relationship Management (CRM) software
that spans order processing and marketing and customer support functions. These
applications are Web-enabled in that internal and external users are given a variety
of Web-portal interfaces to interact with the back-end databases.

25

26 Chapter 1 Databases and Database Users

1.7.6 Databases versus Information Retrieval

Traditionally, database technology applies to structured and formatted data that
arises in routine applications in government, business, and industry. Database tech-
nology is heavily used in manufacturing, retail, banking, insurance, finance, and
health care industries where structured data originates as forms such as invoices or
patient registration documents. There has been a concurrent development of a field
called information retrieval (IR) that deals with books, manuscripts, and various
forms of library-based articles. Data is indexed, cataloged, and annotated using key-
words. IR is concerned with searching for material based on these keywords, and
with the many problems dealing with document processing and free-form text pro-
cessing. There has been a considerable amount of work done on searching for text
based on keywords, finding documents and ranking them based on relevance, auto-
matic text categorization, classification of text by topics, and so on. With the advent
of the Web and the proliferation of HTML pages running into billions, there is a
need to apply many of the IR techniques to processing data on the Web. Data on
Web pages typically contains images, text, and objects that are active and change
dynamically. Retrieval of information on the Web is a new problem that requires
techniques from databases and IR to be applied in a variety of novel combinations.

1.8 When Not to Use a DBMS

In spite of the advantages of using a DBMS, there are some situations in which a
DBMS may involve unnecessary overhead costs that would not be incurred in tradi-
tional file processing. The overhead costs of using a DBMS are due to the following:

« High initial investment in hardware, software, and training
+ The generality that a DBMS provides for defining and processing data

Overhead for providing security, concurrency control, recovery, and
integrity functions

Additional problems may arise if the database designers and DBA do not properly
design the database or if the database systems applications are not implemented
properly. Hence, it may be more desirable to use regular files under the following
circumstances:

Simple, well-defined database applications that are not expected to change

Stringent, real-time requirements for some programs that may not be met
because of DBMS overhead

No multiple-user access to data

Certain industries and applications have elected not to use general-purpose
DBMSs. For example, many computer-aided design tools (CAD) used by mechani-
cal and civil engineers have proprietary file and data management software that is
geared for the internal manipulations of drawings and 3D objects. Similarly, com-
munication and switching systems designed by companies like AT&T were early
manifestations of database software that was made to run very fast with hierarchi-

ata that
1ise tech-
e, and
OICeS or
' a field
various
g key-
~dsand
o\l pro-
Tor text
Jeoauto-
sadvent
wreis a
2lata on
<hange
requires
-ations.

which a
2 tradi-
~OwWIng:

d

-v. and

roperly
mented
lowing

hange

be met

wurpose
cohani-
s thatis
L com-
re carly
srarchi-

1.9 Summary

cally organized data for quick access and routing of calls. Similarly, GIS implemen-
tations often implement their own data organization schemes for efficiently imple-
menting functions related to processing maps, physical contours, lines, polygons,
and so on. General-purpose DBMSs are inadequate for their purpose.

1.9 Summary

In this chapter we defined a database as a collection of related data, where data
means recorded facts. A typical database represents some aspect of the real world
and is used for specific purposes by one or more groups of users. A DBMS is a gen-
eralized software package for implementing and maintaining a computerized data-
base. The database and software together form a database system. We identified
several characteristics that distinguish the database approach from traditional file-
processing applications, and we discussed the main categories of database users, or
the actors on the scene. We noted that in addition to database users, there are several
categories of support personnel, or workers behind the scene, in a database environ-
ment.

We presented a list of capabilities that should be provided by the DBMS software to
the DBA, database designers, and users to help them design, administer, and use a
database. Then we gave a brief historical perspective on the evolution of database
applications. We pointed out the marriage of database technology with information
retrieval technology, which will play an important role due to the popularity of the
Web. Finally, we discussed the overhead costs of using a DBMS and discussed some
situations in which it may not be advantageous to use one.

Review Questions

1.1. Define the following terms: data, database, DBMS, database system, database
catalog, program-data independence, user view, DBA, end user, canned transac-
tion, deductive database system, persistent object, meta-data, and transaction-
processing application.

2. What four main types of actions involve databases? Briefly discuss each.

1.3. Discuss the main characteristics of the database approach and how it differs
from traditional file systems.

1.4. What are the responsibilities of the DBA and the database designers?

1.5. What are the different types of database end users? Discuss the main activi-
ties of each.

i.6. Discuss the capabilities that should be provided by a DBMS.

.7 Discuss the differences between database systems and information retrieval
systems.

27

