
chapter 1

Databases and
Database Users

atabases and database systems are an essential

component of everyday life in modern society.

Daily, most of us encounter several activities that involve some interaction with a

database. For example, if we go to the bank to deposit or withdraw funds, if we make

a hotel or airline reservation, if we access a computerized library catalog to search

for a bibliographic item, or if we purchase something online-such as a book, toy,

or computer-chances are that our activities will involve someone or some com-

puter program accessing a database. Even purchasing items at a supermarket in

many cases, automatically updates the database that holds the inventory of grocery

items.

These interactions are examples of what we may call traditional database applica-

tions, in which most of the information that is stored and accessed is either textual

or numeric. In the past few years, advances in technology have led to erciting new

applications of database systems. New media technology has made it possible to

store images, audio clips, and video streams digitally. These types of files are becom-

ing an important component of multimedia databases. Geographic information

systems (GIS) can store and analyze maps, weather data, and satellite images. Data

warehouses and online analytical processing (OLAP) systems are used in many

companies to extract and analyze useful information from very large databases to

support decision making. Real-time and active database technology is used to con-

trol industrial and manufacturing processes. And database search techniques are

being applied to the World Wide Web to improve the search for information that is

needed by users browsing the Internet.

r; l l r

ij,:l$S'ii*
t&isi:t&

i:A,iA:lilftj:'

Chaoter 1 Databases and Database Users

To understand the fundamentals of database technology, however, we must start

from the basics of traditional database applications. In Section 1.1 we start by defin-

ing a database, and then we explain other basic terms. In Section 1.2, we provide a

simple UNIVERSITY database example to i l lustrate our discussion. Sect ion 1.3

describes some of the main characteristics of database systems, and Sections 1.4 and

1.5 categorize the types of personnel whose jobs involve using and interacting with

database systems. Sections 1.6,L7, and 1.8 offer a more thorough discussion of the

various capabil it ies provided by database systems and discuss some typical database

applications. Section 1.9 summarizes the chapter.

The reader who desires a quick introduction to database systems only can study

Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and

go on to Chapter 2.

1.1 lntroduction
Databases and database technology have a major impact on the growing use of

computers. It is fair to say that databases play a critical role in almost all areas where

computers are used, including business, electronic commerce, engineering, medi-

cine, law, education, and library science. The word database is so commonly used

that we must begin by defining what a database is. Our init ial definit ion is quite

generar.

A database is a collection of related data.l By data, we mean known facts that can be

recorded and that have implicit meaning. For example, consider the names, tele-

phone numbers, and addresses of the people you know. You may have recorded this

data in an indexed address book or you may have stored it on a hard drive, using a

personal computer and software such as Microsoft Access or Excel. This collection

of related data with an implicit meaning is a database.

The preceding definition of database is quite general; for example, we may consider

the collection of rvords that make up this page of text to be related data and hence to

constitute a database. However, the common use of the term database is usually

more restricted. A database has the following implicit properties:

w A database represents some aspect of the real world, sometimes called the

miniworld or tl-re universe of discourse (UoD). Changes to the miniworld

irre reflected in the database.

w A database is a logically coherent collection of data with some inherent

meaning. A random assortment of data cannot correctly be referred to as a

database.

s A database is designed, built, and populated with data for a specific purpose.

It has an intended group of users and some preconceived applications in

which these users are interested.

1. We wi l l use the word dafa as both srngular and plural , as is contmon in database l i terature; context wi l l

determrne whether r t is s ngular or plural . In standard Engl ish, dala is used for plural ;datum is used for stn-

q urar.

ust start

rr dc-f ln-

r(rv ide a

i i t rn 1.3

. l . - l and

lnq r \ ' i th

, l : of the

i.r t .rbase

il l \ tL ldV

I Sand

r use of

I: \ \ 'hc' fe

i. nlc-ci i-

: l r r . u5sd

:r QLl l te

rt i . tn be

:c\ . tc le-

-Jcd this

. usinq a

' l lcct ion

a\) I lSider

rcnce to

' u\Lral ly

i l l . ' t l the

inirr 'or ld

n hcrent

,l to irs a

.ru rpose.

l t r r)ns in

1.1 Introduct ion

In other words, a database has some source from which data is derived, some degree

of interaction rvith events in the real world, and au audience that is actively inter-

ested in its contents. The end users of a dirtabase may perform business transactions
(fol example, a custofi ler buys a camera) or events may happen (for example, ar-r

emplo,vee has a baby) that cause the inforn-ration in the database to change. In order

for a database to be accurate and reliable at all t imes, it must be a true reflection of

the miniworld that it represeutsi therefcrle, changes must be reflected in the database

as soon as possible.

A datarbase can be of any size and complexity. For exan.rple, the l ist of names and

addresses referred to earlier nrav consist of onlv a few }rundred recorcls, each with a

simple structure. Or-r the other hand, the computerized catalog of a large i ibrary

may contain half a rnil l ion entries organized under dift-erent categories-by pri-

mary author's last name, b,v subject, bv book tit le-rvith each category organized

alphabetically. A database of even greater size and complexity is maintained br, the

Internal Revenue Service (lRS) to nronitor tax forms fi led by U.S. taxpayers. If we

assume that there are 100 mill ion taxpayers and each taxpayer fi les an average of f ive

forms with approximately 400 characters of infbrmation per fbrm, we rvoulcl have a

database of 100 x I06 x 400 x 5 characters (bytes) of information. If the IRS keeps

the past three returns of each taxpa).er in addition to the current return, we would

have a datarbase of 8 x 10r1 bytes (800 gigabvtes). This huge arnount of information

must be organized and m.rnaged so that users can search for, retrieve, and update

the data as needed. An example of a large conlmercial database is Amazon.corn. It

contains data for over 20 mill ion books, CDs, videos, DVDs, garnes, electronics,

apparel, and other items. The database occupies or.er 2 terabytes (a terabyte is 101:

bytes worth of storage) and is stored on 200 different computers (called servers).

About l5 mill ion visitors access Amazon.corn each day and use the database to

make purchases. The database is contiuually updated as new books and other items

are added to the inventory and stock quantit ies are updated as purchases are trans-

acted. About 100 people are responsible for keeping the An-razon database up-to-

date.

A database may be generated and rraintained manually or it ma,v be computerized.

For example, a l ibrary card catalog is a database that n-ray be created and maintair-red

manually. A computerized database rnay be created and maintained either by a

group of application programs written specificarlly for that task or by a database

management system. \Ve are only concerned with cornputerized databases in this

book.

A database management system (DBMS) is a collection of programs that enables

users to create and maintain a datal'rase. The DBMS is t generol-purPose so.ftu,are sys-

fcrn that facilitates the processes of deJining, cotrstructing, nnnipulating, and shuring

clatabases among various users and applications. Defining a datarbase involves spec-

ifuing the data types, structures, and constraints of the data to be stored in the data-

base. The database det in i t ion or descr ipt ive inforrnat ion is also stored in the

database in the form of a database catalog or dictionary; it is called meta-data.

Constructing the database is the process of storing the data on some storage

nredium that is controlled by the DBMS. Manipulating a database includes func-

Chaoter 1 Databases and Database Users

tions such as querying the database to retrieve specific data, updating the database

to reflect changes in the miniworld, and generating reports from the data. Sharing a

database allows multiple users and programs to access the database simultaneously.

An application program accesses the database by sending queries or requests for

data to the DBMS. A queryr typically causes some data to be retrieved; a transac-

tion may cause some data to be read and some data to be written into the database.

Other important functions provided by the DBMS include protecting the database

and maintainizrg it over a long period of time. Protection includes system prltection

against hardware or software malfunction (or crashes) and security profection

against unauthorized or malicious access. A typical large database may have a life

cycle of many years, so the DBMS must be able to maintain the database system by

allowing the system to evolve as requirements change over time.

It is not necessary to use general-purpose DBMS software to implement a comput-

erized database. We could write our own set of programs to create and maintain the

database, in effect creating our own special-purpose DBMS software. In either case-

whether we use a general-purpose DBMS or not-we usually have to deploy a con-

siderable amount of complex software. In fact, most DBMSs are very complex

software systems.

To cornplete our initial definitions, we will call the database and DBMS software

together a database system. Figure L I illustrates some of the concepts we have dis-

cussed so far.

1.2 An Example
Let us consider a simple example that rnost readers may be familiar with: a

UNIVERSITY database for maintaining information concerning students, courses,

and grades in a university environment. Figure 1.2 shows the database structure and

some sample data for such a database. The database is organized as five files, each of

which stores data records of the same type.r The STUDENT file stores data on each

student, the COURSE fi le stores data on each course, the SECTION fi le stores data

on each section of a course, the GRADE_REPORT fi le stores the grades that students
receive in the various sections they have completed, and the PREREOUISITE fi le

stores the prerequisites of each course.

To defne this database, we must specifo the structure of the records of each file by

specifring the different types of data elements to be stored in each record. In Figure
1.2, each STUDENT record includes data to represent the student 's Name,

Student_number, Class (such as freshman or'1', sophomore or'2', and so forth), and

2, The term query, or ig inal ly meaning a quest ion or an nqu ry, rs loosely used for al l types of interact ions

w th databases, lncluding mod fy ing the data,

3. We use the term ftle nlormally here. At a conceptua level, a ftle is a collection of records that may or
may not be ordered.

l .rt.rbase

raring a

rcouslv.

.c: ts tor

ransac-

-l t.r tr.r se.

:,rt.rbase

. :a i t t () l l

. ' : , ' ; t iLt l l

"c
. r l i f !

. :cnr bv

., '_r l l l l t -
' ' ' t " '

: . r : i r the

: a. l iL ' -

I J COn-

\) i l lPlex

. ' I irr 'are

.r i c dis-

Users/Programmers

Application Programs/Oueries

Software to Process

Oueries/ Prog rams

Software to Access

Stored Data

Stored Database

Def in i t ion
(Meta-Data)

I .2 An Example

Figure 1.1

A s mpl f ied database

sysTern envrronmenL

r ' i th: a

-rtLl IS!Sr

'.rrc..1nd

.r .h of

\r l l CaCh

:l: d;rta

. : udents

) lE t l le

r t i lc 'b.v
. I . i , , , , .p

Name,

th . and

Major (such as mathematics or'MAf H'and computer science or'CS'); each COURSE

record includes data to represent the Course-name, Course-number, Credit-hours, and

Deparlment (the department that offers the course); and so on. We must also speciry a

data tlpe for each data elemer.rt within a record. For example, we can specifz that

Name of STUDENT is a string of alphabetic characters, Student_number of STUDENT

is an integer, and Grade of GRADE_REPORT is a single character from the set { A,'Bl

'C', 'Dl 'F', ' I '] . We may also use a coding scheme to represent the values of a data

item. For example, in Figure 1.2 we represent the Class of a STUDENT as L for fresh-

man, 2 for sophornore, 3 for junior, 4 for senior, and 5 for graduate student.

To construct the UNIVERSITY database, we store data to represent each student,

course, section, grade report, and prerequisite as a record in the appropriate fi le.

Notice that records in the various files may be related. For example, the record for

Smith in the STUDENT fi le is related to two records in the GRADE-REPORT fi le that

specif ' Smith's grades in tlvo sections. Similarly, each record in the PREREOUISITE

file relates two course records: one representing the course and the other represent-

ing the prerequisite. Most n-redium-size and large databases include many types of

records and have ntany relttt ionslrlps among the records.

Chaoter 1 Databases and Database Users

STUDENT

Name Student_number Class Major

Smith 17 1 CS

Brown z CS

COURSE

Course name Course number Credit_hours Department

Intro to Comouter Science cs1 31 0 4 CS

Data Structures cs3320 4 CS

Discrete Mathematics MATH241 O MATH

Database css380 e CS

SECTION

Section_identifier Course_number Semester Year Instructor

85 MATH241 O Fall o4 King

92 cs1 31 0 Fall o4 Anderson

102 cs3320 Spring 05 Knuth

112 MATH241 O Fall 05 Chang

119 cs1 31 0 Fall 05 Anderson

135 cs3380 Fall 05 Stone

GRADE_REPORT

Student_number Section identifier Grade

17 112 B

17 119

I 85 A

I 92 A

tJ 102 B

x 135 A

Figure 1.2
A database that stores

student and course
informat ion.

PREREQUISITE

Course_number Prerequisite_number

cs3380 cs3320

cs3380 MATH241 O

cs3320 csl 31 0

1.3 Characteristics of the Database Approach

Database manipulation involves querying and updating. Examples of queries are as

follows:

' ' Retrieve the transclipt-a l ist of all courses and grades-of 'Smith'

': ' List the nar-nes clI students rvho took the section of the 'Database' course

offered in fall 2005 and their gracles in that section

,. ' l List the prerequisites of the'Database' course

Examples of updates include the following:

, , Change the class of 'Smith' to sophor.nore

., Create a new section for the'Database' collrse tbr this semester

li; Enter a grade of A for'Smith' in the 'Database' section of last semester.

These informal queries and updates must be specified precisely in the qr.rery lan-

guage of the DBMS befole they can be processed.

At this stage, it is usetul to describe the database as a part of a larger undertaking

known as an infornlation system rvithin ar-ry organization. The Inforr-nation

Technology (lT) departn-ient rvithin a company designs irnd maintains an informa-

tion system consisting of various computers, storage systems, application software,

and databases. Design of a new application for an existing database or design of a

new ciatabase starts ofT n,ith a phase called requirements definition and analysis.

These requirements are documented in detail and tr:rnsformed into ir conceptual

design that can be represented and manipulated using some cor.nputerized tools so

that it can be easily rnaintained, modified, and transformed into a database imple-

rnentat ion. We wi l l i r . r t loduce a model cal led the Ent i t ,v-Relat ionship rnodel in

Chapter 3 that is used fbr this purpose. The design is then translated to a logical

design that can be erpressed ir.r a datir model implemented in a commercial DBMS.

In this book we wil l eurphasize a data rnodel knowl-r as the Relational Data rnodel

fiom Chapter 5 onward. This is currently the most popular approach for designing

and implementing databases using (relational) DBMSs. The final stage is physical

design, during which further specifications are provided for storing ancl accessing

the database. The database design is in.rplen.rented, propr.rlated with actual data and

continuously maintained to reflect the state of the rrinilvorld.

1.3 Characteristics of the Database Approach
A nur-nber of characteristics distinguish the database approach tron-r the traciit ional

approach of programming r ,v i th f i les. In t radi t ional f i le processing, each user

clefines and implements the fi les needed [or a specific soflware application as part of

programming the application. For example, one user, the grade reporting oftice, may

keep a fi le on students ar-rd their grades. Programs to print a student's transcript and

to entel' nerv grades into the fi le are implemented as part of the applicatior.r. A sec-

trnd user, the accoLutting oJlice, mav keep track of students' f 'ees and their payu.rr'nts.

Although both users are interested in data about students, each user maintains sep-

irrate fi les-and programs to manipulate these fi les-because each requires some

' t0 Chapier 1 Databases and Database Users

data not available from the other user's files. This redundancy in defining and stor-

ing data results in wasted storage space and in redundant efforts to maintain com-

mon up-to-date data.

In the database approach, a single repository of data is maintained that is defined

once and then accessed by various users. In file systerns, each application is free to

name data elements independently. In contrast, in a database, the names or labels of

data are defined once, and used repeatedly by queries, transactions, and applica-

tions. The main characteristics of the database approach versus the fi le-processing

approach are the following:

Self-describing nature of a database system

rt Insulation between programs and data, and data abstraction

;ir: Support of multiple views of the data

, Sharing of data and multiuser transaction processing

We describe each of these characteristics in a seuarate section.We will discuss addi-

tional characteristics of datirbase systerrs in Seciions 1.6 throush I.8.

1.3.1 Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system

contains not only the database itself but also a complete definit ion or description of

the database structure and constraints. This definit ion is stored in the DBMS cata-

log, which contains information such as the structure of each fi le, the type and stor-

age format of each data iten, and various constrrrints on the data. The information

stored in the catalog is called meta-data, and it describes the structure of the pri-

mary database (Figure 1.1).

The catalog is used by the DBMS software and also by database users who need infor-

mation about the database structure. A general-purpose DBMS software package is

not written fbr a specrfic database application. Therefore, it must refer to the catalog

to know the structure of the files in a specific database, such as the tvpe and format of

data it will access. The DBMS sofiware must work equally well with any number of

database applications-for example, a r-rniversity database, a banking database, or a

company database-as long as thc' database deflnition is stored in the catalog.

In traditional f i le proce'ssing, data definit ion is typically part of the application pro-

grams themselves. Hence, these programs irre constrained to work with only one

speciJ'ic dotobase, whose structure is declared in the application programs. For

example, an application prosram written in C++ may have struct or class declara-

tions, and a COBOL program has data division statements to define its f i les.

Wherezrs file-processing softrvare caln access only specific databases, DBMS software

can access diverse databases by extracting the database definitions from the catalog

and then using these definit ions.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of

all the files shown. Figure 1.3 shorvs sorne sample entries in a database catalog. These

I stor-
com-

ctrned

iree to

rc ls of

' r . l i r r -

c':S I I1$

addi-

'I .3 Characteristics of the Database Aooroach

clefinit ions are specitiecl by the database designer prior to creating the actual database

irnd are stored in the catalog. \\4rener,er a re(luest is made to access, say, the Name of a

STUDENT record, the DBMS software refers to the catalog to determine the structure

of the STUDENT f i le and the posi t ion and size of the Name data i tem within a

STUDENT record. By contrast, in a typical f i le-processing application, the fi le struc-

ture and, in the extreme case, the exact location of Name within a STUDENT record

lre already coded within each program that accesses this datar iten-r.

1.3.2 Insulation between Programs and Data,
and Data Abstraction

In traditional f i le processing, the structure of data fi les is embedded in the applica-

tion programs, so an\/ changes to the structure of a file may require changing oll pro-

gr:turrs that access that trle. By contrast, DBlvlS access progranrs do not require sr-rcl'r

char.rges in most cases. The structure of data t ' i les is stored in the DBMS catalog sc'pa-

rately from the irccess programs. We call this property program-data independence.

11

,\ 'sIem

it. ln of

i cata-

I stor-

: ' lJt ion

r. ' nr i -

rntbr-

i.rgc is

.italog

nrat of

tlrcr of

r ' , OI &

n Pro-
lt' one

:. For

.'clara-

; t-i les.

fin'are

.ltirloe

ons of
'Ihese

RELATIONS

Relation_name No of columns

STUDENT 4

COURSE 4

SECTION F

GRADE REPORT

PREREOUISITE 2

Figure 1.3

An example of a
l^+^!.^-^

-^+- ^^ t^. +A^
uaLdua)q lar4 vv rur u rc

l^+^h^-^ ;^ t r ;^ , , .^ 1 .)
u4tdudJg rrr19utg r ,z,

COLUMNS

Column_name Data_type Belongs_to_relation

Name Character (30) STUDENT

Student_number Character (4) STUDENT

Class Integer (1) STUDENT

Major Major_type STUDENT

Course name Character (l0) COURSE

Course number XXXXNNNN COURSE

Prerequisite_num ber XXXXNNNN PREREOUISITE

Votc: Vajor rTpe rs oe'red as a er- ' r -p 'a 'co type w r l '3 ^row"l r ra lors. XXXXNNNN

s used to def ine a type with four alpha characters fo owed by four d g ts

12 Chapter 1 Databases and Database Users

For example, a file access program may be written in such a way that it can access

only STUDENT records of the structure shown in Figure 1.4. If we want to add

another piece of data to each STU DENT record, say the Birth_date, such a program will

no longer work and must be changed. By contrast, in a DBMS environment, we only

need to change the description of STUDENT records in the catalog (Figure 1.3) to

reflect the inclusion of the new data item Birth-date; no programs are changed. The

next t ime a DBMS program refers to the catalog, the new structure of STUDENT

records will be accessed and used.

In some types of database systems, such as object-oriented and object-relational

systems (see Chapters 20 through 22), users can define operations on data as part of

the database definitions. An operation (also called a iunction or methorl) is specified

in two parts. The interface (or signature) of an operation includes the operation

name and the data types of its arguments (or parameters). The implementation (or

method) of the operation is specified separately and can be changed without affect-

ing the interface. User application prograrrs can operate on the data by invoking

these operations through their names and arguments, regardless of how the opera-

tions are implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation

independence is called data abstraction. A DBMS provides users with a conceptual

representation of data that does not include many of the details of how the data is

stored or how the operations are implemented. Informally, a data model is a type of

data abstraction thirt is used to provide this conceptual representation. The data

model uses logical concepts, such as objects, their properties, and their interrela-

tionships, that may be easier for most users to understand than computer storage

concepts. Hence, the data model hides storage and implementation detirils that are

not of interest to most database users.

For example, reconsider Figures 1.2 and 1.3. The internal implementation of a fi le

may be defined by its record length-the number of characters (bytes) in each

record-and each data item may be specified by its starting byte within a record and

its length in bytes. The STUDENT record would thus be represented as shown in

Figure 1.4. But a typical database user is not concerned with the location of each data

item within a record or its length; rather, the user is concerned that when a reference

is made to Name of STUDENT, the correct value is returned. A conceptuarl representa-

tion of the STUDENT records is shown in Figure L2. Many other details of file storage

organization-such as the access paths specified on a file-can be hidden from data-

base users by the DBMSi we discuss storage details in Chapters 13 and 14.

Figure 1.4

lnternal storage format

for a STUDENT

record, based on the

database catalog in

Figure 1.3.

Data ltem Name Starting Position in Record Length in Characters (bytes)

Name 1 30

Student number JI 4

Class 1

Major 4

n access

r to add

ram will

\\'C Only

r 1.3) to

:cd. The

rU DENT

' l . r t ional

. ltart of

rccif-ied
.crat ion

: l rorr (or

t .rttect-

nvoking

_' ()pera-

:nce.

.r 'ration

rceptual

. ' data is

r tvpe of

he data

I tr 'rrela-

:torage

Ihat are

oi a file

in each

ord and

rorvn in

rch data

-'t-erence
resenta-

storage

nr data-

1.3 Characteristics of the Database Approach

In the database approach, the detailed structure and organization of each fi le are

stored in the catalog. Database users and application programs refer to the concep-

tual representation of the fi les, and the DBMS extracts the details of f i le storage

t}om the catalog when these are needed by the DBMS fi le access modules. Many

clata models can be used to provide this data abstraction to database users. A major

part of this book is devoted to presenting various data models and the concepts they

use to abstract the representation ofdata.

In object-oriented and object-relational databases, the abstraction process includes

not only the data structure but also the operations on the data. These operations

provide an abstraction of miniworld activit ies commonly understood by the users.

For example, an operation CALCULATE_GPA can be applied to a STUDENT object to

calculate the grade point average. Such operat ions can be invoked by the user

qLleries or application programs without having to know the details of how the

operations are implemented. In that sense, an abstraction of the miniworld activity

is rnade available to the user as an abstract operation.

1.3.3 Support of Multiple Views of the Data

.\ database typically has many users, each of whom may require a different perspec-

tive or view of the database. A view may be a subset of the database or it may con-

tain virtual data that is derived from the database files but is not explicitly stored.

Some users may not need to be aware of whether the data they refer to is stored or

tierived. A multiuser DBMS whose users have a variety of distinct applications must

provide facil i t ies for defining multiple views. For example, one user of the database

of Figure l.2may be interested only in accessing and prir-rt ing the transcript of each

student; the view fbr this user is shown in Figure 1.5(a). A second user, who is inter-

ested only in checking that students have taken all the prerequisites of each course

tbr which they register, may require the view shown in Figure 1.5(b).

1.3.4 Sharing of Data and Multiuser Transaction Processing

,\ multiuser DBMS, as its name impiies, must allow multiple users to access the data-

base at the same tirne. This is essential if data for multiple applications is to be inte-

grated and maintained in a single database. The DBMS must include concurrency

control software to ensure that several users trying to update the same data do so in

.r controlled manner so that the result of the updates is correct. For exarrrple, when

several reservation clerks try to assign a seat on an airl ine fl ight, the DBMS should

ensure that each seat can be accessed by only one clerk at a time for nssignment to a

pirssenger. These types of applications are generally called online transaction pro-

cessing (OLTP) applications. A fundamental role of multiuser DBMS software is to

ensure that concurrent transactions operate correctly aird efficiently.

The concept of a transaction has become central to many database applications. A

transaction is an exeaftitrg progratn or p,ocess that includes one or more database

accesses, such as reading or updatir-rg of database records. Each transaction is sup-

posed to execute a logically correct database access if executed in its entirety without

interference from other transactions. The DBMS must enforce several transactiot.t

' t3

14 Chaoter 1 Databases and Database Users

COURSE_PREREOUISITES

Course_name Course_number Prerequisites

Database cs3380
cs3320

MATH241 O

Data Structures cs3320 cs1 31 0

Figure 1.5

Two views der ived i rom the database in Figure 1.2. (a) The TRANSCRIPT view
(b) The COURSE-PREREOU ISITES view.

(a)

(b)

TRANSCRIPT

Student_name
Student_transcript

Course_number Grade Semester Year Section_id

Smith
cs1 31 0 Fall 05 119

MATH241 O B Fall 05 112

Brown

MATH241 O A Fall o4 85

csl 31 0 A Fall 04 92

cs3320 B Spring 05 102

cs33B0 A Fall 05 135

properties. The isolation property ensures that each transaction appears to execute

in isolation from other transactior.rs, even though hundreds of transactions may be

executing concurrently. The atomicity property ensures that either all the database

operations in a transacticln are executed or none are. We discuss transactions in

detail in Piirt 5.

The preceding characteristics are rnost important in distinguishing a DBMS from

traditional f i le-processing software. In Section 1.6 we discuss additional features

that characterize a DBMS. First, however, we categorize the different types of people

who work in a database svstenl envirorrrrrerr t .

1.4 Actors on the Scene
For a small personal database, such as the l ist of addresses discussed in Section 1.1,

one person typically defines, constructs, and manipulates the database, and there is

no sharing. However, in large organizations, many people are involved in the design,

use, and maintenance of a large database with hundreds of users. In this section we

identifz the people whose jobs involve the day-to-day use of a large database; we call

them the octors on tlrc scene.ln Section 1.5 we consider people who may be called

workers behind the scene-those who rvork to maintain the database system envi-

ronment but who are not activelv interested in the database itself.

----- l-
: lon ro I

lq I- l
12

1
rcl

)t I' -1
)2 I
, "1

c\ecute

nlaY be

l.rtabase

t ions in

lS fiom

teatures

i people

ion 1.1,

there is

design,
' t lon we

: rr'e call

c called

nr ent'i-

1.4 Actors on the Scene

1.4.1 Database Administrators

h.r any organization where many people use the same resources, there is a need for a

chief administrator to oversee and manage these resources. In a database environ-

ment, the primary resource is the database itsell and the secondary resource is the

DBMS and related softrvare. Admir-ristering these resources is the responsibil i ty of

the database administrator (DBA). The DBA is responsible for authorizing access

to the database, coordinating and monitoring its use, and acquiring software and

hardware resources as needed. The DBA is accountable for problems such as breach

of security or poor system response time. In large organizations, the DBA is assisted

by a staff that carries out these functions.

1.4.2 Database Designers

Database designers are responsible for identifring the data to be stored in the data-

base and for choosing appropriate structures to represent and store this data. These

tasks are mostly undertaken before the database is actually implemented and popu-

lated with data. It is the responsibil i ty of database desigr-rers to communicate with

all prospective database users in order to understand their requirements and to cre-

ate a design that meets these requirements. In many cases, the designers are on the

sttrff of the DBA and may be assigned other staff responsibilities after the database

clesign is completed. Database designers typically interact with each potential group

of users and develop views of the database that meet the data and processing

requirements of these groups. Each view is then analyzed and integrated with the

views of other user groups. The final database design must be capable of supporting

the requirements of all user groups.

1.4.3 End Users

End users are the peopie whose jobs require access to the database for queryir-rg,

updating, and generating reports; the database primarily exists for their r"rse. There

are several categories of end users:

' Casual end users occasionally access the database, but they may need differ-

ent information each time. They use a sophisticated database quer)r language

to specifr their requests and are typically middle- or high-level managers or

other occasional browsers.

, Naive or parametric end users make up a sizable portion of database end

users. Their main job function revolves around constantly querying and

updating the database, using star-rdard types of queries and updates-called

canned transactions-that have been carefully programmed and tested. The

tasks that such users perform are varied:

Bank tellers check account balances and post withdrawals and deposits.

Reservation clerks for airi ines, hotels, and car rental companies check

availability for a given request and make reservations.

15

16 Chapter 1 Databases and Database Users

; Clerks at receiving stations for shipping companies enter package identi-

f ications via bar codes and descriptive information through buttons to

update a central database of received and in-transit packages'

cs Sophisticated end users include engineers, scientists, business analysts, and

others who thoroughly familiarize themselves with the facil i t ies of the

DBMS in order to implement their appl icat ions to meet their complex

requirernents.

w Standalone users maintain personal databases by using ready-made pro-

gram packages that provide easy-to-use menu-based or graphics-based

interfaces. An example is the user of a tax package that stores a variety of per-

sonal f inancial data for tax purposes'

A typical DBMS provides rlult iple facil i t ies to access a database. Naive end users

n"Jto learn very little about the facilities provided by the DBMS; they simply have

to understand the user interfaces of the standard transactions designed and imple-

mented for their use. Casual users learn only a few facil i t ies that they may use

repeatedly. Sophisticated users try to learn most of the DBMS facilities in order to

u.hi.u. their iomplex requirements. Standalone users typically become very profi-

cient in using a specific sofiware package'

1.4.4 System Analysts and Application Programmers
(Software Engineers)

System analysts determine the requirements of end users, especially naive aud

parametric end users, and develop specifications for canned transactions that meet

ihese requiren-tents. Application programmers implement these specifications as

p.og.u-r; then they test, debug, document, and maintain these canned transac-

iioris. Sucn analysts and programmer ly referred to as software devel-

opers or software engineers-should be familiar with the full range of capabilities

provided by the DBMS to accomplish their tasks.

1.5 Workers behind the Scene
in addition to those who design, use, and adrninister a database, others are associ-

ated with the design, development, and operation of the DBMS software utd systern

environment Theie p..ro.r, u.. typically not interested in the database itself' We call

them the workers behind the scene, and they include the following categories:

w DBMS system designers and implementers design and implement the

DBMS modules and interfaces as a software package. A DBMS is a very com-

plex software system that consists of many components, or modules, includ-

ing modules for implementing the catalog, processing query language,

processilg the interface, accessing and buffering data, controlling concul-

i.n.y, unJ handling data recovery and security. The DBMS must interface

with other system *ft*u.. such as the operating system and compilers for

various programming languages.

1.6 Advantages of Using the DBMS Approach

l Tool developers design and implernent tools-the software packages that

faci l i tate database model ing and design, database system design, and

improved perfbrmance. Tools are optional packages that are often purchased

separately. They include packages fbr database design, performance moni-

toring, natural language or graphical interfaces, prototyping, simulation,

and test data generat ion. In many cases, independent sof tware vendors

develop and rnarket these tools.

,, Operators and maintenance personnel (system administration personnel)

are responsible for the actual running and maintenance of the hardware and

software environment for the database system.

Although these categories of workers behind the scene are instrumental in making

the database system available to end users, they typically do not use the database for

their orvn purposes.

1.6 Advantages of Using the DBMS Approach

In this section we discuss some of the advantages of using a DBMS and the capabil-

it ies that a good DBMS should possess. These capabil it ies are in addition to the four

nririn characteristics discussed in Section 1.3. The DBA rnust uti l ize these capabil i-

t ies to accomplish a variety of objectives related to the design, administration, and

use of a large rnultiuser database.

1.6.1 Gontrol l ing Redundancy

In traditional software developrnent uti l izing fi le processing, every user group

nraintains its own fi les for handling its data-processing applications. For example,

consider the UNIVERSITY database example of Section 1.2; here, two groups of users

might be the course registration personnel and the accounting office. In the tradi-

tior-ral approach, each group independently keeps fi les on students. The accounting

office keeps data on registratior.r and related bil l ing information, whereas the regis-

tration office keeps track of student courses and grades. Other groups may further

cluplicate some or all of the same data in their own fi les.

l 'his redundanry in storing the same data rnultiple times leads to several problems.

First, there is the need to perform a single logical update-such as entering data on

a new student-n-rultiple times: once fbr each file where student data is recorded.

This leads to duplicotiorr of eJfort. Second, stlrage space is wasted when the same data

is stored repeatedly, and this problen-r may be serious for large databases. Third, f i les

that represent the same data n-ray become inconsistent. This may happen because an

Lrpdate is applied to some of the fi les but not to others. Even if an update-such as

adding a new student-is applied to all the appropriate fi les, the data concerning

the student may sti l i be incorrsisterrf because the updates are applied independently

by each user group. For example, one user group may enter a student's birthdate

r-rroneously as'lAN-19-1988', whereas the other Llser groups may enter the correct

value of 'JAN-29-I988:

17

L-nti-

'ns to

; , and

i the

:rplex

Pro-
rased

Ll Sers

have

rr n le-
"l '_

u Llse

:cr to
.rofi-

'and

meet

ns as

rsac-

evel-

l i t ies

socl-
'ttent

e call

t the

:om-

:lud-

lage,

lcur-

rt-ace

s tbr

18 Chaoter 1 Databases and Database Users

In the database approach, the views of different user groups are integrated during

database design. Ideally, we should have a database design that stores each logical

data iterr-such as a student's name or birthdate-in only one place in the database.

This ensures consistency and saves storage space. However, in practice, it is some-

times necessary to use controlled redundancy to improve the performance

of queries. For example, we may store Student-name and Course-number redundantly

in a GRADE_REPORT f i le (Figure 1.6(a)) because whenever we retr ieve a

GRADE_REPORT record, we want to retrieve the student name and course number

along with the grade, student number, and section identifier. By placing all the data

together, we do not have to search multiple frles to collect this data. In such cases,

the DBMS should have the capabil ity ro control this redundancy in order to prohibit

inconsistencies among the fi les. This may be done by automatically checking that

the Student_name-student_number values in any GRADE_REPORT record in Figure

1.6(a) match one of the Name-Student_number values of a STUDENT record (Figure

1.2). Sirnilarly, the Section-identif ier-Course-number values in GRADE_REPORT can

be checked against SECTION records. Such checks can be specified to the DBMS

during database design and autorratically enforced by the DBMS whenever the

GRADE_REPORT fl le is updated. Figure 1.6(b) shows a GRADE_REPORT record that

is inconsistent rvith the STUDENT fi le of Figure 1.2, rvhich may be entered erro-

neously if the redundar.rcy is trot corffrLtl led.

1.6.2 Restricting Unauthorized Access

When multiple users share a large dirtabase, it is l ikely that most users wil l not be

autirorized to access all inforrnation in the database. For example, f inancial data is

Figure 1.6

Redundant storage of Student_name and Course_name in GRADE_REPORT
(a) Consistent data (b) Inconsrstent record.

(a)

GRADE REPORT

Student_numberStudent name Section identi f ier Course number Grade

'17 Smth 112 MATH241 O B

17 Smrth 119 cs1310

I Brown B5 MATH241 O A

I Brown 92 cs1 31 0 A

8 Brown 102 cs3320 B

I Brown 135 cs3380 A

GRADE REPORT

Student_numberStudent_name Section_identif ierCourse_number Grade

17 Brown 112 MATH241 O B(b)

dur ing

logical

rabase.

some-

ntance

dantly

leve a

urnber

lc data

aJSes,
'ohibi t

rrr thet
'5 " ' - '

F iurr rp' ' t " ' -

Figure

iT can

)ts\{s
cr the
-d that

erro-

rot be

lata is

1.6 Advantages of Using the DBMS Approacn

otten considered confider-rtial, and oniy authorized persons are allowed to access
sr.rch data. In addition, solre users mav only be pe1p111.6 to retrieve data, whereas
others are allowed to retrieve and upclate. Hence, the type of access operation-
re-trieval or updirte-must also be controlled. Typically, users or user groups are
given account nri l irbers protected bv passrvords, which tl 'rey can use to gtrin access to
the database. A DBMS should provide a security and authorization subsystem,
rr.hich the DBA uses to create accounts and to specifu account restrictions. Then, the
t)BMS should enfbrce rhese restrictions automaticallv. Notice that we can apply
sirr-ri lar controls to the DBMS software. For example, only the DBA's staff may be
.rllolved to use certain privileged software, such as the software for creirting ner.v
accounts. Similarly, parametric users may be allowed to access the database only
through the canned transactions developed for their use.

1.6.3 Providing Persistent Storage for program Objects

[)atabases can be used to provide persistent storage fbr program objects and data
structures. This is one of the n.rain reasons for object-oriented database systems.
I)rogramming languages typical l l ' have complex data structures, such as record
tvpes in Pascal or class definit ions in c++ or Ja',,a. The values of program variables
are discarded once a prograrn terminates, unless the programmer explicit ly stores
thenl in permanent fi les, which ofien involves cor.rverting these complex structures
irlto a format suitable for f i le storage. When the need arises to read this data once
tllore, the programmer must convert from the fi le format to the progran variable
\ t ructure. object-or iented darrbase sysrems are compat ib le wi th piogiarnming lan-
guages such as C++ and Java, and the DBMS software automatically performs any
necessary conversions. Hence, a complex object in c++ can be stored permanentlv
in an object-oriented DBMS. Such an object is said to be persistent, since it survives
the termination of progr:rm execution and can later be directly retrieved by another
C++ program.

The persistent storage oiprograrn objects and data structures is an irnportant func-
tior.r of database systems. Traditional database svstems ofien suffered frorn the so-
called impedance mismatch problem, since the data structures provided by the
l)BMS w'ere incornpat ih le wi th the programrning language's iata structures.
Object-oriented database systems typicalll, offer data structure compatibility rvith
otle or nrore object-oriented programming languages.

1.6.4 Providing Storage Structures for Efficient
Query Processing

Database systems must provide capabil it ies tor efficiently executirtg tltteries oncl
updates. Because the database is typicallv stored on disk, the DBMS must provide
specialized datir structures to speed up clisk search fbr the desired records. Auxii iary
tlles called indexes are used for tl'ris purpose. Indexes are typically based on tree data
structures or hash data structures, suitably modified for disk search. In order to
process the database records needed bv a particular query, those records must be

19

20 Chaoter 1 Databases and Database Users

copied from disk to memory. Therefore, the DBMS often has a buffering module

that maintains parts of the database in main memory buffers. In other cases, the

DBMS may use the operating system to do the buffering of disk data.

The query processing and optimization module of the DBMS is responsible for

choosing an efficient query execution plan for each query based on the existing stor-

age structures. The choice of which indexes to create and maintain is part of physi-

cal database design and tuning, which is one of the responsibilities of the DBA staff.

We discuss the query processing, optimization, and tuning in detail in Chapters 15

and 16.

1.6.5 Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software failures.

The backup and recovery subsystem of the DBMS is responsible for recovery. For

example, if the computer system fails in the middle of a complex update transac-

tion, the recovery subsystem is responsible for making sure that the database is

restored to the state it was in before the transaction started executing. Alternatively,

the recovery subsystem could ensure that the transaction is resumed from the point

at which it was interrupted so that its full effect is recorded in the database.

1.6.6 Providing Multiple User Interfaces

Because many types of users with varying levels of technical knowledge use a data-

base, a DBMS should provide a variety of user interfaces. These include query lan-

guages for casual users, programming language interfaces for application

programmers, forms and command codes for parametric users, and menu-driven

interfaces and natural language interfaces for standalone users. Both forms-style

interfaces and rnenu-driven interfaces are commonly known as graphical user

interfaces (GUIs). Many specialized languages and environments exist for specifu-

ing GUIs. Capabilities for providing Web GUI interfaces to a database-or Web-

enabling a database-are also quite common.

1.6.7 Representing Complex Relationships among Data

A database may include numerous varieties of data that are interrelated in many

ways. Consider the example shown in Figure 1.2. The record for'Brown'in the

STUDENT fi le is related to four records in the GRADE REPORT fi le. Similarly, each

section record is related to one course record and to a number of GRADE_REPORT

records-one for each student who comoleted that section. A DBMS must have the

capability to represent a variety of complex relationships among the data, to define

new relationships as they arise, and to retrieve and update related data easily and

efficiently.

1.6.8 Enforcing lntegrity Constraints

Most database applications have certain integrity constraints that must hold for

the data. A DBMS should provide capabilities for defining and enforcing these con-

j module

:rses, the

r ' ib le for
: ing stor-

'ti
pltysi-

tll.\ staff.
rrr t r rs l5

la i lures.

r crr'. For

I rJnsac-

: . rbase is

hc point

. a data-

:e rv lan-

' l ic i i t ion

-i -driven

nr s-style

cal user

.pecifr-
trr \ \reb-

;n manv

r ' in the

rlr ', each

IEPORT

have the

o define

. i lv and

rold fbr

a5C COn-

1.6 Advantages of Using the DBMS Approach

straints. The simplest type of integrity constraint involves specirying a data type for

each data item. For example, in Figure 1.3, we specified that the value of the Class

data item within each STUDENT record must be a one digit integer and that the

value of Name must be a string of no more than 30 alphabetic characters. To restrict

the value of Class between I and 5 would be an additional constraint that is not

shown in the current catalog. A more complex type of constraint that frequently

occurs involves specifying that a record in one file must be related to records in

other files. For example, in Figure 1.2, we can specify that every section record must

be related to a course record.Another type ofconstraint specifies uniqueness on data

item values, such as every course record ffiust have a unique value for Course_number.

These constraints are derived from the meaning or semantics of the data and of the

miniworld it represents. It is the responsibility of the database designers to identiS'

integrity constraints during database design. Some constraints can be specified to

the DBMS and automatically enforced. Other constraints may have to be checked by

update programs or at the time of data entry. For typical large applications, it is cus-

tomary to call such constraints as business rules.

A data item may be entered erroneously and still satisfy the specified integrity con-

straints. For example, if a student receives a grade of A but a grade of 'C'is entered

in the database, the DBMS cannot discover this error automatically because 'C' is a

valid value for the Grade data type. Such data entry errors can only be discovered

manually (when the student receives the grade and complains) and corrected later

by updating the database. However, a grade of 'Z' would be rejected automatically

by the DBMS because'Z' is not a valid value for the Grade data type. When we dis-

cuss each data model in subsequent chapters, we wil l introduce rules that pertain to

that model implicit ly. For example, in the Entity-Relationship rnodel in Chapter 3, a

relationship must involve at least two entities. Such rules are inherent rules of the

data model and are automatically assumed to guarantee the validity of the model.

1.6.9 Permitting Inferencing and Actions Using Rules

Some database systems provide capabilities for defining deduction rules for inferenc-

ing new information from the stored database facts. Such systems are called deduc-

tive database systems. For example, there may be complex rules in the miniworld

application for determinir-rg when a student is on probation. These can be specified

declaratively as rules, which when compiled arnd maintained by the DBMS can deter-

mine all students on probation. In a traditional DBMS, an explicit pro cedural program

codewould have to be written to support such applications. But if the miniworld rules

change, it is generally more convenient to change the declared deduction rules than to

recode procedural programs. In today's reiational database systems, it is possible to

associate triggers with tables. A trigger is a form of a rule activated by updates to the

table, which results in performing some additional operations to some other tables,

sending messages, and so on. More involved procedures to enforce rules are popularly

called stored procedures; they become a part of the overall database definition and

are invoked appropriately when certain conditions are met. More powerful function-

ality is provided by active database systems, which provide active rules that can auto-

matically initiate actions when certain events and conditions occur.

21

22 Chapter 1 Databases and Database Users

1.6.10 Addi t ional lmpl icat ions of Using
the Database Approach

This section discusses sonre additional implications of using the database approach

that can benefit most orsanizations.

Potential for Enforcing Standards. The database approach permits the DBA to

define and enforce standirrds among database nsers in a large organization. This

facil i tates comrnunication ancl cooperation anrong vtrrious departnrents. projects.

and users within the organization. Star.rdards car.r be defined for names and forrnats

of data elements, display formats, report structures, terminology, and so on. The

DBA can enforce standards in a centralized database environment more easily than

in an environrrent where each user group has control of its own fi les and softlvare.

Reduced Application Development Time. A prime sell ing feature of the data-

base approach is that developing a ne'rv apl.rl ication-such as the retrieval of certain

data from the clatabase fbr printing .1 new report-takes very l itt le t ime. Designing

and implementing a nerv database from scratch may take more time than writ ing a

single specialized fl le applicatior-r. Horvever, once a database is up and running, sub-

stantially less tinre is generally recluired to create nerv appiications using DBNIS

facil it ies. Developrnent t ime using a DtsMS is estirrrated to be one-sixth to one-

fourth ofthat for a traditional f i le systenl.

Flexibil i ty. It may be necessary to change tire structure of a database as require-

ments change. For example, a nelv user group may emerge that needs information

not currently in the databirse. In response, it rr.ray be nec.'ssary to add a fi le to the

database or to extend the data elenrents in ar.r existir-rg fi le. lvlodern DBNISs allow

certain types of evolut ionary changes to the structure of the database wit l - rout

affecting the stored data ar-rd the existing application programs.

Availabil ity of Up-to-Date Information. A DBMS makes the database available to

all users. As soon as one user's update is applied to the database, all other users can

immediately see' this update. This availabil ity of up-to-date informtrtion is esserrtial

for many trans;rction-i.rrocessing applications, such as reservation svstems or bank-

ing clatabases, and it is made possible by the concurrency control and recovery sub-

systenls of a DBMS.

Economies of Scale. l 'he DBNIS approach perrnits consolidatior.r of data and

applications, thus reducing the amount of rvasteful overlap between activit ies of

data-processing personnel in different projects or departments as well as redundan-

cies among appl icat ions. This enables the whole orgrrnizat ion to invest in ntore

porverful processors, storage devices, or comnrunication gear. rather than having

each department purchase its own (weaker) equiprnent.'fhis reduces overall costs

of operation and management.

'.r ro.rc I1

)l l.\ to

' . . This
.() icct5,

) nlli.tts

: r . ' l 'he

r thart

l \ \ . l rc.

: . l . t ta-

-(r taI l l

, . ' r t i n. t
' : "

. , 'D

: t lng a

t . \ub-

.) l t \ ls
r () l le-

rltl I l'!-

tr .r t iol l

i (t the

.r l lou'

l t i r ()ut

r l r le to

' f \ Ci l l l

.cnt ia l

i . . tnk-

r . r tb-

. r . rncl

i i r 's of

rtr- lan-

l t) o fe

t. lVl l tg

I costs

1.7 A Brief History of Database Applications

1.7 A Brief History of Database Applications

We now give a brief historical overview of the applications that use DBMSs and how

these applications provided the impetus for Irew types of database systems'

1.7.1 Early Database Applications Using

Hierarchical and Network SYstems

Many early database applications maintained records in large orgarlzations such as

corporations, universit ies, hospitals, and banks. In many of these applications, there

*.." lutg" numbers of records of similar structure. For example, in a university

applicati ln, similar information would be kept fbr each student, each course, each

giud. t".otd, and so on. There rvere also many types of records and many interrela-

t ionships among thenr

One of the main problems with early database systems was the interrnixing of con-

ceptual relationships with the physical storage irnd placemeut of records on disk.

For example, the giade records of a particular student could be physically stored

next to the stqdent record. Although this provided very efficient access for the orig-

inal queries and transactions that the database rvas designed to handle, it did not

provide enough flexibil i tv to access records efficientl,v lvhen new qr,reries and trans-

actions were identified. In particular, new queries that required a different storage

organization fbr eftlcie.nt processing were quite ditficult to implen'rent efficiently. it

r,vai also laborior.rs to reorganize the database rvhen changes were made to the

requirements of the application.

Another shortcoming of eariv systems was that they provided only programming

language interthces. Tl-ris ntade it tirne-consuming and expensive to iuplenrent nert'

qn".lai and transactiotrs, sitrce l le\v frrogranls had to be written' tested, and

debugged. Most of these database systems were implemented on large and expensive

mainiiame computers starting in the mid-1960s and continuing through the 1970s

and 1980s. The main types of early systems were based on three main paradigms:

hierarchical systems, network rlodel based systems, atld inverted file systems.

1.7.2 Providing Application Flexibility

with Relational Databases

Relational databases were originirl lv proposed to sefrarate the phvsical storage of

data from its conceptual represer-rtation ar.rd to provide a mathematical fbundation

for content storage. The relational data rr-rodel also introduced high-level querl ' lan-

guages that provided an alternative to prograrnrning language interfhces; hence, it

ivas'a lot quicker to write nerv queries. Relartional represeutatior.r of data somewhat

resemblesihe examplc. we presented in Figiire L2. Relational systerns were init ially

targeted to the same applicatior-rs as earlier systens, but were meant to provide flex-

ibil"ity to develop new queries quickly and to reorganize the database as require-

ments changed.

Chaoter 1 Databases and Database Users

Early experimental relational systems developed in the late 1970s and the commer-

cial re\ationa\ database management systems (RDBMS) introduced in the ear\y

\980s wete qurte s\ow, since they d,id, not use physica\ stotaBe porn\ers ot tecotd

placement to access related data records. With the deve\opment of new storage and

indexing techniques and better query processing and optimization, their perfor-

mance improved. Eventually, reiational databases became the dominant type of

database system for traditional database applications. Relational databases now exist

on almost all types of compr"rters, from small persor-ral computers to large servers.

1.7.3 Obiect-Oriented Applications and the Need
for More Complex Databases

The emergence of object-oriented programming languages in the 1980s and the

need to store and share complex-structured objects led to the development of

object-oriented databases (OODB). Init ially, OODB were considered a competitor

to relational databases, since they provided more general data structures. They also

incorporated many of the useful object-oriented paradigms, such as abstract data

types, encapsulation of operations, inheritance, and object identity. However, the

complexity of the model and the lack of ar.r early standard contributed to their l im-

ited use. They are now mainly used ir-r specialized applications, such as engineering

design, multimedia publishing, and manufacturing systems. Despite expectatious

that they wil l make a big impact, their overall penetration into the database prod-

ucts market remains under 5olo today.

1.7.4 Interchanging Data on the Web for E-Commerce

The World Wide Web provides a large netrvork of interconnected computers. Users

can create documents using a Web pubiishing language, such as HyperText Markup

Language (HTML), and store these docurnents on Web servers where other users

(clients) can access thern. Documents can be l inked through hyperlinks, which are

pointers to other documents. In the 1990s, electronic commerce (e-commerce)

emerged as a major application on the Web. It quickly became apparent that parts of

the information on e-commerce Web pages were often dynamically extracted data

from DBMSs. A variety of techniques were developed to allow the interchange of

data on the Web. Currently, eXtended Markup Language (XML) is considered to be

the primary standard for interchanging data among various types of databases and

Web pages. XML combines concepts from the models used in document systems

with database modeling concepts. Chirpter 27 is devoted to the discussion of XML.

1.7.5 Extending Database Capabil it ies for New Applications

The success of database systems in traditional applications encouraged developers

of other types of applications to attempt to use them. Such applications tradition-

ally used their own specialized fi le and data structures. The following are examples

of these appl icat ions:

I Inntcr-

)c r 'ar lV

rr-co rd

lgc and

l'crtor-
rr pg ef
) \ \ 'e\ lst

\ crs.

nt l the

t fnt of

i rct l tor
cV also

. t data

cr, the

' i r l inr-

r, ' , ' r inq
'- ' " 'b

l . l t ions

prod-

. L'sers
hrkup
r Llscrs

ich are

r icrce)

' . r r ts of

rl clata

rr(rrr r r f

.l ro be

C: And

'
\ tCl l lS

\ \ IL.

iopc'15

l i t ion-

rrr l)1, . \

1.7 A Brief History of Database Applications

m Scientific applications that store large amounts of data resulting from scien-

tific experiments in areas such as high-energy physics or the mapping of the

human genome.

$i ${s1ngs and retrieval of images, from scanned news or personal photo-

graphs, to satell i te photograph images and images from medical procedures

such as x-rays or MRI (magnetic resonance imaging).

ss Storage and retrieval of videos such as movies, or video clips from news or

personal digital carneras.

i*t Data mining applications that analyze large amounts of data searching for

the occurrences of specific patterns or relationships.

w Spatial applications that store spatial Iocations of data such as weather infor-

mation or maps used in geographical information systems.

ts Time series applications that store information such as economic data at

regular points in time (for example, daily sales or monthly gross national

product f igures).

It was quickly apparent that basic relational systems were not very suitable for many

of these applications, usually for one or more of the following reasons:

*s More complex data structures were needed for modeling the application

than the simple relational representation.

e New data types were needed in addition to the basic numeric and character

string types.

ffi New operations and query language constructs were necessary to manipu-

late the new data types.

& New storage and indexing structures lvere needed.

This led DBMS developers to add functionality to their systems. Some functionality

was general purpose, such as incorporating concepts from object-oriented data-

bases into relational systems. Other functionality was special purpose, in the form

of optional modules that could be used for specific applications. For example, users

could buy a time series module to use with their relational DBMS for their t ime

series application.

Today, most large organizations use a variety of software application packages that

work closely with database back-ends. The database back-end represents one or

more databases, possibly from different vendors and different data models that

maintain the data that is manipulated by these packages for supporting transac-

tions, generating reports, and answering ad-hoc queries. One of the most com-

monly used systems includes Enterprise Resource Planning (ERP) used to

consolidate a variety of functional areas within an organization, including produc-

tion, sales, distribution, marketing, f inance, human resources, and so on. Another

popular type of system is Customer Relationship Management (CRM) software

that spans order processing and marketing and customer support functions. These

applications are Web-enabled in that internal and external users are given a variety

of Web-portal interfaces to interact with the back-end databases.

Chapter 1 Databases and Database Users

1.7.6 Databases versus Information Retrieval

Traditionally, database techr-rology applies to structured and formatted data that

arises in routine applications in government, business, and industry. Database tech-

lology is heavily used in manufacturing, retail, banking' insurance, f inance, and

health care industries where structured data originates as forms such as invoices or

patient registration documents. There l-ras been a concurrent deveiopment of a field

called information retrieval (IR) that deals u'itl-r books, manuscripts, and various

forms of l ibrary-based rrrt icles. Data is indexed, cataloged, and annotated using key-

words. IR is concerned with searching fbr n-rirterial based on these key'words, and

with the many problems dealing rvith document processing and free-fbrm text pro-

cessing. There has been a considerable amollnt of rvork done on searching for text

based on keywords, f inding documents and ranking them based on relevance, auto-

matic text categorization, ciassification of text b,v topics, trnd so on' With the advent

of the Web and the proliferation of HTML pages running into bil l ions, there is a

need to apply mar-ry of the IR techniques to processir.rg data on the Web. Data on

Web pages typically contains images, text, and objects that are.active and change

dynamiially. Retrieval of infbrmation on the Web is a new problem that requires

techniques from databases and IR to be applied in a variety of novel combinations.

1.8 When Not to Use a DBMS
In spite of the advantages of using a DBMS, there are some situations in which a

DBMS may involve un,i...rrury overhead costs that would not be incurred in tradi-

tional f i le processing. The overhead costs of using a DBMS are due to the following:

; f{igl init ial investment in hardware, software, and training

,,, The generality that a DBMS provides for defining and processing data

,, ' Overhead for providing security, concurrency control. recovery, and

integrity functions

Additional problems may arise if the database designers and DBA do not properly

clesign the iatabase or if the database systems applications are not implemented

proi..ly. Hence, it may be more desirable to use reguiar files under the following

circumstances:

,,, Simpie, well-defined database applicatior-rs that are not expected to change

Str ingent, real- t i l re requiretnents for some programs that may not be met

because of DBMS overhead

No mult iPle-user access to dat.r

Certain industr ies and appl icat ions have elected not to use general-purPose

DBMSs. For example, .ut.t1'.ot.t-tputer-aided design tools (CAD) used by mechani-

cal and civil engineers have proprietary fi le and data management software that is

geared for the i irternal n.rar-ripulations of drawings and 3D objects' Similarly, com-

i-runication and switching systems designed by companies l ike AT&T rvere early

rnanifestations of database softt"a.e that rvas made to run very fast with hierarchi-

. l t. l that
i .c tcch-
) .c, and
,, iccs or
' t ' . r f le ld
r . r r ious
: : ig ker ' -
: . i : , . t t ld
. \ r Pro-
:() f teYt

. f . . l t l to-
: . t t lvent
l i ' :C lS a

-) . r t . r on

:(q u ires
'_.1t r()ns.

, ' h ich a
:t trtcl i-
.1rrr' ir-tg:

: ' , . a l td

'!-()perlY
:ncnte d
I itrrvir.rg

[rc nret

\ r i rPose
.'. l'r.r Iri -
. . th.r t is
\ . a() ln-
rc r ' . tr lY
- 'r . i rc h i-

1.9 Summary

cally organized data for quick alccess and routing of calls. Similarly, GIS implemen-
tations often implement their own data organization schemes for efficiently imple-
menting functions related to processing maps, physical contours, l ines, polygons,
and so on. General-purpose DBMSs are inadequate for their purpose.

1.9 Summary
In this chapter we defined a database as a collection of related data, where data
means recorded facts. A typical database represents some aspect of the real world
and is used for specific purposes by one or rnore groups of users. A DBMS is a gen-
eralized software package for implernenting and maintaining a computerized data-
base. The database and softrvare together forn a database system. We identif ied
several characteristics that distinguish the database approach from traditional f i le-
processing applications, and rve discussed the main categories of database users, or
Lhe actors on the scene. We noted that in addition to dntabase users, there are several
categories of support personnel, or workers behird the scene, in a database environ-
ment.

We presented a l ist of capabil it ies that should be provided by the DBMS software to
the DBA, database designers, and users to help them design, administer, and use a
database. Then we gave a brief historical perspective on the evolution of database
applications. We pointed out the marriage of database techr-rology with information
retrieval technology, which will play an important role due to the popularity of the
Web. Finally, we discussed the overhead costs of using a DBMS and discussed some
situations in which it may not be advantaseous to use one.

Review Ouestions
:. :, Define the following rerms: datn, dstabase, DBMS, database systenl, datebase

catalog, program-data independence, user view, DBA, end user, carurcd transac-
tion, deductive database system, persistent object, nteta-data, and transactiott-
pro ce ssi n g a p pl icnt i ort.

, Jr, What four main types of actions involve daterbases? Briefly discuss each.

l"$, Discuss the main characteristics of the database aprproach and hor'v it differs
from traditional file systems.

1,'q, What are the responsibil i t ies of the DBA and the database designers?
'i ,5" What are the different types of database end users? Discuss the main activi-

t ies of each.

i.{: Discuss the capabil it ies that should be provided by a DBMS.

; ; Discuss the differences between database systems and information retrieval
systems.

